8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy...

7
ANSWERS TO TEST YOURSELF QUESTIONS 8 1 PHYSICS FOR THE IB DIPLOMA © CAMBRIDGE UNIVERSITY PRESS 2015 Answers to test yourself questions Topic 8 8.1 Energy sources 1a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy that can be extracted from a unit volume of fuel. b The available energy is mgh. The energy density is the energy per unit volume that can be obtained and so E mgh V mgh m gh D = = = = × × = × - ρ ρ 10 98 75 74 10 3 5 3 . . Jm 2a In 1 s the energy is 500 MJ. b In one year the energy is 5.0 × 10 8 × 365 × 24 × 60 × 60=1.6 × 10 16 J. 3a The overall efficiency is 0.80 × 0.40 × 0.12 × 0.65 = 0.025. b 4a The energy produced by burning the fuel is 10 7 ×  30 ×  10 6 = 3.0 ×  10 14 J. Of this 70% is converted to useful energy and so the power output is P = × × × × = × 0 30 30 10 24 60 60 1 04 10 14 9 . . . W. b The rate at which energy is discarded is P discard = × × × × = × 0 70 30 10 24 60 60 2 43 10 14 9 . . . W. c Use Δ Δ Δ m t c P discard θ = to get Δ Δ Δ m t P c discard = = × × = × θ 2 43 10 4200 5 12 10 9 5 . . kg s -1 . 5 In time t the energy used by the engine is 20 ×  10 3 ×  t.The energy available is 0.40 ×  34 ×  10 6 J and so 20 ×  10 3 ×  t  = 0.40 ×  34 ×  10 6 ⇒  t  =680 s. The distance travelled is then x = vt = 9.0 ×  680 = 6.1 km. 6 The useful energy produced each day is E = Pt =1.0×10 9 ×24×60×60=8.64×10 13 J. The energy produced by burning the coal is therefore 0 40 8 64 10 2 16 10 13 14 . . . = × = × E E c c J. So the mass of coal to be burned is m = × × = × 2 16 10 30 10 72 10 14 6 6 . . kg per day. 20 48 28 100 80 32 4 1.5 2.5

Transcript of 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy...

Page 1: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

ANSWERS TO TEST YOURSELF QUESTIONS 8 1physics for the iB Diploma © camBriDge University press 2015

answers to test yourself questionstopic 88.1 energy sources

1 a Specificenergyistheenergythatcanbeextractedfromaunitmassofafuelwhileenergydensityistheenergythatcanbeextractedfromaunitvolumeoffuel.

b Theavailableenergyismgh.Theenergydensityistheenergyperunitvolumethatcanbeobtainedand

soEmgh

V

mghm ghD = = = = × × = × −

ρ

ρ 10 9 8 75 7 4 103 5 3. . Jm

2 a In1stheenergyis500MJ. b Inoneyeartheenergyis5.0×108×365×24×60×60=1.6×1016J.

3 a Theoverallefficiencyis0.80×0.40×0.12×0.65=0.025.

b

4 a Theenergyproducedbyburningthefuelis107× 30× 106=3.0× 1014J.Ofthis70%isconvertedtouseful

energyandsothepoweroutputisP =× ×× ×

= ×0 30 3 0 10

24 60 601 04 10

149. .

. W.

b TherateatwhichenergyisdiscardedisPdiscard =× ×× ×

= ×0 70 3 0 10

24 60 602 43 10

149. .

. W.

c Use∆∆

∆m

tc Pdiscardθ = toget

∆∆ ∆m

t

P

cdiscard= =

××

= ×θ

2 43 10

4200 51 2 10

95.

. kg s−−1.

5 Intimettheenergyusedbytheengineis20× 103× t.Theenergyavailableis0.40× 34× 106Jandso20× 103× t =0.40× 34× 106⇒ t =680s.Thedistancetravelledisthenx=vt=9.0× 680=6.1km.

6 TheusefulenergyproducedeachdayisE=Pt=1.0×109×24×60×60=8.64×1013J.Theenergyproduced

byburningthecoalistherefore0 408 64 10

2 16 1013

14..

.=×

⇒ = ×E

Ec

c J.Sothemassofcoaltobeburnedis

m =××

= ×2 16 10

30 107 2 10

14

66.

. kgperday.

