8-integralEvaluation

download 8-integralEvaluation

of 77

Transcript of 8-integralEvaluation

  • 7/30/2019 8-integralEvaluation

    1/77

    MTH 252Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.1 An Overview of

    Integration Methods

    Copyright 2005 by Ron Wallace, all rights reserved.

  • 7/30/2019 8-integralEvaluation

    2/77

    Four Approaches to Integration

    1. Recognition Review list on pages 511-512

    2. Computer Algebra Systems (CAS) Examples: Mathematica, Maple, Derive

    Problems: Cant solve some and others giveunnecessary complicated answers.

    3. Tables See inside front & back covers

    Problem: Not exhaustive4. Transformation Methods

    Change to something recognizable.

    Examples: Substitution & Algebraic Equivalence

    The topic of this chapter!

    Also, for definiteintegrals, numerical

    approximationmethods.

  • 7/30/2019 8-integralEvaluation

    3/77

    Transformation Methods

    Substitution

    Integration by Parts

    Trigonometric Integrals Powers of Trigonometric Functions

    Trigonometric Substitutions

    Partial Fractions

    All of these attempt to change the integral into

    something that can be integrated by recognition.

    Many problemswill require theuse of two ormore of thesemethods!

  • 7/30/2019 8-integralEvaluation

    4/77

    MTH 252Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.2 Integration by Parts

    Copyright 2005 by Ron Wallace, all rights reserved.

  • 7/30/2019 8-integralEvaluation

    5/77

    Review: The Product Rule

    ( ) ( ) '( ) ( ) ( ) '( )d f x g x f x g x f x g xdx

    Example:

    2 tand

    x xdx

    2 22 tan secx x x x

    2 2tan tand d

    x x x xdx dx

  • 7/30/2019 8-integralEvaluation

    6/77

    Integration Equivalent

    ( ) ( ) '( ) ( ) ( ) '( )d f x g x f x g x f x g xdx

    ( ) ( ) '( ) ( ) ( ) '( )f x g x f x g x f x g x dx

    ( ) ( ) '( ) ( ) ( ) '( )f x g x f x g x dx f x g x dx

    ( ) '( ) ( ) ( ) '( ) ( )f x g x dx f x g x f x g x dx

  • 7/30/2019 8-integralEvaluation

    7/77

    Integration Equivalent

    ( ) '( ) ( ) ( ) '( ) ( )f x g x dx f x g x f x g x dx

    Let ( ) and '( )u f x dv g x dx

    d '( ) and '( ) ( )u f x dx v g x dx g x

    u dv uv v du

  • 7/30/2019 8-integralEvaluation

    8/77

    Integration by Parts

    ( ) ( )f x g x d vux d u dv

    =u dv uv v du

    '( )

    ( )

    du f x dx

    v g x dx

    NOTE:f(x) org(x) can be equal to 1 (but not both).

  • 7/30/2019 8-integralEvaluation

    9/77

    Example

    2xxe dx

    =u dv uv v du

    2 xu x dv e dx

    212

    xdu dx v e

    2 21 1

    2 2

    x xxe e dx 2 21 1

    2 4

    x xxe e c

  • 7/30/2019 8-integralEvaluation

    10/77

    Choosing u & dv

    In general u should be such that du is simpler

    dvshould (must) be easy to integrate

    =u dv uv v du

    Previous Example:

    2xxe dx2 xu e dv xdx

    2 2 2 21

    2

    x xx e x e dx

    2 212

    2

    xdu e dx v x

    This made theproblem MORE

    difficult!

    d

  • 7/30/2019 8-integralEvaluation

    11/77

    RepeatedIntegration by Parts

    =u dv uv v du

    Sometimes the resulting integral is integrated by the same method!

    Example: 2 cosx x dx2 cosu x dv x dx

    2 sindu x dx v x

    2 sin 2 sinx x x x dx sinu x dv x dx

    cosdu dx v x

    2 sin 2 cos cosx x x x x dx

    2 sin 2 cos 2sinx x x x x c

    Ci l R d

  • 7/30/2019 8-integralEvaluation

    12/77

    Circular RepeatedIntegration by Parts

    =u dv uv v du

    Example:cosxe x dx

    cosx

    u e dv x dx sinxdu e dx v x

    sin sin

    x x

    e x e x dx

    sinxu e dv x dx

    cosxdu e dx v x

    cos dx sin cos cosx x x xe x e x e x e x dx

    2 cos dx sin cosx x xe x e x e x

    sin cos

    cos dx 2

    x xx e x e x

    e x c

  • 7/30/2019 8-integralEvaluation

    13/77

    MTH 252Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.3 Trigonometric

    Integrals

    Copyright 2005 by Ron Wallace, all rights reserved.

