74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/#...

14
1. Introduc,on to neutrinos Experimental Astropar,cle Physics 1.1 Postula,on of the neutrino Known constituents of the atom in 1930: protons and electrons Neutron discovered by Chadwick in 1932 Radioactivity discovered by Rutherford/Villard around 1900 All these reactions are two-body decays α, β, γ‘s should be monoenergetic! Par,cle physics in the 1930s 1.1 Postula,on of the neutrinos Energy conserva,on in βdecays 1.1 Postula,on of the neutrinos Continuous spectra observed in β-decay experiments Violation of energy conservation?

Transcript of 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/#...

Page 1: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

1.  Introduc,on  to  neutrinos  

Experimental  Astropar,cle  Physics  

1.1    Postula,on    of  the  neutrino  

• Known constituents of the atom in 1930: protons and electrons

• Neutron discovered by Chadwick in 1932

• Radioactivity discovered by Rutherford/Villard around 1900

• All these reactions are two-body decays ��� α, β, γ‘s should be monoenergetic!

Par,cle  physics  in  the  1930s  1.1  Postula,on  of  the  neutrinos  

Energy  conserva,on  in  β-­‐decays  1.1  Postula,on  of  the  neutrinos  

• Continuous spectra observed in β-decay experiments

• Violation of energy conservation?

Page 2: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Conserva,on  of  angular  momentum  1.1  Postula,on  of  the  neutrinos  

• Nucleus consists of A spin-1/2 particles

• Mother and daughter nucleus have the same number of nuclides.

Both should have integral or half-integral spin.

But: The positron carries away spin 1/2!

Pauli‘s  leCer  1.1  Postula,on  of  the  neutrinos  

Pauli‘s  leCer  Liebe  Radioak+ve  Damen  und  Herren,  

Wie  der  Überbringer  dieser  Zeilen,  den  ich  huldvollst  an-­‐zuhören  bi@e,  Ihnen  des  näheren  auseinandersetzen  wird,  bin  ich  angesichts  der  "falschen"  Sta+s+k  der  N-­‐  und  Li-­‐6  Kerne,  sowie  des  kon+nuierlichen  beta-­‐Spektrums  auf  ei-­‐nen  verzweifelten  Ausweg  verfallen  um  den  "Wechselsatz“  der  Sta+s+k  und  den  Energiesatz  zu  re@en.  Nämlich  die  Möglichkeit,  es  könnten  elektrisch  neutrale  Teilchen,  die  ich  Neutronen  nennen  will,  in  den  Kernen  exis+eren,  welche  den  Spin  1/2  haben  und  das  Ausschliessungsprinzip  befol-­‐gen  und  sich  von  Lichtquanten  außerdem  noch  dadurch  unterscheiden,  dass  sie  nicht  mit  Lichtgeschwindigkeit  lau-­‐fen.  Die  Masse  der  Neutronen  könnte  von  der  gleichen  Grössenordnung  wie  die  Elektronenmasse  sein  und  jeden-­‐falls  nicht  grösser  als  0,01  Protonenmassen.  Das  kon+nuier-­‐liche  beta-­‐Spektrum  wäre  dann  verständlich  unter  der  An-­‐nahme,  dass  beim  beta-­‐Zerfall  mit  dem  Elektron  jeweils  noch  ein  Neutron  emi[ert  wird,  derart,  dass  die  Summe  der  Energien  von  Neutron  und  Elektron  konstant  ist.  ...  

1.1  Postula,on  of  the  neutrinos  

• Third particle emitted in beta decays:

Proper,es  of  the  new  par,cle  1.1  Postula,on  of  the  neutrinos  

Page 3: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

• Four-fermion contact interaction

• Coupling described by Fermi Constant GF

• Very low cross-section:

Fermi‘s  theory  of  weak  interac,on  1.1  Postula,on  of  the  neutrinos  

AZ! A(Z-1)!

e+!

!e!

t!

GF!

e-!

e-!

e-!

e-!

"em! "em!

#!t!

n!

p!

u d d!

u d u! e-! !e!_!

W-!t!

1.2  Discovery  of  the  neutrino  

Clyde Cowan

Fred Reines

What  neutrino  source  to  use?  1.2  Discovery  of  the  neutrino  

• Their first idea: ���Neutrinos from a ���nuclear explosion!