20 48 28

100

80

32

4

1.5

2.5

Page 2: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

2 physics for the iB Diploma © camBriDge University press 2015ANSWERS TO TEST YOURSELF QUESTIONS 8

7 a ThefissionableisotopeofuraniumisU–235.ThisisfoundinverysmallconcentrationsinuraniumorewhichismostlyU–238.EnrichmentmeansincreasingtheconcentrationofU–235inasampleofuranium.

b Themoderatoristhepartofthenuclearreactorwhereneutronsreleasedfromthefissionreactionsslowdownasaresultofcollisionswiththeatomsofthemoderator.Thetemperatureofthemoderatorcanbekeptconstantwithacoolingsystemthatremovestheexcessthermalenergygeneratedinthemoderator.

c Criticalmassreferstotheleastmassofuraniumthatmustbepresentfornuclearfissionreactionstobesustained.Ifthemassofuraniumistoosmall(i.e.belowthecriticalmass)theneutronsmayescapewithoutcausingfissionreactions.

8 a Thereactionis 92235

01

54140

3894

012U+ n Xe Sr n→ + + .Themassdifferenceis

δ = − × +

( . . ) .

      (

235 043992 92 0 000549 1 008665

1339 921636 54 0 000549 93 915360 38 0 000. . ) ( . .− × + − × 5549 2 1 008665

0 198331

) . )

    .

+ ×( )= u

AndsotheenergyreleasedisE=0.198331× 931.5c2MeVc-2=185MeV. b WithNreactionspersecondthepoweroutputisN× 185MeVs-1.Inotherwords,N× 185× 106× 1.6× 10-19 =

200× 106⇒N =6.8× 1018s-1.

9 a Onekilogramofuraniumcorrespondsto1000

2354 26= . molesandso4.26× 6.02× 1023=2.57× 1024

nuclei.Eachnucleusproduces200MeVandsotheenergyproducedby1kg(theenergydensity)is2.57× 1024× 200× 106× 1.6× 10-19≈8× 1013Jkg-1.

b8 10

30 102 7 10

13

66×

×= ×. kg

10 a Theenergythatmustbeproducedin1 sisE =×

= ×500 10

0 401 25 10

69

.. J.Hencethenumberoffission

reactionspersecondis1 25 10

200 10 1 6 103 9 10

9

6 1919.

..

×× × ×

= ×−.

b Thenumberofnucleirequiredtofissionpersecondis3.9× 1019whichcorrespondsto3 9 10

6 02 106 5 10

19

235.

..

××

= × − mol,i.e.amassof6.5× 10-5× 235× 10-3 =1.5× 10-5kgs-1.

11

a i fuelrodsarepipesinwhichthefuel(i.e.uranium–235)iskept. ii controlrodsarerodsthatcanabsorbneutrons.Theseareloweredinorraisedoutofthemoderatorsothat

therateofreactionsiscontrolled.Therodsarelowerediniftherateistoohigh–therodsabsorbneutronssothattheseneutronsdonotcauseadditionalreactions.Theyraisedoutiftherateistoosmallleavingtheneutronstocausefurtherreactions.

iii Themoderatoristhepartofthenuclearreactorwhereneutronsreleasedfromthefissionreactionsslowdownasaresultofcollisionswiththeatomsofthemoderator.Thetemperatureofthemoderatorcanbekeptconstantwithacoolingsystemthatremovestheexcessthermalenergygeneratedinthemoderator.

pump

fuelrod

fuelrod

control rods(can be raised or lowered)

control rods(can be raised or lowered)

coolant(pressurisedwater)

water

water

steam

steamsteamgenerator

steamgenerator

coolant (carbondioxide gas)

solidmoderator(graphite)

gas-cooled reactorpressurised water reactor (PWR)

pump

Page 3: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

ANSWERS TO TEST YOURSELF QUESTIONS 8 3physics for the iB Diploma © camBriDge University press 2015

b Itiskineticenergyoftheneutronsproducedwhichisconvertedintothermalenergyinthemoderatorastheneutronscollidewiththemoderatoratoms.

12 Asolarpanelreceivessolarradiationincidentonitandusesittoheatupwater,i.e.itconvertssolarenergyintothermalenergy.Thephotovoltaiccellconvertsthesolarincidentonittoelectricalenergy.

13 a Thepowerthatmustbesuppliedis3.0kWandthisequals700×A×0.70×0.50.Hence700×A×0.70×0.50=3.0×103⇒A =12m2.

b

14 Thepowerthatisprovidedis0.65×240×Aandthismustequalmc

t

∆∆

θ=

× ×× ×

300 4200 35

12 60 60.

Hence0 65 700300 4200 35

12 60 606 5 2. .× × =

× ×× ×

⇒ =A A m .

15 Thepowerincidentonthepanelis600×4.0×0.60=1440W.Theenergyneededtowarmthewateris

mc∆θ=150×4200×30=1.89×107Jandso1440 1 89 101 89 10

14401 31 10 37

74× = × ⇒ =

×= × =t t.

.. .s 66 hr.

16 a FromthegraphthisisaboutT = 338K b P =IA =400×2 =800W

c Theusefulpoweristhe320 Wthatisextracted.Theefficiencyisthus320

8000 40= . .

17 Thepowersuppliedatthegivenspeedis(readingfromthegraph)100 kW.Hencetheenergysuppliedin100 hrsis100×103×1000×60×60=3.6×1011J.

18 Welookatthepowerformulaforwindmills,P Av=1

23ρ todeduce:

a i theareawillincreasebyafactorof4ifthelengthisdoubledandsothepowergoesupbyafactorof4, ii thepowerwillincreasebyafactorof23=8 iii thecombinedeffectis4×8 =32 b Notallthekineticenergyofthewindcanbeextractedbecausenotallthewindisstoppedbythewindmill(as

theformulahasassumed).Inaddition,therewillbefrictionallossesastheturbinesturnaswellaslossesduetoturbulence.

19 Assumptionsinclude: i nolossesofenergyduetofrictionalforcesastheturbinesturn ii noturbulenceintheair iii thatalltheairstopsattheturbinessothatthespeedoftheairbehindtheturbinesiszero(whichis

impossible).

25 kW 30 kW 30 kW

85 kW

Page 4: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

4 physics for the iB Diploma © camBriDge University press 2015ANSWERS TO TEST YOURSELF QUESTIONS 8

20 Thepowerinthewindbeforehittingtheturbineis1

2 1 13ρAv andrightafterpassingthroughtheturbineis

1

2 2 23ρ Av sotheextractedpoweris

1

2

1

2

1

21 5 1 2 8 0 1 8 31 1

32 2

3 2 3ρ ρ πAv Av− = × × × − ×. ( . . . .00 2 03 ) .≈ kW.

21 FromP Av=1

23ρ weget25 10

1

21 2 9 0 57 163 3 2× = × × × ⇒ =. . .A A m andsoπR R2 57 16 4 3= ⇒ =. . m.The

assumptionsmadearetheusualones(seequestion19) i nolossesofenergyduetofrictionalforcesastheturbinesturn ii noturbulenceintheair,and iii thatalltheairstopsattheturbinessothatthespeedoftheairbehindtheturbinesiszero(whichisimpossible).

22 Thepotentialenergyofamass∆mofwateris∆mgh andsothepowerdevelopedistherateofchangeofthis

energyi.e.∆∆m

tgh = × × = × ≈ ×500 9 8 40 1 96 10 2 0 105 5. . . W.

23 Thepotentialenergyofamass∆mofwateris∆mghandsothepowerdevelopedistherateofchangeofthis

energyi.e.∆∆

∆∆

m

tgh

V

tgh Qgh= =ρ ρ .

24 Theamountofelectricalenergygeneratedwillalwaysbelessthantheenergyrequiredtoraisethewaterbacktoitsoriginalheight.Thisisbecausetheelectricalenergygeneratedislessthanwhattheoreticallycouldbeprovidedbythewater(becauseofvariouslosses).Sothisclaimcannotbecorrect.

25 a Coalpowerplant:chemicalenergyofcoal→thermalenergy→kineticenergyofsteam→kineticenergyofturbine→electricalenergy.

b hydroelectricpowerplant:potentialenergyofwater→kineticenergyofwater→kineticenergyofturbine→electricalenergy.

c windturbine:kineticenergyofwind→kineticenergyofturbine→electricalenergy. d nuclearpowerplant:nuclearenergyoffuel→kineticenergyofneutrons→thermalenergyinmoderator→

kineticenergyofsteam→kineticenergyofturbine→electricalenergy.

chapter 8.2 thermal energy transfer

26 a Energyhastobeconservedsowhateverenergyentersthejunctionhastoleavethejunctionandsotheratesofenergytransferarethesame.

b ThetemperaturedifferencesarenotthesamebecauseXandYhavedifferentthermalconductivity.