  • 7/30/2019 8-integralEvaluation

    14/77

    Odd Powers of SIN & COS

    sinn x dx1sin sinn x x dx

    n > 2 is a positive odd integer

    n - 1 is a positive even integer

    1

    2 21 cos sinn

    x x dx

    1

    2 2sin sinn

    x x dx

    cossin

    u xdu x dx

    1

    2 21n

    u du

    Multiply out thepolynomial, integrate,

    and substitute back.

  • 7/30/2019 8-integralEvaluation

    15/77

    Odd Powers of SIN & COS

    cosn x dx1cos cosn x x dx

    n > 2 is a positive odd integer

    n - 1 is a positive even integer

    1

    2 21 sin cosn

    x x dx

    1

    2 2cos cosn

    x x dx

    sincos

    u xdu x dx

    1

    2 21n

    u du

    Multiply out thepolynomial, integrate,

    and substitute back.

  • 7/30/2019 8-integralEvaluation

    16/77

    Odd Powers of SIN & COS

    sin cosm nn x dx1sin cos cosm nx x x dx

    mis a positive integern is a positive odd integer

    n - 1 is a positiveeven integer

    1

    2 2sin 1 sin cosn

    m x x x dx

    1

    2 2sin cos cosn

    m x x x dx

    sincos

    u xdu x dx

    1

    2 21n

    mu u du

    Multiply out thepolynomial, integrate,

    and substitute back.

  • 7/30/2019 8-integralEvaluation

    17/77

    Odd Powers of SIN & COS

    sin cosm nn x dx1sin cos sinm nx x x dx

    mis a positive odd integern is a positive integer

    m - 1 is a positiveeven integer

    1

    2 21 cos cos sinm

    nx x x dx

    1

    2 2sin cos sinm

    nx x x dx

    cossin

    u xdu x dx

    1

    2 21m

    nu u du

    Multiply out thepolynomial, integrate,

    and substitute back.

    2 21 i

  • 7/30/2019 8-integralEvaluation

    18/77

    Powers of SIN & COS

    sin cosm nn x dxNOTE: m &n are non-negative integers.

    Since: sin cos & cos sind d

    x x x x

    dx dx

    1. Ifn is odd, put one of the cosines w/ dx, changethe remaining cosines to sines, and let u = sin x.

    2. Ifm is odd, put one of the sines w/ dx, changethe remaining sines to cosines, and let u = cos x.

    3. All other cases use some other method.

    2 21 sin cosx x 2 21 cos sinx x

    2 21

  • 7/30/2019 8-integralEvaluation

    19/77

    Powers of TAN & SEC

    tan secm nn x dxFor what values ofm &n can thesame approach be used?[NOTE: m &n are non-negative integers.]

    2Hint: tan sec & sec sec tand d

    x x x x x

    dx dx

    1. Ifm is odd and n > 0, put one of the tangents andone of the secants w/ dx, change the remaining

    tangents to secants, and let u = sec x.

    2. Ifn is even and n > 0, put two of the secants w/dx, change the remaining secants to tangents, and

    let u = tan x.

    3. All other cases use some other method.

    2 21 tan secx x 2 2sec 1 tanx x

  • 7/30/2019 8-integralEvaluation

    20/77

    Even Powers of SIN & COS

    sin cosm nn x dx mand n are BOTH non-negative

    even integers.

    Remember the half-angle formulas:

    1 coscos

    2 2

    1 cossin2 2

    1 cos2cos2

    xx 1 cos2sin2

    xx

    Let 2x

    2 1 cos2

    cos 2

    x

    x

    2 1 cos2

    sin 2

    x

    x

    Square both sides.

  • 7/30/2019 8-integralEvaluation

    21/77

    1.Use the trigonometric identities

    2.Multiply everything out.

    3.Integrate each term, one at a time.