Neutrinos  from  a  nuclear  reactor  1.2  Discovery  of  the  neutrino  

Savannah River reactor complex

Page 4: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Basic  fission  reac,on  

n + 235U → A(Z) + 233−A(92 − Z) + 3n + 200 MeV

1.2  Discovery  of  the  neutrino  

Nuclear  fission  yield  1.  Neutrino  proper,es  

n + 235U → A(Z) + 233−A(92 − Z) + 3n + 200 MeV

Nuclide  chart  1.  Neutrino  proper,es  

Produc,on  of  neutron-­‐rich  isotopes  1.  Neutrino  proper,es  

Page 5: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Neutrinos  from  n-­‐rich  isotopes  1.2  Discovery  of  the  neutrino  

• Possible decay scheme:

Neutrinos  flux  from  a  nuclear  reactor  1.2  Discovery  of  the  neutrino  

• Estimating the neutrino emission rate:

Reactors are a strong antineutrino source!

Hanford  Experiment  1.2  Discovery  of  the  neutrino  

• ~1 m3 of organic liquid scintillator

•  scintillation light read out���by photomultiplier tubes

• neutrino detection by���inverse beta decay:

Coincidence signature���to suppress single-event background

•  no conclusive result,���too much background

Hanford  Team  1.2  Discovery  of  the  neutrino  

Page 6: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Savannah  River  Experiment  1.2  Discovery  of  the  neutrino  

• Neutrino target:���two tanks (A,B) filled���with Cd-doped water

• Free protons for inverse beta decay

• Prompt positron annihilates into���two 511 keV gammas

• Cd has large neutron-���capture cross-section���& releases gammas

Savannah  River  Experiment  1.2  Discovery  of  the  neutrino  

Coincidence in adjacent scintillator detectors to ���discriminate all kinds of single-event backgrounds!

Savannah  River  –  Shielding  1.2  Discovery  of  the  neutrino  

Shielding from cosmic ray particles and reactor backgrounds

Telegramme  to  Pauli  (1954)  1.2  Discovery  of  the  neutrino  

Discovery was made based on a clear IBD event ���excess in case the reactor was running!

Page 7: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

1.3  Neutrinos  in  the  Standard  Model  

Par,cle  Inventory  of  the  SM  1.3  Neutrinos  in  the  Standard  Model  

• Fermions make up matter

• Bosons are exchange���particles of the forces

• Fermions: spin 1/2���Bosons: integer spin

• Three families or flavors ���different in mass

Par,cle  Masses  1.3  Neutrinos  in  the  Standard  Model  

Forces  ac,ng  between  the  par,cles  1.3  Neutrinos  in  the  Standard  Model  

Page 8: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Electromagne,c  force  1.3  Neutrinos  in  the  Standard  Model  

AZ! A(Z-1)!

e+!

!e!

t!

GF!

e-!

e-!

e-!

e-!

"em! "em!

#!t!

n!

p!

u d d!

u d u! e-! !e!_!

W-!t!

Strong  nuclear  force  1.3  Neutrinos  in  the  Standard  Model  

Weak  nuclear  force  1.3  Neutrinos  in  the  Standard  Model  

Weak  currents  1.3  Neutrinos  in  the  Standard  Model  

Page 9: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Chirality  and  Helicity  1.3  Neutrinos  in  the  Standard  Model  

V-­‐A  theory  of  weak  interac,on  1.3  Neutrinos  in  the  Standard  Model  

W, Z couple only to left-handed (LH) particles and��� right-handed (RH) antiparticles!

Weak interaction violates parity P and���charge conjugaction C symmetries, but conserves CP!

!µ" e-!

e-!

t!

!µ"

Z0!p!

S!RH:! p!

S!LH:!

p!

S!LH !e

!

p!

S!LH !e

!_!

p!

S!RH !e

!

p!

S!RH !e

!_!

!" !"

#"

#"

Doublets  in  the  weak  force  1.3  Neutrinos  in  the  Standard  Model  

• Left-handed (LH) particles and right-handed (RH) antiparticles form doublets with respect to the weak force.

Weak  force  in  meson  decays  1.3  Neutrinos  in  the  Standard  Model  

For quarks, weak eigenstates are not identical to mass eigenstates!

W+!

u!

d!

W+!

!e!

e-!

etc., but not! W+!

!µ"

e-!

_!

W+!

u! d!

!µ"µ+"

#+"

W+!

u! s!

!µ"µ+"

K+"_!

but also!

Page 10: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Quark  mixing:  CKM  matrix  1.3  Neutrinos  in  the  Standard  Model  

mass eigenstates of down-like quarks

weak eigenstates coupling to up-like quarks

• Mixing in the quark sector is small

• In the SM, no equivalent in lepton sector:���no neutrino mass eigenstates no mixing!

1.4  Neutrino  flavors    and  lepton  number  

How  many  neutrino  flavors?  1.4  Neutrino  flavors  and  lepton  number  

• How do we know there are three different neutrino flavors?