27 Thereis;inordertosendthewarmairthatcollectshigherupintheroomdownwards.

28 PowerisproportionaltoT 4andsotheratiois900

3003 81

44

= =

29 a AblackbodyisanybodyatabsolutetemperatureTwhoseradiatedpowerperunitareaisgivenbyσT4.Ablackbodyappearsblackwhenitstemperatureisverylow.Itabsorbsalltheradiationincidentonitandreflectsnone.

b Apieceofcharcoalisagoodapproximationtoablackbodyasistheopeningofasoftdrinkcan.

c Itincreasesby 273 100

273 501 8

4++

≈ .

30 a Thewavelengthatthepeakofthegraphisdeterminedbytemperatureandsincethewavelengthisthesamesoisthetemperature.

b Theratiooftheintensitiesatthepeakisabout1 1

1 90 6

.

..≈ .

31 Wehavethate AT P TP

e Aσ

σ4 4= ⇒ = i.e.T =

×× × × ×

=−

1 35 10

0 800 5 67 10 5 00 10278

9

8 64

.

. . .K.

Page 5: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

ANSWERS TO TEST YOURSELF QUESTIONS 8 5physics for the iB Diploma © camBriDge University press 2015

32 a WemusthavethatσATd

Td

42

1 1∝ ⇒ ∝ .

b Usingourknowledgeofpropagationofuncertainties,wededucethat∆ ∆T

T

d

d=1

2andso

∆T

T= × =1

21 0 0 005. % . .Hence,∆T=0.005T=0.005×288=1.4K.

33 a Intensityisthepowerreceivedperunitareafromasourceofradiation. b P=e σAT4.P=0.90×5.67×10-8×1.60×(273+37)4=754W.Assuminguniformradiationinalldirections,the

intensityisthenIP

d= = = −

4

754

4 5 02 42 2

2

π π( . ). W m .

34 a Imagineaspherecenteredatthesourceofradiusd.ThepowerPradiatedbythesourceisdistributedoverthe

surfaceareaAofthisimaginarysphere.Thepowerperunitareai.e.theintensityisthusIP

A

P

d= =

4 2π.

b Wehaveassumedthattheradiationisuniforminalldirections.

35 a Thepeakwavelengthisapproximatelyλ0=0.65×10-5mandsofromWien’slaw:λ0T=2.9×10-3Kmwefind

T =××

=−

2 9 10

0 65 10450

3

5

.

.K.

b Thecurvewouldbesimilarinshapebuttallerandthepeakwouldbeshiftedtotheleft.

36 a Albedoistheratioofthereflectedintensitytotheincidentintensityonasurface. b Thealbedoofaplanetdependsonfactorssuchascloudcoverintheatmosphere,amountoficeonthesurface,

amountofwateronthesurfaceandcolorandnatureofthesoil.

37 a Theearthreceivesradiantenergyfromthesunandinturnradiatesitself.Theradiatedenergyisintheinfraredregionoftheelectromagneticspectrum.Gasesintheatmosphereabsorbpartofthisradiatedenergyandreradiateitinalldirections.Someofthisradiationreturnstotheearthsurfacewarmingitfurther.

b Themaingreenhousegasesarewatervapour,carbondioxideandmethane.Seepage336forsources.

38 a TheenergyflowdiagramissimilartothatinFig.8.10onpage334. b Thereflectedintensityis350-250=100Wm-2andsothealbedois

100

3500 29= . .

c Ithastobeequaltothatabsorbedi.e.250Wm-2.

d Usee T I TI

e Aσ

σ4 4= ⇒ = i.e.(assumingablackbody)T =

×=−

250

5 67 10258

84

.K.Youmustbecarefulwith

thesecalculationsintheexam.Youmustbesureastowhetherthequestionwantsyoutoassumeablackbodyornot.Strictlyspeaking,inamodelwithoutanatmospheretheearthsurfacecannotbetakentobeablackbody–ifitwerenoradiationwouldbereflected!

39 a TheintensityradiatedbythesurfaceisI 1andafractiontofthisescapessoweknowthatI3=tI1.Theintensity

ofradiationenteringthesurfaceis( )14 1 2− + +α αS

I I .Thismustequaltheintensityofradiationleavingthe

surfacewhichisI 1:( )14 1 2 1− + + =α αS

I I I .Theintensityofradiationenteringtheatmosphereis(1-α)I 1

andthatleavingitis2I 2+I 3.Hence2I 2+I 3=(1-α)I 1.Sowehavetosolvetheequations(weusedI3=tI1)

( )14 1 2 1− + + =α αS

I I I

2 12 1 1I tI I+ = −( )α

Thesesimplifyto

( ) ( )

( )( )

14

1

2 11

2

2 1

2 1 2

− + = −

= − − ⇒ =− −

α α

α α

SI I

I t I It

II1

Page 6: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

6 physics for the iB Diploma © camBriDge University press 2015ANSWERS TO TEST YOURSELF QUESTIONS 8

Hence

( )( )

( )

( ) ( )(

14

1

21

14

1

1 1

1

− +− −

= −

− = − −

α α α

α α

S tI I

SI

11

2

14

1

22

11

1

1

1

− −

− =− +

=− +

α

α α

αα

tI

S tI

It

S

)

( )( )

( )44

Therefore,It

t

S2

1

1

1

4=

− −− +

×−α

αα( )

andIt

t

S3

2

1

1

4=

− +×

−α

α( )asrequired.

b TheintensityenteringisS

4.Theintensityleavingisα S

I I4 3 2+ + .Theintensityleavingsimplifiesto

αα

α αα

α αS t

t

S t

t

S S

4

2

1

1

4

1

1

1

4 4+

− +×

−+

− −− +

×−

= +( ) ( )

(( ) ( )

(

12

11

1

1

41

−− +

+ −− −− +

= + −

αα

α αα

α

t

t

t

tS αα α

α

α α

)

( )

1

1

41

4

− +− +

= + −( )

=

t

tS

S

c TheintensityradiatedbythesurfaceisIt

S1

2

11

4=

− +−

αα( ) andmustequalσ T 4,whereTisthesurface

temperature.Hence

2

11

4

2 14 1

2 1 0 3

4

4

− +− =

=−

− +

=−

αα σ

α

σα

t

ST

t

S

T

t

( )

( )

( . 00 350

5 67 10 2881 0 30

0 556

8 4

)

..

.

×× ×

− +

t

d i LetanintensityIbeincidentontheatmosphereofemissivitye.AnamounteIwillbeabsorbedandreradiated,anamountαIwillbereflectedandanamounttIwillbetransmitted.ByenergyconservationwehavethatI =eI + αI + tIfromwhiche = 1 - α - tasrequired.

ii WeequateIt

t

S2

1

1

1

4=

− −− +

×−α

αα( )

toe σ T 4whereTistheatmospheretemperaturetoget

(recallthate = 1 - α - t)

e Tt

t

S

Tt

S

T

σ αα

α

σα

α

4

4

1

1

1

41

1

1

4

=− −− +

×−

=− +

×−

=

( )

( )

11

1 0 30 0 556

1 0 30 350

5 67 10242

84

− +×

− ××

=

−. .

( . )

.T K

Page 7: 8.1 energy sources - St Leonard's College · 8.1 energy sources 1 a Specific energy is the energy that can be extracted from a unit mass of a fuel while energy density is the energy

ANSWERS TO TEST YOURSELF QUESTIONS 8 7physics for the iB Diploma © camBriDge University press 2015

40 Radiationisamainmechanismtoboththeatmosphereandtospace.Inadditionthereisconductiontotheatmosphere,aswellasconvection.

41 a Drysub–tropicallandhasahighalbedo,around0.4whereasawarmoceanhasanalbedooflessthan0.2. b Radiationandconvectioncurrentsarethemainmechanisms. c Replacingdrylandbywaterreducesthealbedooftheregion.Reducingthealbedomeansthatlessradiation

isreflectedandmoreisabsorbedandsoanincreaseintemperaturemightbeexpected.Theincreaseintemperaturemightinvolveadditionalevaporationandsomorerain.

42 Therateofevaporationfromwaterdependsonthetemperatureofthewaterandthetemperatureofthesurroundingair.Thesearebothhigherinthecaseofthetropicaloceanwaterandevaporationwillbemoresignificantinthatcase.

43 Thereismoreevaporationinregionbimplyingthatitisbothwarmerandwet.Thefactthatregionbiswarmerisfurthersupportedbythesomewhatgreaterconductionwhichwouldbeexpectedifthedifferenceintemperaturebetweentheatmosphereandthelandwerelarger.

44 Wehavethattheoriginalaveragealbedooftheareawas0.6×0.10+0.4×0.3=0.18andthenewoneis0.7×0.10+0.3×0.3=0.16forareductioninalbedoof0.02.Hencetheexpectedtemperaturechangeisestimatedtobe2°C.