    Even Powers of SIN & COS

    sin cosm nn x dx mand n are BOTH non-negative

    even integers.

    21

    cos 1 cos22

    x x 21

    sin 1 cos22

    x x

  • 7/30/2019 8-integralEvaluation

    22/77

    Memorize this one!

    Powers of SEC

    secx dxsec tan

    secsec tan

    x xx dx

    x x

    2sec sec tan

    sec tan

    x x x

    dxx x

    Let sec tanu x x 2sec tan secdu x x x

    1lndu u c

    u ln sec tanx x c

    ld

  • 7/30/2019 8-integralEvaluation

    23/77

    Powers of SEC

    secn x dx 2 2sec secnu x dv x dx

    sec ln sec tanx dx x x c

    n > 2 and apositive integer

    2sec tanx dx x c

    Use Integration by Parts

    22 sec tan tanndu n x x dx v x

    2 2 2sec sec tan ( 2) sec tann n nx dx x x n x x dx

    2 2 2sec sec tan ( 2) sec sec 1n n nx dx x x n x x dx 2 2sec sec tan ( 2) sec ( 2) secn n n nx dx x x n x dx n x dx

    2 2( 1) sec sec tan ( 2) secn n nn x dx x x n x dx

    l td

  • 7/30/2019 8-integralEvaluation

    24/77

    Powers of SEC

    secn x dx 2 2sec secnu x dv x dx

    sec ln sec tanx dx x x c

    n > 2 and apositive integer

    2sec tanx dx x c

    Use Integration by Parts

    22 sec tan tanndu n x x dx v x

    2 2( 1) sec sec tan ( 2) secn n nn x dx x x n x dx

    2 21 2sec sec tan sec

    1 1

    n n nnx dx x x x dx

    n n

    This kind of identity is called a Reduction Formula.

    No! You do NOT need to memorize this one. Just use it.

  • 7/30/2019 8-integralEvaluation

    25/77

    Memorize this one too!

    Powers of TAN

    tanx dxsin

    cos

    xdx

    x

    Let cosu x sindu x dx

    1lndu u c

    u

    ln secx c

    ln cosx c

  • 7/30/2019 8-integralEvaluation

    26/77

    Powers of TAN tan ln secx dx x c

    tann x dxn > 1 and a positive integer

    1.Ifn is even, change to secants using

    2.Ifn is odd,

    a. Put sec x tan x w/ dxas follows

    b. Convert all tangents (except the one w/ dx) to secants.

    c. Use the substitution, u = sec x

    2 2tan sec 1x x

    1tantan sec tan

    sec

    nn xx dx x x dx

    x

  • 7/30/2019 8-integralEvaluation

    27/77

    FYI: More Reduction Formulas

    2 21 2sec sec tan sec

    1 1

    n n nnx dx x x x dx

    n n

    1 21tan tan tan1

    n n nx dx x x dxn

    1 21 1sin sin cos sinn n nnx dx x x x dxn n

    1 21 1

    cos cos sin cosn n nn

    x dx x x x dxn n

  • 7/30/2019 8-integralEvaluation

    28/77

    One more note

    1 1 sinConsider: ln2 1 sin

    d x

    dx x

    2

    1 sin cos 1 sin cos1 1 sin

    2 1 sin1 sin

    x x x xx

    xx

    1 1 2cos

    2 1 sin 1 sin

    x

    x x

    2

    cos

    1 sin

    x

    x

    sec x

    1 1 sinTherefore: sec ln

    2 1 sin

    xx dx c

    x

    An equivalent form to the other solution.

  • 7/30/2019 8-integralEvaluation

    29/77

    MTH 252

    Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.4 Trigonometric

    Substitutions

    Copyright 2005 by Ron Wallace, all rights reserved.

  • 7/30/2019 8-integralEvaluation

    30/77

    Derivative Reminders

    1

    2

    1sin

    1

    dx

    dx x

    1

    2

    1tan

    1

    dx

    dx x

    1

    2

    1sinh

    1

    dx

    dx x

    1

    2

    1cosh

    1

    dx

    dx x

    1

    2

    1tanh

    1

    dx

    dx x

  • 7/30/2019 8-integralEvaluation

    31/77

    Equivalent Integrals

    1

    2

    1sin

    1dx x c

    x

    121

    tan1

    dx x cx

    1

    2

    1sinh

    1dx x c

    x

    1

    2

    1cosh

    1dx x c

    x

    1

    2

    1tanh

    1dx x c

    x

  • 7/30/2019 8-integralEvaluation

    32/77

    Radicals in Integrals

    2 2a x

    2 2a x

    2 2x a

    If an integral

    contains one ofthese expressions,what substitutioncan be used to get

    rid of the radical?

  • 7/30/2019 8-integralEvaluation

    33/77

    Radicals in Integrals

    2 2a x

    Let: sin , - 2 2x a

    2 2 2 2 2sina x a a 2 2 2 21 sina x a 2 2 2 2cosa x a 2 2 cosa x a

    cosdx a d

    1sinx

    a

  • 7/30/2019 8-integralEvaluation

    34/77

    Example

    3 25x x dx2

    1

    5sin5cos

    5 5 cos

    sin 5

    xdx d

    x

    x

    3

    5 sin 5 cos 5 cos d 3 225 5 sin cos d

    cos

    sin

    u

    du d

    2 225 5 1 u u du 3 5

    25 53 5

    u uc

    3 5

    1 1cos sin cos sin5 5

    25 53 5

    x x

    c

    3 5

    2 25 525 5

    15 5 125 5

    x xc

    3 5

    2 25 55

    3 25

    x xc

    2 2 41 5 50 5 315

    x x x c

  • 7/30/2019 8-integralEvaluation

    35/77

    Radicals in Integrals

    2 2a xsin

    cos

    x a

    dx a d

    2 2

    1

    cos

    sin

    a x ax

    a

    2 2a x 2tan

    sec

    x a

    dx a d

    2 2

    1

    sec

    tan

    a x a

    x

    a

    2 2x asec

    sec tan

    x a

    dx a d

    2 2

    1

    tan

    sec

    x a a

    x

    a

  • 7/30/2019 8-integralEvaluation

    36/77

    Radicals in Integrals

    2 2a x 2tanh

    sech

    x a

    dx a d

    2 2

    1

    sech

    tanh

    a x ax

    a

    2 2a xsinh

    cosh

    x a

    dx a d

    2 2

    1

    cosh

    sinh

    a x a

    x

    a

    2 2x acosh

    sinh

    x a

    dx a d

    2 2

    1

    sinh

    cosh

    x a a

    x

    a

    HyperbolicFunction Option

  • 7/30/2019 8-integralEvaluation

    37/77

    Integrals w/ Quadratics

    Complete the square and then make a simple substitution.

    Example:

    23 24 1x x

    23 8 1x x

    2 2 23 8 4 1 3(4)x x

    23 4 49x 23 49u

    Let 4

    u xdu dx

    Let 3

    3

    r u

    dr du

    2 49r

  • 7/30/2019 8-integralEvaluation

    38/77

    MTH 252

    Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.5 Integrating Rational

    Functions by

    Partial FractionsCopyright 2006 by Ron Wallace, all rights reserved.

    Review:

  • 7/30/2019 8-integralEvaluation

    39/77

    Review:Addition/Subtraction of Fractions

    a c ad bcb d bd

    Note: The equation works both ways!

    Problem:

    Find two fractions whose sum/difference

    is equal to a third given fraction.

    The product of the denominators of thetwo fractions will be the denominator ofthe given fraction.

    d b

  • 7/30/2019 8-integralEvaluation

    40/77

    Example:

    Find two fractions whosesum or difference is:

    1135

    Denominator = 35

    Possibilities for the other two denominators are:

    1 & 35 and 5 & 7

    ad bc a c

    bd b d

    11

    35 5 7

    A B 11 7 5A B

    Many solutions, including:

    3 & -2 and 1 & 4/5

  • 7/30/2019 8-integralEvaluation

    41/77

    Rational Functions

    Any function of the form,

    where

    are polynomials.

    ( )( )

    ( )

    P xf x

    Q x

    ( ) and ( )P x Q x

  • 7/30/2019 8-integralEvaluation

    42/77

    Fundamental Theorem of Algebra

    Every polynomial equation of degree nwith complex coefficients has n roots inthe complex numbers.

    Each real root r, gives a factor (x-r).

    Each complex root +i has a companion root-i. These give a factor: (ax2+bx+c).

    Hence, every polynomial can be written asa product of linear & quadratic factors.

    Some Easy Integrals Linear

  • 7/30/2019 8-integralEvaluation

    43/77

    Some Easy Integralsof Rational Functions

    5

    3 dxx 5ln 3x c

    5

    2 3dx

    x Let u=2x-3

    du=2dx

    5 1 5ln 2 3

    2 2du x c

    u

    4

    3

    xdx

    x 12

    4 4 12ln 33

    dx x x cx

    4 5

    3

    x dxx

    174 4 17ln 33

    dx x x cx

    LinearDenominator

    7

    5

    (2 3) dxx

    7 6 65 5 5 52 2 12 12

    7

    1(2 3)du u du u c x c

    u

    Let u=2x-3

    du=2dx

    Partial ( )P x

    where Q(x) is a product

  • 7/30/2019 8-integralEvaluation

    44/77

    PartialFractions

    ( )

    ( )

    P xdx

    Q xQ( ) p

    of linear factors &

    deg(P(x)) < deg(Q(x))

    2 5

    (3 1)( 4)

    x

    x x

    (3 1) ( 4)

    A B

    x x

    2 5 ( 4) (3 1) ( 3 ) ( 4 )x A x B x A B x A B

    2 3

    5 4

    A B

    A B

    2 5 1 1 1ln 3 1 ln 4

    (3 1)( 4) 3 1 4 3

    xdx dx x x c

    x x x x

    Solve this systemfor A & B.

    A=-1, B=1

    This method can be extended to anynumber of distinct linear factors.

    Partial ( )P x

    where Q(x) is a product

  • 7/30/2019 8-integralEvaluation

    45/77

    PartialFractions

    ( )

    ( )

    P xdx

    Q xQ( ) p

    of linear factors &

    deg(P(x)) < deg(Q(x))

    2

    4 1

    (2 3)

    x

    x

    (2 3) (2 3)

    A B

    x x

    4 1 (2 3) 2 (3 )x A x B Ax A B

    4 2

    1 3

    A

    A B

    2 2

    4 1 2 7 7ln 2 3

    (2 3) 2 3 (2 3) 2(2 3)

    xdx dx x c

    x x x x

    Solve this systemfor A & B.

    A=2, B=-7

    This method can be extended to any power of the denominatorand can be combined with the previous method.

    RepeatedLinear Factors 2(2 3) (2 3)

    A B

    x x

    More Easy Integrals Quadratic

  • 7/30/2019 8-integralEvaluation

    46/77

    More Easy Integralsof Rational Functions

    2

    3

    4 7 dxx x

    QuadraticDenominator

    2

    1

    3 ( 2) 3 dxx Let u=x-2

    du=dx

    2

    13

    3du

    u

    Finish using trig substitutions.

    2

    3 11

    4 7

    xdx

    x x

    2 23 2 4 17

    2 4 7 4 7

    xdx dx

    x x x x

    23

    2 ln 4 7x x

    Just like theone above!

    3 11 _____(2 4) _____ 11x x 32 6

    2 4 7d

    x xdx

    More Easy Integrals Quadratic

  • 7/30/2019 8-integralEvaluation

    47/77

    More Easy Integralsof Rational Functions

    QuadraticDenominator

    Complete the

    square & trigsubstitution.

    2 5

    3 11

    ( 4 7)

    xdx

    x x

    2 5 2 53 2 4 17

    2 ( 4 7) ( 4 7)

    x dx dxx x x x

    Let u = x2 - 4x + 7du = 2x 4 dx

    5 4

    2 4

    3 3

    2 8

    3( 4 7)

    8

    u du u c

    x x c

    Partial ( )P x

    where Q(x) is a product of a

  • 7/30/2019 8-integralEvaluation

    48/77

    2( 1) ( 2 3)

    A B

    x x x 2( 1) ( 2 3)

    A Bx C

    x x x

    PartialFractions

    ( )

    ( )

    P xdx

    Q x linear factor & a quadraticfactor & deg(P(x)) < deg(Q(x))2

    2

    4 3

    ( 1)( 2 3)

    x x

    x x x

    2 24 3 ( ) (2 ) (3 )x x A B x A B C x A C

    4

    1 2

    3 3

    A B

    A B C

    A C

    2

    2 2

    4 3 3 1 3

    ( 1)( 2 3) 1 2 3

    x x xdx dx dx

    x x x x x x

    Solve this systemfor A, B, & C.

    A=1, B=3, C=0

    This method can be extended to anynumber of distinct linear & quadratic factors.

    Partial ( )P x

    where Q(x) is a product

  • 7/30/2019 8-integralEvaluation

    49/77

    PartialFractions

    ( )

    ( )

    P xdx

    Q x of quadratic factors &deg(P(x)) < deg(Q(x))

    2 2( )

    (3 2)P x

    x x

    and proceed as before!

    All of these methods can be combined and extended to handleany rational function where you can factor the denominator

    into a product of linear and quadratic factors.

    RepeatedQuadratic Factors

    2 2 2(3 2) (3 2)

    Ax B Cx D

    x x x x

    Partial ( )P x

    where Q(x) is a product

  • 7/30/2019 8-integralEvaluation

    50/77

    PartialFractions

    ( )

    ( )

    P xdx

    Q x of quadratic factors &deg(P(x)) < deg(Q(x))5 3

    4 3 33 2

    ( 1)( 1)( 1)x x x dx

    x x x

    Example

    ( )P x

  • 7/30/2019 8-integralEvaluation

    51/77

    ( )

    ( )

    P xdx

    Q x where deg(P(x)) deg(Q(x))

    Simplify using long division of polynomials.

    Example:

    34 3 5

    2 1

    x xdx

    x

    3 22 1 4 0 3 5x x x x

    22x

    3 24 2x x22 3x x

    x

    22x x

    2 5x

    1

    2 1x

    4

    42 1x

    2 422 1

    x dx xdx dx dxx

  • 7/30/2019 8-integralEvaluation

    52/77

    MTH 252Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.7 Numerical Integration;

    Simpsons Rule

    Copyright 2006 by Ron Wallace, all rights reserved.

    Reminder:

  • 7/30/2019 8-integralEvaluation

    53/77

    Reminder:Definition of a Definite Integral

    *

    max 01

    ( ) lim ( )kk

    n

    bk

    a xk

    f x dx f x x

    where

    0 1 2,0

    1

    { , , ..., }, nn

    k k

    P x x x xx a x bx x

    *

    1

    1

    [ , ]k k k

    k k k

    x x x

    x x x

    Since any sequence of partitions may be used

    provided maxxk 0, using regular partitions

  • 7/30/2019 8-integralEvaluation

    54/77

    Midpoint Approximation

  • 7/30/2019 8-integralEvaluation

    55/77

    Midpoint Approximationof a Definite Integral

    where

    * 1

    2

    k

    k kk k

    b ax

    n

    x a k x

    x xx m

    1

    12

    1k

    xa k

    m x k

    a bm1 m2 m3 m4

    b

    a

    n

    k

    k xxfdxxf1

    * )()( n

    k

    kxfx1

    * )(

    Midpoint ApproximationE l !

  • 7/30/2019 8-integralEvaluation

    56/77

    dpo t pp o at oof a Definite Integral

    5 2

    11 4x x dx

    Example!

    Approximate w/ n = 4

    5 11

    4x

    1 1

    2 2

    3 3

    4 4

    1.5 4.75

    2.5 4.75

    3.5 2.75

    4.5 1.25

    m f m

    m f m

    m f m

    m f m

    11

    1 11 11

    Trapezoid Approximation

    1A h

  • 7/30/2019 8-integralEvaluation

    57/77

    p ppof a Definite Integral

    11

    ( ) ( ) ( )2

    n

    bk k

    ak

    xf x dx f x f x

    where

    k

    b axn

    x a k x

    1 21

    2TA h B B

    1

    1

    ( ) 2 ( ) ( )2

    n

    kk

    xf a f x f b

    Trapezoid ApproximationE ample!

  • 7/30/2019 8-integralEvaluation

    58/77

    p ppof a Definite Integral

    5 2

    11 4x x dx

    Example!

    Approximate w/ n = 4

    5 11

    4x

    1 1

    2 2

    3 3

    1 ( ) 4

    2 ( ) 5

    3 ( ) 4

    4 ( ) 1

    5 ( ) 4

    a f a

    x f x

    x f x

    x f x

    b f b

    4+2(10)-4 = 20

    1

    20 102

    10

    Si R l

  • 7/30/2019 8-integralEvaluation

    59/77

    Simpsons Rule

    (x+h, y3)

    x x+hx-h

    (x-h, y1)

    (x, y2)

    y1 = f(x-h)

    y2 = f(x)

    y3 = f(x+h)

    Three non-linearpoints determine a

    unique parabola.

    f(x)

    p(x) =ax2+bx+c

    Si R l

  • 7/30/2019 8-integralEvaluation

    60/77

    Simpsons Rule

    x x+hx-h

    (x+h, y3)

    (x-h, y1)

    (x, y2)

    y1 = f(x-h)

    y2 = f(x)

    y3 = f(x+h)

    Three non-linearpoints determine a

    unique parabola.

    p(x) =ax2+bx+c

    h-h

    (0, y2)

    (h, y3)

    (-h, y1)

    Si R l

  • 7/30/2019 8-integralEvaluation

    61/77

    3

    22

    21

    2

    00ycbhahycba

    ycbhah

    32

    22

    12

    2

    yybhah

    yc

    yybhah

    Simpsons Rule

    y1 = f(x-h)

    y2 = f(x)

    y3 = f(x+h)

    Three non-linearpoints determine a

    unique parabola.

    p(x) =ax2+bx+c

    (0, y2)

    x h-h

    (h, y3)

    (-h, y1) cah

    hdxxp

    h

    h 623)(2

    2

    312

    2

    22

    ycyyyah

    2

    2

    321

    2

    2

    ych

    yyya

    321 43

    )( yyyh

    dxxph

    h

    Si R l

  • 7/30/2019 8-integralEvaluation

    62/77

    Simpsons Rule

    (x3, y3)

    x2 x3x1

    (x1, y1)

    (x2

    , y2

    )f(x)

    p(x) =ax2+bx+c

    )()(4)(3)( 3213

    1 xfxfxf

    h

    dxxf

    x

    x

    Si R l

  • 7/30/2019 8-integralEvaluation

    63/77

    Simpsons Rule

    ][

    )()(4)(2

    )(4)(2)(4)(3)(

    12

    3210

    nnn

    b

    a

    xfxfxf

    xfxfxfxf

    x

    dxxf

    )(xf

    a b1x 2x 2nx 1nx

    xkax

    nabx

    evenn

    xbxa

    k

    n

    is

    0

    Simpsons RuleExample!

  • 7/30/2019 8-integralEvaluation

    64/77

    pApproximation

    5 2

    11 4x x dx

    Example!

    Approximate w/ n = 4

    5 11

    4x

    1 1

    2 2

    3 3

    1 ( ) 4

    2 ( ) 5

    3 ( ) 4

    4 ( ) 1

    5 ( ) 4

    a f a

    x f x

    x f x

    x f x

    b f b

    4+4(6)+2(4)-4 = 32

    6

    3

    2

    10323

    1

    E E ti ti

  • 7/30/2019 8-integralEvaluation

    65/77

    Error Estimation

    ],[over)(max

    ],[over)(''max

    )4(

    4

    2

    baxfK

    baxfK

    Let

    2

    22

    2

    3

    )(24

    1

    24

    )(xKab

    n

    KabE

    M

    Midpoint Method:

    2222

    3

    )(

    12

    1

    12

    )(xKab

    n

    KabET

    Trapezoid Method:

    4444

    5

    180

    1

    180

    )(xKab

    n

    KabES

    Simpsons Rule:

    What happens whenyou double thenumber of intervals?

    E E ti ti Example!

  • 7/30/2019 8-integralEvaluation

    66/77

    Error Estimation Example!

    52

    1 1 4x x dx Approximated w/ n = 4

    3

    1

    )4(24

    24

    24

    )(2

    3

    2

    2

    3

    n

    KabEMMidpoint Method 11

    0)4(180

    04

    180

    )(4

    5

    44

    5

    n

    KabESSimpsons Rule 10-2/3

    00)(

    22)(''

    4

    )4(

    2

    Kxf

    Kxf

    Trapezoid Method 103

    2

    )4(12

    24

    12

    )(2

    3

    22

    3

    n

    KabET

    Determining the

  • 7/30/2019 8-integralEvaluation

    67/77

    gNumber of Intervals (n)

    52

    1 1 4x x dx Find n so that the midpointmethod will have an errorless than 10 -4.

    22

    3

    24)(n

    KabEM 4

    2

    3

    1024

    2)4( n

    4

    2

    013

    32

    n

    42

    0132

    3

    n

    7.666,1063

    320,00012 n 26.53n

  • 7/30/2019 8-integralEvaluation

    68/77

    MTH 252Integral Calculus

    Chapter 8 Principles of

    Integral Evaluation

    Section 8.8 Improper Integrals

    Copyright 2006 by Ron Wallace, all rights reserved.

    Definite Integ als

  • 7/30/2019 8-integralEvaluation

    69/77

    Definite Integrals

    )()()(

    aFbFdxxfb

    a where )()(' xfxF

    Assumptions?

    f(x) is continuous over [a,b]But what if

    f(x) is only continuous over (a,b]

    f(x) is only continuous over [a,b)

    f(x) is only continuous over (a,b)

    f(x) is not continuous at c(a,b)

    a =

    b =

    ImproperIntegrals

    Improper Integrals Examples

  • 7/30/2019 8-integralEvaluation

    70/77

    Improper Integrals Examples

    1

    0ln dxx

    3

    0 2

    1

    2dx

    x

    x

    1

    1dx

    x

    Not continuous at x=0.

    Not continuous at x=1.

    Upper limit is infinite.

    Improper Integral

  • 7/30/2019 8-integralEvaluation

    71/77

    over an Open Interval

    a b

    b

    adxxf )(

    k

    adxxf )(

    k

    abk

    b

    adxxfdxxf )(lim)(

    f(x) is notcontinuous

    at b.

    Iff(x) is not continuous at athen

    Iff(x) is not continuous at a &b

    and a < c < bthen

    b

    kak

    b

    adxxfdxxf )(lim)(

    c

    a

    b

    c

    b

    a dxxfdxxfdxxf )()()(

    Improper Integrals Example

  • 7/30/2019 8-integralEvaluation

    72/77

    Improper Integrals Example

    1

    0ln dxx Not continuous at x=0.

    1

    k0

    lnlim dxxk

    )ln()1(lim0

    kkkk

    Integration by Parts!

    k

    k

    k 1

    lnlim1

    0

    1lim10

    kk

    LHpitals Rule

    Improper Integral

  • 7/30/2019 8-integralEvaluation

    73/77

    over an Infinite Interval

    adxxf )(

    k

    akdxxf )(lim

    k

    b

    kk

    b

    dxxfdxxf )(lim)(

    c

    c

    dxxfdxxfdxxf )()()(

    Improper Integrals Example

  • 7/30/2019 8-integralEvaluation

    74/77

    Improper Integrals Example

    11 dx

    xUpper limit is infinite.

    k

    kdx

    x11lim

    ][ 22lim

    kk

    k

    kx

    1

    21

    2lim

    Divergent!

    Improper Integrals

  • 7/30/2019 8-integralEvaluation

    75/77

    with a Point of Discontinuity

    b

    adxxf )(

    b

    c

    c

    adxxfdxxf )()(

    Improper Integrals Example

  • 7/30/2019 8-integralEvaluation

    76/77

    Improper Integrals Example

    3

    0 2

    1

    2dx

    x

    xNot continuous at x=1.

    3

    1 2

    1

    0 2

    1

    2

    1

    2dx

    x

    xdx

    x

    xcxxdx

    x

    x

    1ln2

    11ln

    2

    3

    1

    22

    1ln2

    11ln

    2

    3lim4ln

    2

    12ln

    2

    3

    01ln2

    11ln2

    3lim

    1

    1

    kk

    kk

    k

    k Divergent!

    Improper IntegralsWarning!

  • 7/30/2019 8-integralEvaluation

    77/77

    Improper Integrals Example

    3

    0 2

    1

    2dx

    x

    xNot continuous at x=1.

    cxxdxx

    x

    1ln2

    11ln

    2

    3

    1

    22

    1ln

    2

    11ln

    2

    34ln

    2

    12ln

    2

    3

    2ln2

    1 This is not correct why?