• Neutrino flavors are defined by weak charged current reactions

• Experimental test: produce neutrinos by pion decay: π+ µ+νµ

Detect νµ in CC interaction: should produce only muons!���

AGS  @  Brookhaven  Na,onal  Lab  1.4  Neutrino  flavors  and  lepton  number  

Page 11: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Alternate  Gradient  Synchrotron  1.4  Neutrino  flavors  and  lepton  number  

• Protons are accelerated to���15 GeV in a ring accelerator

• Protons are grouped into bunches running���separately along���the ring.

• Upon reaching���the aimed-for energy,���protons are deflected���from the ring onto a ���fixed Be target.

Sketch  of  the  AGS  neutrino  beamline  

Be-­‐target  

• In fixed target, protons produce mostly π+ and K+ µ+νµ • Particles are boosted in direction of the proton beam • Charged particles stopped in beam dump only νµ‘s reach detector • Cherenkov counter for µ‘s to get time information

1.4  Neutrino  flavors  and  lepton  number  

AGS  Neutrino  Spectrum  

• Initial proton���energy: 15 GeV

1.4  Neutrino  flavors  and  lepton  number  

AGS  Spark  Chambers  

• Vertically stacked ���almunium plates

• Spaces in between ���filled with He/Ne gas

• CC interaction in Al: νµ + n p + µ- (e-?)

• µ/e‘s passing through���the interspaces will���ionize the gas

This causes sparks ���in the gas which were���photographed for analysis.

1.4  Neutrino  flavors  and  lepton  number  

Page 12: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Event  discrimina,on  in  spark  chambers  electron-like: electromagnetic showers muon-like: minimum-ionizing tracks

1.4  Neutrino  flavors  and  lepton  number  

AGS  Result  electron-like: electromagnetic showers muon-like: minimum-ionizing tracks

• In coincidence with the beam spills,���only muon tracks were found in the spark chambers!

No electrons were created out of νµ. Muon and electron neutrino are different particles!

1.4  Neutrino  flavors  and  lepton  number  

Melvin  Schwartz  –  Nobel  Prize  1988  1.4  Neutrino  flavors  and  lepton  number  

DONUT  Experimental  Setup  1.4  Neutrino  flavors  and  lepton  number  

• τ lepton known since the 70‘s, ντ discovered in DONUT in 2000. • setup very similar to AGS experiment, but higher energies

Page 13: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

DONUT  Detector  1.4  Neutrino  flavors  and  lepton  number  

DONUT  ντ  event  signature  1.4  Neutrino  flavors  and  lepton  number  

• Neutrino target:���Sandwich of steel plates (ν target, 1mm) and emulsion sheets (0.1mm)

• CC interaction:���

• Fine spatial resolution needed to observe the τ decay kink, e.g.

Total  number  of  ac,ve  flavors  1.4  Neutrino  flavors  and  lepton  number  

• All active neutrinos couple to the Z0 boson by weak neutral current

• Z0‘s were produced in large numbers in e+e- collisions at the DELPHI experiment at LEP (maximum CMS energy: 209 GeV)

• Mass, cross-sections, decay width and branchings were determined

• Z0 decays into fermion-���antifermion pairs: qq, ll, νν

• only particles with m < MZ/2 ≈ 45 GeV ���are produced in this decay: 5 quarks (not t), e, µ, τ, Nν neutrinos

e-! e+!

q,l,!"

t!

q,l,!"

Z0!

!"!"!"

_   _   _  

Z0  decay  width  and  amplitude  1.4  Neutrino  flavors  and  lepton  number  

• Width of the peak:���total decay width of all possible final states (including neutrinos)

• Height of the peak:���decay amplitude of all channels visible in the detector (excluding ν‘s)

• From comparison to the theoretical prediction of width and height:

Nν = 3.00 ± 0.05

Page 14: 74',+5-#289/.+/#.%#&8 ......A(%/-'?4,(%#(:#4%>*54'#3(3-%&*3 #!"!#7(/&*54,(%#(:#&8-#%-*&'.%(/# ¥!Nucleus consists of A spin-1/2 particles! ¥!Mother and daughter nucleus have the same

Neutrinos  vs.  An,neutrinos  1.4  Neutrino  flavors  and  lepton  number  

• How do we know neutrinos and antineutrinos interact differently?

• First experiment by Ray Davis at Savannah River reactor in 1955.

• Neutrino source: Reactor emits only νe.

• Neutrino target: Chlorine tank (6 tons of C2Cl4).

• Detection reaction:

only possible for νe, not νe!

• 37Ar is extracted from tank and detected by re-decay to 37Cl.

No excess over background observed.

νe are different from νe.

_  

_  

Lepton  and  lepton  family  number  1.4  Neutrino  flavors  and  lepton  number  

• The number of leptons in a reaction is conserved.

• The number of leptons of a given flavor is conserved.

• This is represented by conserved quantities: