73rd Eastern Snow Conference Scientific Program & Abstracts

81
73 rd Eastern Snow Conference Scientific Program & Abstracts Airborne and spaceborne remote sensing of snow and ice Highbanks Metro Park, Columbus, Ohio, February 2015. June 14-16, 2016, at the Byrd Polar & Climate Research Center and the Wexner Center for the Arts, The Ohio State University

Transcript of 73rd Eastern Snow Conference Scientific Program & Abstracts

Page 1: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConferenceScientificProgram&Abstracts

❄ Airborneandspaceborneremotesensingofsnowandice ❄

HighbanksMetroPark,Columbus,Ohio,February2015.

❄June14-16,2016,attheByrdPolar&ClimateResearchCenterandtheWexnerCenterfortheArts,TheOhioStateUniversity ❄

Page 2: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

2

TheEasternSnowConferenceTheEasternSnowConference(ESC)isajointCanadian/U.S.organization.TheEasternsnowconferenceisdescribedinthefirstpublishedEasternSnowConferenceProceedingsasarelativelysmallorganizationoperatingquietlysinceitsfoundingin1940byasmallgroupofindividualsoriginallyfromeasternNorthAmerica.Theconferencemeteighttimesbetween1940and1951.ThefirstEasternSnowConferenceProceedingscontainedpapersfromits9thAnnualMeetingheldFebruary14and15,1952,inSpringfield,Massachusetts.Today,itsmembershipisdrawnfromEurope,Japan,theMiddleEast,aswellasNorthAmerica.Ourcurrentmembershipincludesscientists,engineers,snowsurveyors,technicians,professors,studentsandprofessionalsinvolvedinoperationsandmaintenance.ThewesterncounterparttothisorganizationistheWesternSnowConference(WSC),alsoajointCanadian/USorganization.Everyfifthyearorso,theESCandWSCholdjointmeetings.Atitsannualmeeting,theEasternSnowConferencebringstheresearchandoperationscommunitiestogethertodiscussrecentworkonscientific,engineeringandoperationalissuesrelatedtosnowandice.ThelocationoftheconferencealternatesyearlybetweentheUnitedStatesandCanada,andattendeespresenttheirworkbygivingtalksorpresentingposters.AuthorssubmittheirmanuscriptsforpublicationinouryearlyProceedingsoftheEasternSnowConference.VolumesoftheEasternSnowProceedingscanbefoundinlibrariesthroughoutNorthAmericaandEurope;paperscanalsobefoundthroughtheNationalTechnicalInformationService(NTIS)intheUnitedStatesandCISTIinCanadaandissuessince2000areavailableontheconferenceswebsiteatwww.easternsnow.org.Inrecentyears,theESCmeetingshaveincludedpresentationsonsnowphysics,managementandhydrology,snowandiceloadsonstructures,riverice,wintersurvivalofanimals,remotesensingofsnowandice,glacierprocesses,snowscienceasateachingtoolandsocio-politicalimpactsofwinter.

CorporateMembersandSponsorsTheESCcouldnotoperatewithoutthesupportofitscorporatemembershipovertheyearsand2016sponsor.ThisyeartheESCwouldliketothankGeonor(www.geonor.com),andCampbellScientificCanada(https://www.campbellsci.ca).ThankstotheByrdPolar&ClimateResearchCenterfortheirsupportofthe73rdmeeting!

Page 3: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

3

TheESCencouragesstudentresearchthroughitsWiesnetMedal.Thismedalispresentedannuallytothebeststudent

paperpresentedattheconference.CampbellScientificCanadaalsograciouslyawardsacashprizetothestudentresearch

showingthemostinnovativeuseoftechnologyinthegatheringofdata.Finally,theDavidMillerAwardisawardedto

thebeststudentposterattheannualConference.

Year Winner Affiliation2015 NicolasLeroux UniversityofSaskatchewan2014201320122011

JustinHartnettAndreasDietz

ElizabethBurakowskiKathrynSemmens

SyracruseUniversity,Syracruse,NYEarthObservationCenter/DFD,Germany

UniversityofNewHampshire,NHLehighUniversity

2010 SimonvondeWall UniversityofVictoria,BC2009 SiChen DartmouthCollege2008 ChrisFurhman UniversityofNorthCarolinaatChapelHill,NC2007 notawarded 2006 Y.C.Chung UniversityofMichigan2005 M.Javan-Mashmool UniversitéduQuébecàChicoutimi,ChicoutimiQC2004 J.Farzaneh-Dehkordi UniversitéduQuébecàChicoutimi,ChicoutimiQC2003 AlexandreLanglois UniversitédeSherbrooke,SherbrookeQC2002 PatrickMénard UniversitédeLaval,SteFoy,QC2001 C.Tavakoli UniversitéduQuébecàChicoutimi,ChicoutimiQC2000 notawarded 1999 S.Brettschneider UniversitéduQuébecàChicoutimi,ChicoutimiQC1998 AndrewGrundstein UniversityofDelaware,Newark,DE1997 NewellHedstrom UniversityofSaskatchewan,SaskatoonSK1996 SuzanneHartley UniversityofDenver,DenverCO1995 PaulWolfe WilfredLaurierUniversity,WaterlooON1994 G.E.Mann UniversityofMichigan,AnnArborMI1993 G.Devarennes UniversitédeQuébecàQuébec,QC1992 D.W.Cline UniversityofColorado,BoulderCO1991 D.Samelson CornellUniversity,IthacaNY1990 A.K.Abdel-Zaher UniversityofNewBrunswick,FrederictonNB1989 A.Giguere McGillUniversity,MontréalQC1988 MauriPelto UniversityofMaine,OronoME1987 CameronWake WilfredLaurierUniversity,WaterlooON1986 CraigAllan TrentUniversity,PeterboroughON1985 RobertSpeck RensselaerPolytechnicInstitute,TroyNY1984 N.K.Kalliomaki LaurentianUniversity,Sudbury,ON1983 DavidBeresford TrentUniversity,PeterboroughON

Page 4: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

4

1982 notawarded 1981 JeffreyPatch UniversityofNewBrunswick,FrederictonNB1980 BryanWolfe TrentUniversity,PeterboroughON1979 MargaretLeech McGillUniversity,MontréalQC1978 MichaelEnglish TrentUniversity,PeterboroughON1977 DonMcLaughlin&

GeorgeDugganRensselaerPolytechnicInstitute,TroyNY

1976 DwayneMcMurter TrentUniversity,PeterboroughON1975 NigelAllan SyracuseUniversity,SyracuseNY1974 notawarded 1973 StanMathewson TrentUniversity,PeterboroughON

Page 5: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

5

LifeMembersTheEasternSnowconferencegratefullyrecognizesindividualswhohavemadelifelongcontributionstothestudyofsnowandfortheirsupportofthisorganization.Ourcurrentlifemembersare:

PeterAdams

ArtEschner

BarryGoodison

GerryJones

JohnMetcalfe

HildaSnelling

DonaldWiesnet

Page 6: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

6

TheEasternSnowConferenceannuallybestowsuponadistinguishedsnowscientistwho,instrivingforexcellenceinsnowresearch,contributestoaneventofnotablehumorthe

highlycovetedSno-fooAward.

Year Winner Affiliation2015 KevinCoté UniversitédeSherbrooke,Sherbrooke,QC2014201320122011

DorothyHallBenoitMontpetitDonPiersonKenRancourt

NASA-Goddard,MDUniversitédeSherbrooke,Sherbrooke,QCNYCDEP,NYMountWashingtonObservatory,NorthConway,NH

2010 Kyung-Kuk(Kevin)Kang UniversityofWaterloo,Waterloo,ON2009 RobHellström BridgewaterStateUniversity,Bridgewater,MA2008 StevenFassnacht ColoradoStateUniversity,FortCollins,CO2007 thegroupof9* U.Saskatchewan,UBC,AlbertaEnvironment,U.Calgary2006 AndrewKlein TexasA&MUniversity,CollegeStation,TX2005 ClaudeDuguay UniversityofAlaska-Fairbanks,Fairbanks,AK2004 ChrisDerksen MeteorologicalServiceofCanada,Toronto,ON2003 MilesEcclestone TrentUniversity,PeterboroughON2002 DannyMarks U.S.D.A.,BoiseID2001 BrendaToth UniversityofSaskatchewan,SaskatoonSK2000 MauriPelto NicholsCollege,DudleyMA1999 RossBrown MeteorologicalServiceofCanada,Montréal,PQ1998 MaryAlbert CRREL,Hanover,NH1997 JeanStein UniversitédeLaval,SteFoy,QC1996 ColinTaylor TrentUniversity,PeterboroughON1995 MikeDemuth N.H.R.I.,SaskatoonSK1994 BertDavis CRREL,Hanover,NH1993 JohnPomeroy N.H.R.I.,SaskatoonSK1992 TomNiziol N.W.S.,Buffalo,NY1991 TerryProwse N.H.R.I.,SaskatoonSK1990 KersiDavar UniversityofNewBrunswick,Fredericton,NB1989 GerryJones INRS-EAU,SaintFoy,QC1988 RobertSykes SUNY,SyracuseNY1987 JohnMetcalfe MeteorologicalServiceofCanada,Toronto,ON1986 PeterAdams TrentUniversity,PeterboroughON1985 DonWiesnet NationalWeatherService,Minneapolis,MN1984 BarryGoodison MeteorologicalServiceofCanada,Toronto,ON

*JimmyMacDonald(U.Sask.),BillFloyd(UBC),ChrisDeBeer(U.Sask.),WendellKoenig(ABEnv.),JaimeHood(U.Calgary),DankiaMuir(U.Calgary),JohnJackson(U.Calgary),SarahForte(U.Calgary),Prof.MasakiHayashi(U.Calgary)

Page 7: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

7

73rdESCExecutiveCommittee2015-2016PastPresident: BakerPerry,ElksPark,NCPresident: AlainRoyer,Sherbrooke,QCVicePresidentandProgramChair: MichaelDurand,Columbus,OhioTreasurerand1stSecretary,CA: MilesEcclestone,Peterborough,ON2ndSecretary,CA: AlexanderLanglois,Sherbrooke,QC1stSecretary,US: KennethRancourt,Conway,NH2ndSecretary,US: DerrillCowing,Monmouth,MEEditor,ESCProceedings: AlexanderLanglois,Sherbrooke,QCEditors,PhysicalGeography: MauriPelto,Dudley,MA,Chair RobertHellstrom,Bridgewater,MASteeringCommittee: AllanFrei,NewYork,NY,Chair JanetHardy,Hanover,NH GeorgeRiggs,Gambrills,MD RaeMelloh,Hanover,NH ChrisFuhrman,ChapelHill,NC CraigSmith,Saskatoon,SK AlexRoy,Sherbrooke,QC SteveHowell,Toronto,ON LauraThomson,Ottawa,ON JohnSugg,Boone,NCResearchCommittee: SeanHelfrich,Suitland,MD,Chair JamesBrylawski,Augusta,NJ RickFleetwood,Fredericton,NB KevinKang,Waterloo,ON KrysChutko,NorthBay,ON BartForman,CollegePark,MDWebMaster: AndrewKlein,CollegeStation,TXLocalArrangements: MichaelDurand&BryanMark,Columbus,OH

Page 8: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

8

WelcomeTuesday,June14❄WexnerCenterCafé

5:00-7:00pm RegistrationandIcebreakerreception

Session1.RecentAdvancesinRemoteSensingWednesday,June15❄ByrdPolarClimate&ResearchCenter(BPCRC)❄Chair:BartForman

8:00am Welcome:EllenMosley-Thompson,DirectoroftheBPCRC

8:10am DavidRobinson:50YearsofSatelliteSnowCoverExtentMappingOverNorthernHemisphereLands

8:30am ChrisDerksenetal.:Userrequirements,algorithmreadiness,andmodelingstudiesinsupportofterrestrialsnowmassradarmissionconcepts

8:50am BrianHennetal.:Comparisonofhigh-elevationLiDARsnowmeasurementswithdistributedstreamflowobservations

9:10am ManuelaGirottoetal:ALandsat-era(1985-2015)SierraNevada(USA)SnowReanalysisDataset(Invited)

9:30am NoahMolotchetal.:DevelopmentofUniversalRelationshipsbetweenSnowDepth,SnowCoveredAreaandTerrainRoughnessfromNASAAirborneSnowObservatorydata(Invited)

Session2.AdvancesinRemoteSensingTheoryandMethodsWednesday,June15❄ByrdPolarClimate&ResearchCenter(BPCRC)❄Chair:BryanMark

10:00am EdKimetal.:TheNASASnowExairbornesnowcampaign

10:30am LeungTsangetal.:SnowMicrostructureCharacterizationandNumericalSimulationofMaxwell’sEquationin3DAppliedtoSnowMicrowaveRemoteSensing(Invited)

10:50am AlainRoyeretal.:Comparisonofthreemicrowaveradiativetransfermodelsforsimulatingsnowbrightnesstemperature

11:10am EliDeebetal.CharacterizingSatellite-BasedPassiveMicrowaveEstimatesofSnowWaterEquivalentatSub-GridResolution

11:30am BartForman:SeeingandFeelingSnowfromSpace:AUnifiedRadiometricandGravimetricApproach

Page 9: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

9

11:50am 3-minutetheses(3MT,go.osu.edu/3mt):Recentadvancesinpassivemicrowaveremotesensingmethods,withpresentationsbycurrentgraduatestudents(orrecentgraduates):YonghwanKwon,DongyueLi,MohammadMousavi,OlivierSaint-Jean-RondeauandYuanXue.

Session3.PostersWednesday,June15,1:30–3:00❄MershonAuditoriumLobby

1. MilesEcclestoneetal.:Apictorialhistoryofchangesinpolarscienceandtechnology:anexamplefromglaciermeasurementsonAxelHeibergIsland,Nunavut,Canada,1959-2015.

2. DongyueLietal.:HowmuchwesternUnitedStatesstreamfloworiginatesassnow?

3. EricBurtonetal.:AirflowAssociatedwithSnowfallEventsontheQuelccayaIcecapofPeruDuringthe2014-2015WetSeason

4. JillColemanandRobertSchwartz:AnUpdatedU.S.BlizzardClimatology:1959-2014

5. KelseyCartwrightetal.:TerrainCharacteristicInfluenceonSnowAccumulationandPersistence:CaseStudy

6. ReedParsons&ChristopherHopkinson:In-situLightEmittingDiodeDetectionandRangingfortheMappingofSnowSurfaceTopographyandDepth

7. RogerdeRooetal.:Inexpensivein-situsnowpacksensorsfortemperature,densityandgrainsize:Firstlight

8. KrystopherChutko:Seasonalandinterannualvariabilityinsnowandstreamflowδ18Osignatures

9. YonghwanKwonetal.:Canassimilationofmicrowaveradiancedataimprovecontinental-scalesnowwaterstorageestimates?(Invited)

10. MohammadMousavietal.:ElevationAngularDependenceofWidebandAutocorrelationRadiometric(WiBAR)RemoteSensingofDrySnowpackandLakeIcepack

11. OlivierSaint-Jean-Rondeauetal.:Parameterizationofsnowmicrostructureforpassivemicrowaveradiometry

12. JulieMilleretal.:MappingfirnaquifersontheGreenlandandAntarcticicesheetsfromspaceusingC-bandsatellite-bornescatterometry

13. AlexandraBringeretal.:ObservationsofsnowpackswithanUltraWideBandRadiometer

14. YunaDuanetal.:ABayesianretrievalofGreenlandicesheetinternaltemperaturefromultra-widebandsoftware-definedmicrowaveradiometer(UWBRAD)measurements

15. EunsangChoetal.:ComparisonbetweenAMSR2andAMSR-ESnowWaterEquivalentusingSSM/IovertheNorthCentralU.S.

16. RyanCrumleyetal.:AnalyzingSeasonalSnowCoverFrequencyUsingtheMODIS/TerraDailySnowCoverProductwithGoogleEarthEngineinthePacificNorthwestandCalifornia

Page 10: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

10

17. CarrieVuyovichetal.:SensitivityAnalysisofpassivemicrowavebrightnesstemperaturestodistributedsnowmelt

18. ElizabethDyer&JoanRamage:InvestigatingtheinterplaybetweenwarmwinteranomaliesandglacialmeltingintheArctic:doearlywarmingeventsmatter?

19. DorothyHalletal.:ComparisonofMODISandVIIRSsnow-coverproductstostudydata-productcontinuityintheCatskillMountainwatersheds,NewYork

20. RichardKellyetal.:TheGCOM-W1Satellite-basedMicrowaveSnowAlgorithm(SMSA)

21. JoanRamageetal.:MELTONTHEMARGINS:CalibratedEnhanced-ResolutionBrightnessTemperaturestoMapMeltOnsetNearGlacierMarginsandTransitionZones

22. YuanXueandBartonForman:Decouplingatmospheric-andforest-relatedradianceemissionsfromsatellite-basedpassivemicrowaveobservationsoverforestedandsnow-coveredlandinNorthAmerica

Session4.PostersWednesday,June15,3:15–4:45❄MershonAuditoriumLobby

23. JasonEndriesetal.:VerticalstructureandcharacterofprecipitationinthetropicalhighAndesofsouthernPeruandnorthernBolivia

24. JamesFeiccabrino:Usingcloudbaseheighttodecreasemisclassifiedprecipitationinhydrologicalmodels

25. JohnathanKirk:LargeprecipitationeventsatSNOTELsitesandstreamflowvariabilityintheUpperColoradoRiverBasin

26. AndrewKlein:DailysnowdepthatPalmerStation,Antarctica,2007-2014:aninitialanalysis

27. SebastianSchlögletal.:Howdostabilitycorrectionsperformoversnow?

28. AaronThompsonetal.:SpatialvariabilityofsnowatTrailValleyCreek,NWT

29. MelissaWrzesienetal.:ConsiderationofMountainSnowStoragefromGlobalDataProducts

30. KellyElder&MatthewSturm:3rdWintercourseforfieldsnowpackmeasurementsNASASnowWorkingGroup-Remotesensing(iSWGR)

31. MartinSchneebeli&JuhaLemmetyinen:2ndEuropeanSnowScienceWinterSchool

32. QinghuanLi&RichardKelly:Terrestriallaserscanningobservationsoftreecanopyinterceptedsnow

33. SeanHelfrichetal.:EvaluationofAlgorithmAlternativesforBlendedSnowDepthintheIMS

34. AdamHunsakeretal.:Evaluationofsatellite-basedobservationsforcapturingearlywintersnowmeltwithinmid-latitudebasins

35. RhaeSungKimetal.:Spectralanalysisofairbornepassivemicrowavemeasurementsforclassificationofalpinesnowpack

Page 11: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

11

36. AlexLangloisetal.:Rain-on-snowandicelayerformationdetectionusingpassivemicrowaveradiometry:Anarcticperspective

37. DongyueLietal.:EstimatingsnowwaterequivalentinamountainousSierraNevadawatershedwithspaceborneradiancedataassimilation

38. JinmeiPanandMichaelDurand:FormulationofaBayesianSWEretrievalalgorithmusingX-andKu-measurements

39. GeorgeRiggsetal.:StatusoftheMODISC6SnowCoverandNASASuomi-NPPVIIRSSnowCoverDataProducts

40. SaberiNastaranetal.:SnowPropertiesRetrievalusingDMRT-MLinaStatisticalFrameworkUsingPassiveMicrowaveAirborneObservations

41. ShurunTanetal.:Modelingpolaricesheetemissionfrom0.5-2.0GHzwithapartiallycoherentmodeloflayeredmediawithrandompermittivitiesandroughness(Invited)

42. OliverWigmoreetal.:UAVMappingofDebrisCoveredGlacierChange,LlacaGlacier,CordilleraBlanca,Peru

43. YuanXueandBartonForman:Canregional-scalesnowwaterequivalentestimatesbeenhancedthroughtheintegrationofamachinelearningalgorithm,passivemicrowavebrightnesstemperatureobservations,andalandsurfacemodel?

BanquetWednesday,June15❄OSUFacultyClub

6:00-8:00pm† Thebanquetagendaincludespresentationofawards.Thebanquetkeynotespeaker,ProfLonnieThompson,ispresentingon:“GlobalClimateChange:aperspectivefromtheWorld'sHighestMountains.”

†Happyhourbeginsat5pmontheFacultyClubpatio.

Session5.Remotesensingapplicationsforcryosphericscience:Fromtheicesheetstothemid-latitudesThursday,June16❄ByrdPolarClimate&ResearchCenter(BPCRC)❄Chair:JoanRamage

8:30am NathanAmador:AssessingaDepth-retrievalmethodfordeterminingSupraglacialMeltLakeVolume

8:50am KyungInHuhetal.:Evaluating50yearsoftropicalPeruvianglaciervolumechangefrommulti-temporaldigitalelevationmodels(DEMs)andglacierflowandhydrologyintheCordilleraBlanca,Peru(Invited)

9:10am CarolineDolantetal.:DetectionofRain-On-SnoweventsintheCanadianArcticArchipelagobetween1980-2014usingPassiveMicrowaveRadiometry

9:30am JessicaCherryetal.:RecentairbornemeasurementsofsnowandiceinInteriorAlaska

Page 12: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

12

9:50am RuneSolbergetal.:Singleandmulti-sensorsnowwetnessmappingbySentinel-1andMODISdata

10:10am SamuelTuttleetal.:ComparisonofSatellitePassiveMicrowave,AirborneGammaRadiationSurvey,andGroundSurveySnowWaterEquivalentEstimatesintheNorthernGreatPlains

Session6.Snowandiceprocesses,hydroclimatology,andchangeThursday,June16❄ByrdPolarClimate&ResearchCenter(BPCRC)❄Chair:KrystopherChutko

10:45am RossBrownetal.:NorthernHemispherewinterthawevents–characteristics,trendsandprojectedchanges

11:05am AaronWilsonetal.:ImprovingatmosphericcirculationandturbulentheatfluxeswiththeArcticSystemReanalysis(Invited)

11:25am SebastianSchlögl:Energybalanceandmeltoverapatchysnowcover

Page 13: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

13

AssessingaDepth-retrievalmethodfordeterminingSupraglacialMeltLakeVolume

NathanaelAmador

OhioWesleyanUniversity,DepartmentofGeologyandGeography,Delaware,OH

2000–2012Landsat-7imageryisusedtomonitortheevolutionoffivesupraglacialmeltlakesintheablationzonenorthofJakobshavnIsbrætorelatemeltlakevolumeandtherequiredsensibleenergytoproducethemeltwater.Iutilizethecumulativepositivedegreeday(cPDD)metricformeltproductionandadepth-reflectancemethodologytoestimatemeltlakedepths,andthusderivetotalmeltlakevolume.In71%ofinstanceswhentheannualpeakmeltlakevolumeoccurs,thecalculatedvolumeexceedstheKrawczynskietal.(2009)thresholdforhydrofracturing.Thevolumeresultsfortheselakesindicatethattheyhavethepotentialtohydrofracturemultipletimesoverthestudyperiod,whichcanaffectnearbyiceflowvelocityviabasallubrication.Theinter-annualvariabilityinmeltlakevolume,whencomparedtocPDD,suggeststhatmeltwaterproductionislessimportanttomeltlakesize(areaandvolume)thanthelocalicesheetsurfacetopography.Whenrelatinglakedepthsusingthedepth-reflectancemethodology,thereisminimaldifferenceinthemaximummelt-lakedepthbetweenin-situmeasurementsandthedepth-reflectancemethodology(~9%),suggestingthatthedepth-reflectancemethodologyaccuratelyestimatesmelt-lakeinundationdepthforsupraglaciallakes.

Page 14: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

14

ObservationsofsnowpackswithanUltraWideBandRadiometer

A.Bringer1,J.Johnson1,K.Jezek2,M.Durand2

1ElectroScienceLaboratory,DepartmentofElectricalandComputerEngineering,TheOhioState

University,Columbus,OH2SchoolofEarthSciences&ByrdPolarResearchCenter,TheOhioStateUniversity,Columbus,

OH Microwaveradiometersareoftenusedforcryosphericstudiesandespeciallytoobservesnowpacks.Theyusuallyoperateatasinglefrequency,18GHzor37GHz,ashighfrequenciesaresensitivetotheinternalstructureofsnow(layering,grainsize,density).However,recentstudieshaveshownthepotentialofusinglowerfrequenciessuchasLBand(1.4GHz)toretrieveinformationaboutthefreeze/thawstateofthesoilbeneaththesnowpack.Thebrightnesstemperatureatsuchfrequenciesshowssensitivitytothethicknessofthefrozensoilandthesnowthickness.

Wearepresentlydevelopingaradiometerforcryosphericstudies,calledtheUltraWideBandSoftwareDefinedRadiometer(UWBRAD).Itmeasuresthermalemissionoverfrequenciesfrom0.5to2GHzin12frequencychannels.Becauseofthedielectriccontrastbetweenthesnowpermittivityandthefrozensoilone,weinvestigatewhetherUWBRADmicrowavespectracanbeusedtomeasurethesnowthickness.

Thesoilismodeledasatwolayermedium:afrozenlayerontopandathawedlayerbelow.Thesnowpackisconsideredasaplanarlayeredmediawithvariationsintemperatureanddensity.Becausetheelectricalpropertiesaretemperaturedependent,weadoptasimple,linearmodelforthetemperatureprofileinthesnow.Weuseacoherentradiativetransfermodeltocalculatethesnowpackbrightnesstemperature.Inourpreliminarystudies,weobserveanoscillatingpatternwithfrequencywhichalsovarieswithsnowthickness.ThisindicatesthatUWBRADmaybeusedtoinfersnowthicknessoverfrozensoil.

Page 15: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

15

NorthernHemispherewinterthawevents–characteristics,trendsandprojectedchanges

RossBrown,LiboWang,PeterToose,andChrisDerksen

ClimateProcessesSection,EnvironmentandClimateChangeCanada,Montréal,Québec

Wintermelt/refreezeeventsmodifythephysicalpropertiesofsnowwithpotentiallysignificantimpactsonthesurfaceenergybudget,hydrologyandsoilthermalregime.Therefreezingofmeltwatercanalsocreateicelayersthatadverselyimpacttheabilityofungulatetravelandforaging,andexertuncertaintiesinsnowwaterretrievalfrompassivemicrowavesatellitedata.Theconventionalwisdomisthatthefrequencyoftheseeventsincreasesunderawarmingclimate.Thishypothesisisevaluatedfromananalysisofwinterthaweventsfromatmosphericreanalyzes,satellitepassivemicrowavedataandclimatemodels.Theanalysisshowsthattrendsinwinterthaweventsarestronglydependentontheanalysismethod,andthattheuseofafixedseasonalwindowcangenerateartificialincreasesinwinterthawfrequenciesfromatemporalshiftintheperiodoftheyearwheretheseeventsaretypicallyobserved.TheanalysisalsoshowsthatthefrequencyofwinterthaweventsissignificantlycorrelatedtothelengthofthesnowaccumulationseasonoverlargeareasoftheNHsnowcoveredarea,whichimpliesdecreasesinwinterthawfrequenciesinresponsetowarming.ProjectedchangesinthawfrequencyarepresentedforsomeofthemodelsparticipatingintheCMIP5andCORDEXexperiments.

Page 16: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

16

AirflowAssociatedwithSnowfallEventsontheQuelccayaIcecapofPeruDuringthe2014-

2015WetSeason

EricJ.Burton1,L.BakerPerry1,AntonSeimon1,2,JasonL.Endries1,MaxwellRado3,SandroArias4

1DepartmentofGeographyandPlanning,AppalachianStateUniversity,Boone,NC2ClimateChangeInstitute,UniversityofMaine,Orono3UniversidadNacionaldeSanAntonioAbáddeCusco,Perú4ServicioNacionaldeMeteorologíaeHidrología(SENAMHI),Perú

TheQuelccayaIcecap,locatedintheCordilleraVilcanotaofSouthernPeru,isthelargestglacierinthetropicsfromwhereicecoresdatingbacknearly2,000yearsprovideoneofthemostimportantrecordsoflate-Holoceneclimates.Thisposteranalyzesthetiming,trajectories,andsynopticpatternsassociatedwithprecipitationeventsduringthe2014-2015wetseason.Ameteorologicalstationinstalledat5,650maslneartheQuelccayasummitinOctober2014providesmeteorologicaldataincludingprecipitationamount,typeandintensity,snowdepth,insolation,relativehumidity,andwindspeedanddirection.NOAA’sHybridSingleParticleLagrangianIntegratedTrajectoryModel(HYSPLIT)provides72-hourbackwardairtrajectoriesforeachprecipitationeventusingGDASdatawith0.5°resolution,andERA-Interimdataareusedtoexaminesynoptic-scalepatternsofvariousmeteorologicalvariablesforprecipitationevents.Resultssuggestthattrajectoriesassociatedwithprecipitationeventscomepredominantlyfromthenorthandnorthwest(63%)withanothermaximumfromthesoutheast(25%).Northwesttrajectorieshavethehighestnetcontribution(34%ofannualtotal),whilethosefromthePacificproducethelargestsnowfalleventsonaverage(6.3cm).Compositeplotsofvectorwindssupportthetrajectoryanalysis.Temperatureandwindspeedvariedlittlethroughouttheinitialstudyperiod,andthepresentweathersensorshowsthatfrozenprecipitation,inparticulargraupel,wasthedominantprecipitationtype.Ofthe250precipitationeventsthatoccurredduringthestudyperiod,88%hadasourceregionintheAmazonBasin.Anighttimemaximuminprecipitationisinferredtobepredominantlystratiforminnature,whileanafternoonmaximumisinferredtobepredominantlyconvective.

Page 17: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

17

TerrainCharacteristicInfluenceonSnowAccumulationandPersistence:CaseStudy

KelseyCartwright,N.ReedParsons,GerrardBiggins,JoshuaBaerg,ChristopherHopkinson

DepartmentofGeography,UniversityofLethbridge,Lethbridge,AB

Mountainsnowmeltcontributes70-90%ofstreamflowinWesternCanada.Anenrichedunderstandingofsnowpackdynamicsinheadwaterregionsisessentialtowaterresourcemanagementinthefaceofunpredictableclimaticpatternsassociatedwithclimatechange.CurrentsnowpackmonitoringintheOldmanWatershedtoapproximateSWEforwatersupplyandfloodriskpredictionsdonotprovideanaccuraterepresentationoftruesnowwaterequivalencyduetothelargespatialvariationinmountainousterrainattributes,forexampleslope,aspect,substrateandforestcoveracross~26,000km2.Asaresultofthesedynamicterraincharacteristics,snowdepthexhibitsanevengreaterspatialvariationincomparisontosnowdensity.FieldworkwascarriedoutintheWestCastlewatershed,thesecondhighestyieldingsub-watershedoftheOldmandrainage,ataskihillwhereourhydrometeorologicalstationsoccuralonganelevationalgradientaspartofaGovernmentofAlbertafundedwaterresourcemonitoringresearch.Depthmeasurementswerecollectedinareasrepresentativeofvariousterrainattributesandecotones.Usingregionalin-situmeteorologicalstationdata,fieldvalidationmeasurementsandLiDARremotesensingdata(September,February2014;April2016)collectedmid-winterandattheonsetofspringmelt,relationshipsbetweenthevariousmacroandmicroscalecatchmentprocessesprovideanimprovedunderstandingoftheterraincharacteristicinfluenceonsnowaccumulationandpersistence.

Boththeidentificationandquantificationoftheterraincharacteristicinfluenceonsnowaccumulationandpersistence,enablethemodellingofdepthacrosslargerareasthusprovidingtheprecisedatarequiredtomakeinformedwaterresourcemanagementdecisions.

Page 18: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

18

RecentairbornemeasurementsofsnowandiceinInteriorAlaska

JessicaCherry

InternationalArcticResearchCenter,UniversityofAlaska,Fairbanks

ThistalkwilldiscussresultsfromrecentairbornemeasurementsofsnowandiceinInteriorAlaskafromimaging(optical,nearinfra-redandthermalinfra-red)andmicrowavesensorsusingStructurefromMotionandothertechniques.ImpactsofGPSaccuracyonsnow-relatedphenomenawillbedescribed,includingthepositionalerrorbudget.OurgrouphastwomodifiedCessnasforthiseffortandwillalsodiscusstheeconomicsofairbornemeasurementsfromunmannedversusmannedsystems.

Page 19: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

19

ComparisonbetweenAMSR2andAMSR-ESnowWaterEquivalentusingSSM/Ioverthe

NorthCentralU.S.

EunsangCho,SamuelTuttle,andJenniferM.Jacobs

CivilandEnvironmentalEngineering,UniversityofNewHampshire,Durham

Satellite-basedpassivemicrowavesensorsenablespatiallydistributedsnowpackmonitoringataglobalscale.TheAdvancedMicrowaveScanningRadiometer2(AMSR2)isarelativelynewpassivemicrowavesatellitethatprovidesestimatesofsnowdepth(SD)andsnowwaterequivalent(SWE).AMSR2continuesthelegacyoftheAdvancedMicrowaveScanningRadiometerfortheEarthObservingSystem(AMSR-E),whichstoppedoperationinOctober2011.However,thequalityofAMSR2SWEretrievalshasnotyetbeenevaluatedincomparisonwithitspredecessor.ThisstudycomparedtheweeklymaximumAMSR2andAMSR-ESWEproductsovertwelvewinterseasons(AMSR-Eperiod:2002-2011,AMSR2period:2012-2015)toSSM/ISWEestimatesover1176watershedsintheNorthCentralUnitedStates.Forconsistency,boththeAMSR2andAMSR-EsatelliteSWEproductsusedtheKellyalgorithm(Kellyetal.,2009).Resultsshowthatthetwosatellite-basedSWEretrievalshavetemporallyreasonableagreementwithSSM/ISWEestimates(Changalgorithm;Changetal.,1987).However,yearlybiasmapsbetweenAMSR2andSSM/ISWEareclearlydifferentthanbetweenAMSR-EandSSM/I.Particularlyinforestedareas,themagnitudeofAMSR2SWEestimatesismuchlargerthanSSM/I,unlikeAMSR-E.WhenusingthenormalizedSWEanomaly,thespatialpatternofbiasshowsgoodagreementbetweenAMSR2andAMSR-E.ThedifferingSWEmagnitudesmayberelatedtothecalibrationofAMSR2brightnesstemperatures.

Page 20: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

20

Seasonalandinterannualvariabilityinsnowandstreamflowδ18Osignatures

KrystopherJ.Chutko1andAprilL.James2

1DepartmentofGeographyandPlanning,UniversityofSaskatchewan,Saskatoon,SK2DepartmentofGeography,NipissingUniversity,NorthBay,ON

Seasonalsnowpacksoftenplayalargeandimportantroleinhydrologicalprocesses,typicallymanifestedasaspringfreshet.Fromanisotopicstandpoint,thisfreshetmarksthe“lightest”wateroftheyear,beingfedbyisotopicallylightwaterderivedfromspringsnowmelt.Seasonalandinterannualvariationsintheisotopiccompositionofstreamflowarestronglyrelatedtotheisotopicconditionsofthewintersnowpackandhaveimplicationsonhydrologicalanalysesandmodeling.Fouryearsofregionalsnowandstreamflowisotopemeasurements(2013–2016)intheLakeNipissingregionofOntario,Canada,illustratethisvariabilityinsnowpackisotopiccompositionanditsimpactonstreamflowisotopiccomposition.Muchofthisvariabilityisderivedfromwinterairtemperature.Averagewinter(DJFM)airtemperaturehasvariedfrom-5.3°Cin2016to-13.5°Cin2014,avariabilitythatismirroredinthesnowpackisotopicsignatureineachyearaswellasintheisotopicsignatureofstreamflow.Snowpacksignaturesweremeasuredusingbulkcoresamplesandsnowmeltsignaturesweremeasuredwithacombinationofsnowmeltlysimetersandpassivewicks.Theinterannualvariabilityinsnowpackδ18Oisshowntoimpactstreamflowisotopicsignatures.For9catchmentsreportedhereintheLakeNipissingregion(35to6875km2),spring(MAM)streamflowδ18Owas0.67‰lighterandsummer(JAS)streamflowδ18Owas0.82‰lighter,onaveragein2014vs.2013,forexample.However,theseasonalamplitudeofδ18Oremainedconsistentbetweenyears,varyingbyjust0.15‰.

Page 21: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

21

AnUpdatedU.S.BlizzardClimatology:1959-2014

JillS.M.Coleman1andRobertM.Schwartz2

1DepartmentofGeography,BallStateUniversity,Muncie,IN2CenterforEmergencyManagementandHomelandSecurityPolicyResearch,Universityof

Akron,OH

Satellite-basedpassivemicrowavesensorsenablespatiallydistributedsnowpackmonitoringataglobalscale.TheAdvancedMicrowaveScanningRadiometer2(AMSR2)isarelativelynewpassivemicrowavesatellitethatprovidesestimatesofsnowdepth(SD)andsnowwaterequivalent(SWE).AMSR2continuesthelegacyoftheAdvancedMicrowaveScanningRadiometerfortheEarthObservingSystem(AMSR-E),whichstoppedoperationinOctober2011.However,thequalityofAMSR2SWEretrievalshasnotyetbeenevaluatedincomparisonwithitspredecessor.ThisstudycomparedtheweeklymaximumAMSR2andAMSR-ESWEproductsovertwelvewinterseasons(AMSR-Eperiod:2002-2011,AMSR2period:2012-2015)toSSM/ISWEestimatesover1176watershedsintheNorthCentralUnitedStates.Forconsistency,boththeAMSR2andAMSR-EsatelliteSWEproductsusedtheKellyalgorithm(Kellyetal.,2009).Resultsshowthatthetwosatellite-basedSWEretrievalshavetemporallyreasonableagreementwithSSM/ISWEestimates(Changalgorithm;Changetal.,1987).However,yearlybiasmapsbetweenAMSR2andSSM/ISWEareclearlydifferentthanbetweenAMSR-EandSSM/I.Particularlyinforestedareas,themagnitudeofAMSR2SWEestimatesismuchlargerthanSSM/I,unlikeAMSR-E.WhenusingthenormalizedSWEanomaly,thespatialpatternofbiasshowsgoodagreementbetweenAMSR2andAMSR-E.ThedifferingSWEmagnitudesmayberelatedtothecalibrationofAMSR2brightnesstemperatures.

Page 22: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

22

AnalyzingSeasonalSnowCoverFrequencyUsingtheMODIS/TerraDailySnowCover

ProductwithGoogleEarthEngineinthePacificNorthwestandCalifornia

RyanCrumley,AnneW.Nolin,andEugeneMar

CollegeofEarth,Ocean,andAtmosphericSciences,OregonStateUniversity,Corvallis

Newsnowmetricsareneededtocharacterizechangingsnowcoverinawarmingworld.Forthisproject,wecomputethefrequencyofremotelysensedsnowcoverduringthewinterseason,foreachpixelinourmaritimeWestCoaststudyregionandexplorespatio-temporaltrends.RemotesensingofsnowcoveredareausingtheMODIS/TerraSnowCoverDailyL3500m(MOD10A1)productisnowavailabletoscientistsusingGoogleEarthEngine(GEE).GEEstoresandprovidesaccesstoamulti-petabytecatalogofsatelliteimagesforgeospatialanalysis,employingbothJavascriptandPythonAPIs.TheMOD10A1SnowCoverProductalongwiththeGEEcloudcomputinginfrastructureallowsforregionaltoglobal-scaledataprocessingtobeperformedquicklyandefficiently,withouthavingtodownloadmassiveamountsofdata.Specifically,theobjectivesareto:1)calculateSnowCoverFrequency(SCF)fromOctobertoJulyovera16-yearperiod(2001to2015)fortheCascadesmountainrangeinOregonandWashingtonandtheSierraNevadamountainrangeinCalifornia;2)evaluatemulti-yeartrends;3)disseminatetheGEEscriptsandcodesothatthisprocessingcaneasilybereadilyreproducedforanylocation,geometry,orregiononEarth.SnowCoverFrequencyiscomputedasthenumberoftimesduringthesnowseasonthatapixelissnowcovereddividedbythenumberofvalidobservationsforthatpixel.TrendsarecomputedusingtheMann-Kendallstatisticandareexaminedbyregion.TheresultsofthisresearchserveasavaluabletoolforwatermanagersandpolicymakersthatrelyonsnowmeasurementsforseasonalstreamflowestimatesandwhowouldliketosupplementthetraditionalmetricofApril1SnowWaterEquivalent.

Page 23: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

23

Inexpensivein-situsnowpacksensorsfortemperature,densityandgrainsize:Firstlight

RogerDeRoo,EricHaengel,SteveRogacki,AdamSchneider,ChandlerEkinsandSeyedmohammadMousavi

DepartmentofAtmospheric,Oceanic,andSpaceSciences,UniversityofMichigan,AnnArbor

Asuiteofsmall,batteryoperateddevicesforimplantationinasnowpackhasmadeitsfirstmeasurementsintheWinterof2016.Theymeasureandlogsensoroutputsrelatedtosnowpackparametersoftemperature,density,moistureandgrainsize.Thetemperatureisprovidedbyanelectronicthermometer;snowdensityandmoistureaffectanopenresonantcircuitoperatingnear950MHz;grainsizeanddensityaffectthescatteringofanopticallinkoperatingat880nm.Fiveunitsweredeployedintheroughly30cmdeepsnowpackattheUniversityofMichiganBiologicalStationintwosnowpits,wheretheymademeasurementsevery5minutesforapproximately10days.Uponextraction,temperature,densityandgrainsizeofthesnowpackwereobservedmanually.

Threemoreunitswereinvolvedinaninter-comparisonexperimentattheUSArmy'sColdRegionsResearchandEngineeringLaboratory.Twosamplesofoldsnowpackfromtheirarchives,twofreshsnowsamples,andoneartificiallygrownsnowsamplewerealsocharacterizedwithmicro-computedtomography,infraredreflectometry,suchasUniversityofMichigan'sNearInfraredEmittingReflectanceDome(NERD),andmanualmethods.InApril2016,themeasurementsarebeinganalyzedandcalibrated.Wewillreportonresults,andlessonslearned,attheJuneconference.

Page 24: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

24

CharacterizingSatellite-BasedPassiveMicrowaveEstimatesofSnowWaterEquivalentatSub-GridResolution

E.J.Deeb,C.A.Hiemstra,S.F.Daly,C.M.Vuyovich,andJ.B.Eylander

USArmyColdRegionsResearchandEngineeringLaboratory(CRREL),Hanover,NH

Snowwaterequivalent(SWE)istheamountofwatercontainedwithinthesnowpackifmelted.Theaccurateassessmentofthissnowparameteriscrucialinestimatingspringrunoffasitrelatestowaterresourcemanagement,floodhazardmitigation,droughtmonitoring,andclimatechangeimpacts.Satellite-basedpassivemicrowaveestimatesofSWEoffertheonlyoperationalplatformforwhichanearreal-time,globalSWEproductisavailable.Ingeneral,satellite-basedpassivemicrowaveSWEestimatesarepossibleduetothenaturallyemittedmicrowavesignalfromthesoilbeingattenuatedbythesnowpack.Thismicrowaveenergyisrelativelysmall;therefore,thesatellite-basedproductsareoftenatverycoarseresolution(tensofkilometers)inordertodetectthesignal.Forhydrologyapplications,passivemicrowaveestimatesofSWEareparticularlydifficulttointerpretwhenonlyahandfulofpixelsrepresentasinglehydrologicbasin.Moreover,passivemicrowaveretrievalalgorithmsaresubjecttodifficultiesinbothdeepandshallowsnow(dependingonthemicrowavefrequenciesavailableonthesatelliteplatform)aswellasuncertaintiesduetoforestfraction,snowmicrostructure,andsnowwetness.Here,aspatially-distributed,snow-evolutionmodelingsystem(SnowModel)isusedtosimulate14years(wateryears2000through2013)ofsnowpropertiesfortheHubbardBrookLongTermEcologicalResearchsite(NewHampshire,USA)atfineresolution(50meters).Thesedataareusedtogeneratesnowdepthclimatologyoverthesatellite-basedpassivemicrowavepixelsthatencompasstheHubbardBrookwatershed.ThisclimatologyisthenusedinconjunctionwiththedailypassivemicrowaveestimateofSWEtoappropriatelydistributethesatellite-basedobservationatcoarseresolutiontoasub-grid,finerresolution.Themethodologyandresultsofthemodeltechniquearepresented;andwhencomparedtoanindependentsnowdepthobservationwithinthebasinshowbetteragreementandimprovedmodelefficiency(R2=0.76andNash-Sutcliffemodelefficiency=0.70)whencomparedtosimplythesatellite-basedpassivemicrowaveestimates(R2=0.61andNash-Sutcliffemodelefficiency=0.40).Potentialbenefitsofusingthismodeltechniqueinsnowhydrologyapplicationsarealsodiscussed.

Page 25: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

25

Userrequirements,algorithmreadiness,andmodelingstudiesinsupportofterrestrialsnow

massradarmissionconcepts

ChrisDerksen1,StephaneBelair2,JoshuaKing1,CamilleGarnaud2,LawrenceMudryk3,YvesCrevier4,MelanieLapointe4,andRalphGirard4

1ClimateResearchDivision,EnvironmentandClimateChangeCanada,Toronto2MeteorologicalResearchDivision,EnvironmentandClimateChangeCanada,Montréal,Québec3DepartmentofPhysics,UniversityofToronto4CanadianSpaceAgency,Saint-Hubert

Thesnowremotesensingcommunityhaslonggrappledwithhowtoprioritizeobservationalrequirementsandtechnologicalsolutionsduetodifferingneedsrelatedtosnowextent(SE)versussnowwaterequivalent(SWE),andthetradeoffsbetweenspatialresolutionandrevisittimewhichdifferforalpinehydrologicalapplicationsversushemisphericclimateandoperationallandsurfacemodelingneeds.Asingleobservingstrategysimplycannotmeetalltheserequirements.EnvironmentandClimateChangeCanada(ECCC)recentlyidentifiedmoderateresolution(~1km),dailyhemisphericSWEasapriorityobservationalgapwhichlimitsoperationalenvironmentalmonitoring,services,andprediction.ThispresentationwillprovideanoverviewofcurrentscienceactivitiesatECCCinsupportofthedevelopmentofradarmissionconceptsinpartnershipwiththeCanadianSpaceAgency(CSA)toaddressthisobservationalgap:

1. AnassessmentofcurrentlyavailablegriddedhemisphericSWEproductswasperformedtoestablishthebaselineofcurrentcapabilities.Thesedatasets(frompassivemicrowaveremotesensing,modernreanalysis,andphysicalsnowmodels)areavailableonlyatacoarsespatialresolution(25kmorgreater),exhibitahighdegreeofspreadbetweenproducts,andhavepoorlyconstraineduncertaintyduetosystematic(bias)andrandomerrorswhenevaluatedwithinsituobservations.

2. ExperimentalairbornedatasetsarebeingutilizedtoidentifysnowvolumeandstratigraphicinfluencesonradarsignaturesatX-andKu-band.AnalysisofdatafromexperimentalcampaignsinCanadashowradarsensitivitytoSWE,butfirstguessmodelderivedinformationonsnowmicrostructureisrequiredasaretrievalinput.

3. AnObservingSystemSimulationExperiment(OSSE),performedusingtheCanadianLandDataAssimilationSystem(CaLDAS),isbeingutilizedtoidentifycriticalresolution,revisit,andretrievalaccuracythresholdsinordertoensuretheuserrequirementsoftheoperationallandsurfacemodelingcommunitycanbeaddressedwitharadarconcept.

Page 26: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

26

Emerginginternationalpartnershipopportunitieswillalsobepresented,includinghowaspaceborneradardesignedtoaddressneedsrelatedtoterrestrialsnowwouldalsoprovidesuitablemeasurementsforseaice,landice,andoceanvectorwindapplications.

Page 27: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

27

DetectionofRain-On-SnoweventsintheCanadianArcticArchipelagobetween1980-2014usingPassiveMicrowaveRadiometry

C.Dolant1,2,A.Langlois1,2,L.Brucker3,4,B.Montpetit1andA.Royer1,2

1Centred’ApplicationsetdeRecherchesenTélédétection,UniversitédeSherbrooke,Quebec2Centred’ÉtudesNordiques,Quebec3NASAGoddardSpaceFlightCenter,CryosphericSciencesLaboratory,Greenbelt,MD4UniversitiesSpaceResearchAssociation,GoddardEarthSciencesTechnologyandResearch

StudiesandInvestigations,Columbia,MD

Climatechangeimpactsinnorthernenvironmentsaresignificant,especiallyintundraareas.Risingtemperatures,changesintheprecipitationregimeareamongstthestrongestconsequencesofclimatewarmingandvariabilityintheArcticsincetheearly1980’s(ListonandHiemstra,2011).Ofparticularrelevance,rain-on-snow(ROS)eventsincreasethepresenceofliquidwatercontent(LWC)inthesnowpackandareresponsiblefortheformationoficecrusts(Dolantetal.,2016,HydrologicalProcesses)thathaveastrongimpactonecology,hydrologyandenergybalanceofthesnowpackbychangingtheinternalstructureofthedifferentsnowlayers.

ThespatialandtemporaldistributionofROSacrosstheCanadianArcticArchipelago(CAA)remainspoorlyunderstoodowingtotheirsporadicnatureintimeandspace.Theuseofremotesensing,inparticularpassivemicrowaves(PMW),allowustoobtaininformationonthedifferentlayersofthesnowpack,thusrepresentinganinterestingavenuefortrackingandstudyingROSeventsintheArctic.

Inthisstudy,wehighlightthedistributionandevolutionofROSoccurrencesinventoriedsince1980at14weatherstationsintheCAA,andintroduceanadaptationofthealgorithmofROSdetectionusingpassivemicrowaveradiometryproposedbyDolantetal.2016,inordertoestablishpatternsoftemporalandspatialevolutionofROSevents.Furthermore,simulatingtheeffectsofROSusingaradiativetransfermodel(i.e.MEMLS(WiesmannandMatzlër,1999)drivenwithsnowpitmeasurementsandvariationofLWCthreshold)willimprovetheunderstandingofthiscomplexphenomenon.

Acrossthe14weatherstations,700ROSeventsweresurveyedsince1980,wheremorethan80%occurredduringthespringseason.

Page 28: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

28

ABayesianretrievalofGreenlandicesheetinternaltemperaturefromultra-widebandsoftware-definedmicrowaveradiometer

(UWBRAD)measurements

YunaDuan1,MichaelDurand1*,KenJezek1,CaglarYardim2,AlexandraBringer2,MustafaAksoy2,JoelJohnson2

1SchoolofEarthSciencesandByrdPolarandClimateResearchCenter,OhioStateUniversity,

Columbus2ElectroscienceLaboratoryandDepartmentofElectricalEngineering,OhioStateUniversity,

Columbus

Icesheetinternaltemperatureisanimportantfactorinunderstandingglacierdynamics.Theultra-widebandsoftware-definedmicrowaveradiometer(UWBRAD)isdesignedtoprovideicesheetinternaltemperaturebymeasuringlowfrequencymicrowaveemission.Twelvechannelsrangingfrom0.5to2.0GHzarecoveredbytheinstrument.AfourchannelprototypeofUWBRADwascompletedandoperatedinAntarcticicesheetatDome-Cfromatower.ABayesianframeworkisdesignedtoretrievetheicesheetinternaltemperaturefromsimulatedUWBRADbrightnesstemperature(Tb)measurementsfortheGreenlandair-bornedemonstrationscheduledforSeptember2016.

A1-Dheat-flowmodel,theRobinModel,isusedtogeneratetheicesheetinternaltemperatureprofile.Itrequiressurfacetemperatureice,sheetthickness,snowaccumulationrateandgeothermalheatfluxasinputandcalculatessteadystatetemperaturesasafunctionofdepth.Thecoherentradiationtransfermodel,whichneglectsscattering,utilizestheRobinmodeltemperatureprofileandverticaldensityprofileasinputandcalculatesTb.Atlowerfrequencies,deeperandwarmericecontributetotheemissionandhigherbrightnesstemperaturecanbemeasured;Whileathigherfrequencybands,theresultingbrightnesstemperatureislower,thusprovidesthebasisofretrieval.Theeffectivesurfacetemperature,geothermalheatfluxandthevarianceofupperlayericedensityareleast-wellknownandaretreatedasunknownrandomvariableswithintheretrievalframework.

Foreachunknownparameter,arangeofpossiblevalueswasidentified.Thecoherentmodelwasusedtogeneratealook-uptablebetweentheunknownparametersandtheTb.AsetofsyntheticUWBRADobservationswasgeneratedandcorruptedwithwhitenoisetomimictheUWBRADobservationalerror.ABayesianframeworkwasdevelopedtoestimatethethreeunknownparameters,usingtheMetropolisalgorithm,aMarkovChainMonteCarlo(MCMC)approach.Weexaminedtheresultsusingthethreesciencegoals:estimationofthe10-mfirntemperature,theaveragetemperatureintegratedwithdepth,andtheentiretemperatureprofile.Weconductarandomwalkbetweenthesampling

Page 29: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

29

spacedefinedbythepriors.Ateachstep,weevaluateeachnewiterationofthethreeunknownparametersbasedonhowwellitexplainsUWBRADdata.Ourgoalsaretoinvestigatewhetherthepriorscanbeimprovedandthetemperaturecanbeestimated.

The10mtemperaturesareallestimatedwithin±1K,andmostlywithin±0.5Kdespitethepriorestimatebeingpreciseto±1.0K.TheRMSerroroftheUWBRADestimatesareallwithin3.3K;28/47pointsshowimprovementovertheprior.Forthe100maveragedtemperatureestimation,theestimationuncertaintyincreaseswithdepthandstaysbelow1Kuptoabout1500m.Alongtheflightline,aconsistenthighcorrelation,over0.75,betweensurfacetemperatureanddensityvariationisobserved,whichmeansthatmultiplecombinationsofdensityvariationsandsurfacetemperaturesinthesamplespacewouldproducetheexactsameTb.Yetthe10mtemperaturecanstillbewellestimated.TheBayesianframeworkiscapableofconstraintheparameterswithinreasonableregionbytradingoffamongtheparameters.

Page 30: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page30

InvestigatingtheinterplaybetweenwarmwinteranomaliesandglacialmeltingintheArctic:doearlywarmingeventsmatter?

ElizabethDyerandJoanRamage

EarthandEnvironmentalScienceDepartment,LehighUniversity,Bethlehem,PA

Thewinterof2015-2016wasthewarmestwinteronrecord,breakingseveralglobaltemperaturerecords.FromtheendofDecember2015tothebeginningofJanuary2015,manyareasintheRussianHighArctic(RHA)andSvalbardexperiencedtemperaturesabove0°C;precipitationfellasrain.Thesetypesofeventscandisrupttheoverallpatternofaccumulationduringwinterandmeltingduringsummer,andtheyarepredictedtoincreaseinfrequencyduetoclimatechange.ThisstudyexaminestheeffectsofunusualwarmwintereventsonthemeltingandmasslossofglaciersandicecapsinSvalbardandtheRHA,particularlyNovayaZemlya.Theeventsduringwhichairtemperaturewasabovefreezingarestudiedindetail;themaindatasetsaremicrowaveremotesensingobservations,includingtheSpecialSensorMicrowaveImager/Sounder(SSMIS)fromtheNationalSnowandIceDataCenter(NSIDC).Usingthe19and37Ghzchannels,theperiodfollowingthewarmeventsisevaluatedtoseewhereandwhenameltingeventwastriggered,andwhataspectofthestormcausedit.Tounderstandthefulldynamicsoftheresponsestothesewarmevents,themicrowaveobservationsarecomparedwithotherdatasets,includingseasurfacetemperaturefromtheModerate-resolutionImagingSpectrometer(MODIS),andseaiceextentfromtheNSIDC.Anomalouswarmwintereventsareexpectedtohaveanimpactonsubsequentglacialmeltingandnegativemassbalance.

Page 31: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page31

Apictorialhistoryofchangesinpolarscienceandtechnology:anexamplefromglaciermeasurementsonAxelHeibergIsland,Nunavut,Canada,1959-2015

PeterAdams,MilesEcclestone,GrahamCogley

DepartmentofGeography,TrentUniversity,Peterborough,Ontario

Changesinmodesoftransportation,instrumentationaswellasinpersonnelmake-uphavedramaticallychangedthenatureofpolarscienceinthehalfcenturysincetheMcGillexpeditionsbeganresearchonAxelHeibergIsland,Nunavut,Canada,in1959.Thesechangeshaveintensifiedandextendedresearchonglaciersandlakesandtheyhavealsoproducedmarkedchangesinthewaypolarscienceisconducted.Duringthissameperiodtherehavebeenequallydramaticchangesintheglaciersoftheregion.Thesethemesarepresentedherethroughaseriesofannotatedimages.

Page 32: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page32

3rdWintercourseforfieldsnowpackmeasurements:NASASnowWorkingGroup-Remotesensing(iSWGR)

K.Elder1andM.Sturm2

1U.S.DepartmentofAgricultureForestService2UniversityofAlaska,Fairbanks

Asourabilitytocharacterizeandmodelthehydrologicregimeinsnow-dominatedecosystemscontinuestoimprove,thereisaparallelneedtomakemeaningfulandaccuratemeasurementsofsnowpackproperties.Practitionersoftencollectandusefielddatafortheirownpurposes.Modelersandremotesensersoftenobtainthesnowpackdatafromfieldpractitionersorotherresearchers,buthavelittleknowledgeofmeaningorrichnessofthedatatheyareusing.Thiscourseisaimedatteachingskillstopractitionersandmodelersinordertoincreasethequalityoftheresultsforallusers.Thecourseintroducedstudentstostandardandspecialized,quantitativeandqualitative,methodsforthecharacterizationofthesnowpack.

The3rdwintercourseforfieldsnowpackmeasurementsfromtheNASAsnowremotesensinggrouptookplaceonJanuary12-142016attheFraserExperimentalForest,Colorado,USA.Numerousinternationalstudentsparticipatedtotheschoolandlecturersprovidedcoursesonremotesensing,andfieldmeasurementsofvarioussnowproperties.Thesestate-of-the-artsnowremotesensingtechniqueswillbetaughtinthe4thiSWGRsnowschoolwhichisexpectedtooccurinFebruary-March2017.

Page 33: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page33

VerticalstructureandcharacterofprecipitationinthetropicalhighAndesof

southernPeruandnorthernBolivia

JasonL.Endries1,L.BakerPerry1,SandraYuter2,AntonSeimon1,3,MarcosAndrade4,GuidoMamani5,MartiBonshoms6,FernandoVelarde4,RonaldWinkelmann4,NiltonMontoya5,Nelson

Quispe6

1DepartmentofGeographyandPlanning,AppalachianStateUniversity,Boone,NC2DepartmentofMarine,Earth,andAtmosphericSciences,NorthCarolinaState

University,Raleigh,NC3ClimateChangeInstitute,UniversityofMaine,Orono4UniversidadMayordeSanAndres,Bolivia5UniversidadNacionaldeSanAntoniodeAbáddeCusco,Perú6ServicioNacionaldeMeteorologíaeHidrología(SENAMHI),Perú

GlaciersthatprovidecriticalfreshwatertothetropicalhighAndesofsouthernPeruandnorthernBoliviaarecurrentlythreatenedbyrisingtemperaturesandchangingprecipitationpatterns.Inthisstudy,weevaluatetheverticalstructure,character,andmeltinglayerheights(snowlevels)duringprecipitationeventsintheregion..AverticallypointingK-bandMicroRainRadar(MRR)inCusco,Peru(3,350masl)andLaPaz,Bolivia(3,440masl)fromAugust2014toFebruary2015andfromOctober2015tothepresent,respectively,providedcontinuous1-minprofilesofreflectivityandDopplervelocity.Verticaldatawerealsocollectedfromseveralmid-precipitationballoonlaunches,collocatedwiththeLaPazMRR.HourlyobservationsofvariousmeteorologicalvariableswerecollectedfromstationsattheCuscoInternationalAirport(3,350masl)andtheUniversidadMayordeSanAndres(3,440masl),ontheQuelccayaIcecap(5,650masl)andNevadoChacaltaya(5,540masl),andfromMurmuraniAlto(5,050masl).MRRsignaturesrevealabimodalprecipitationpattern,withafternoonconvectiveandnighttimestratiformevents.HourlymedianmeltinglayerheightsoverCusco(LaPaz)rangedfrom4,025(4,115)to5,975(5,990)maslwithanoverallmedianvalueof4,775(4,865)masl.ThemeanechotopheightinCusco(LaPaz)was6,773(7,019)masl,wellabovethealtitudeofsurroundingglaciers.Precipitationprocessesintheregionarethereforelikelytoplayanimportantroleindeterminingglacierbehavior;anincreaseinfuturemeltinglayerheightscouldfurtheraccelerateglacierrecession.

Page 34: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page34

Usingcloudbaseheighttodecreasemisclassifiedprecipitationinhydrological

models

JamesMFeiccabrino

DepartmentofWaterResourcesEngineering,LundUniversity,Sweden

Surfaceair(AT),dew-point(DP)andwet-bulb(WB)temperaturethresholdsareusedinhydrologicalmodelstodetermineifprecipitationisrainorsnow.ItispreferentialtouseATthresholdsduetothewidespreadavailabilityofthedatacomparedtoDPorWB.AT,unlikeDPandWB,doesnottakeintoaccounttheimportantsecondaryroleofhumidityinthemelting,evaporation,andsublimationprocesses.However,theheightofacloudbaseabovethegroundcouldbeusedtogivethedepthofanunsaturatedatmosphericlayerwhichhasmuchdifferentmelting,evaporation,andsublimationratesthanasaturatedcloudlayer.CloudbaseheightcouldthereforebeusedasaproxyforatmospherichumiditywhenusingATthresholds.

Usinghourlyobservationsfrom12manuallyaugmentedmeteorologicalstationsinthemid-westernUnitedStates,surfaceATthresholdsforthefollowingcloudbaseswerefound;0.0°Cforunder100m,0.6°Cfor100and200m,1.1°Cfor300and400m,1.7°Cfor500and600m,and2.2°Cfor700-1000m.ThesecloudheightATthresholdsreducedmisclassifiedprecipitationfromasingleATthreshold(1.1°C)by15%from14.0%to11.9%totalerror.CloudheightATthresholdsresultedina1.5%decreaseintotalerrorfromtheDPthreshold(0.0°C),andwaswithin0.2%oftheWBthreshold(0.6°C).ThisindicatescloudheightATthresholdsmaybeusedinplaceofWBandDPthresholdstoimprovesurfacebasedprecipitationphasecategorizationinhydrologicalmodels.

Page 35: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page35

SeeingandFeelingSnowfromSpace:AUnifiedRadiometricandGravimetric

Approach

BartonA.Forman

DepartmentofCivilandEnvironmentalEngineering,UniversityofMaryland,CollegePark

TheGravityandRecoveryClimateExperiment(GRACE)hasrevolutionizedlarge-scaleremotesensingoftheEarth’shydrologiccycle.However,GRACEisavertically-integratedmeasureofterrestrialwaterstorage(TWS)andprovidesnodirectmechanismforstatingthatagivenportionofTWSisassociatedwithsnow,orthatagivenportionofTWSisassociatedwithsoilmoisture,orthatagivenportionofTWSisassociatedwithgroundwater.ItishypothesizedherethatGRACEinformationcanbeeffectivelydownscaledintoitsconstituentcomponents(e.g.,snow,soilmoisture,groundwater)viaBayesianmergerwithanadvancedlandsurfacemodelaspartofamulti-variate,multi-sensordataassimilationframework.Thisstudyintroducesanovelapproachtomergepassivemicrowave(PMW)measurementsofbrightnesstemperature(Tb)oversnow-coveredterrainwithGRACE-basedgravimetricretrievalsofTWSacrossregionalandcontinentalscales.ThesimultaneousPMWTb+GRACETWSassimilationframeworkwillemploytheNASAGoddardEarthObservingSystemVersion5(GEOS-5)landsurfacemodelandleverageasuiteofmeasurementsfrompastandon-goingsatellitemissions.Asetofboth“synthetic”and“real”experimentshavebeendesignedtoquantifytheaddedutilitytoSWEestimationusingthemulti-sensor,multi-variateassimilationapproach.ItishypothesizedthatthisnewassimilationframeworkwillimproveestimatesofglobalSWEaswellashelpbridgethegapbetweenthetemporalandspatialresolutionsofPMWTbobservationsandGRACE-basedTWSretrievals.

Page 36: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page36

ALandsat-era(1985-2015)SierraNevada(USA)SnowReanalysisDataset

ManuelaGirotto1,StevenA.Margulis2,GonzaloCortés2,LaurieS.Huning2,DongyueLi3,MichaelDurand3

1CryosphericSciencesLaboratory,NASAGoddardSpaceFlightCenter,Greenbelt,MD2DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Los

Angeles3SchoolofEarthSciencesandByrdPolar&ClimateResearchCenter,TheOhioState

University,Columbus

Thisworkpresentsanewlydevelopedstate-of-the-artsnowwaterequivalent(SWE)reanalysisdatasetovertheSierraNevada(USA)basedontheassimilationofremotelysensedfractionalsnowcoveredareadataovertheLandsat5-8record(1985-2015).Themethod(fullyBayesian),resolution(daily,90-meter),temporalextent(31years),andaccuracyprovideauniquedatasetforinvestigatingsnowprocessestoultimatelyimprovereal-timestreamflowpredictionsofsnow-dominatedregions.ThereanalysisdatasetwasusedtocharacterizeSWEclimatologytoprovideabasicaccountingofthestoredsnowpackwaterintheSierraNevadaoverthelast31years.TheongoingCaliforniadroughtcontainsthelowestsnowpackyears(wateryears2014and2015)andthreeofthefourdriestyearsoverthereanalysisrecord.Inparticular,wateryear2015wasatrulyextreme(dry)year,withrange-widepeaksnowvolumecharacterizedbyareturnperiodofover600years.

Page 37: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page37

ComparisonofMODISandVIIRSsnow-coverproductstostudydata-productcontinuityintheCatskillMountain

watersheds,NewYork

DorothyK.Hall1,AllanFrei2,GeorgeA.Riggs3,NicoloE.Digirolamo3,JamesH.Porter4,andMiguelO.Román5

1UndercontracttoNASAGoddardSpaceFlightCenter,Greenbelt,MD2InstituteforSustainableCities,HunterCollege,CityUniversityOfNewYork,NY3SSAI,Lanham,MD4NYCEnvironmentalProtection,BureauOfWaterSupply,ReservoirOperations,

Grahmsville,NY5TerrestrialInformationSystemsLaboratory,NasaGoddardSpaceFlightCenter,

Greenbelt,MD

RunoffemanatingfromtheCatskillMountainssupplieswatertoapproximatelyninemillionpeopleinNewYorkCityandtoothermunicipalitiesinNewYorkState.TheNYCWaterSupplySystemconsistsofthreesubsystems:theCatskill,theDelaware,andtheCroton.NYCreliesheavilyonthesixbasinsoftheCatskill/Delawaresubsystems:Ashokan,Schoharie,Rondout,Neversink,CannonsvilleandPepacton.ThegoalofthisworkistoinvestigatethecontinuityoftheModerate-resolutionImagingSpectroradiometer(MODIS)andSuomi-NationalPolarPartnership(NPP)VisibleInfraredImagerRadiometerSuite(VIIRS)NASAsnow-coverproductsfordevelopmentofasnow-coverclimate-datarecord(CDR)andtostudysnowmelttiminginconcertwithmeteorologicalandstreamflowdata.WeusethetwotypesofNASAsnowmapstodevelopsnowpackbuild-upanddepletioncurvesforthesixCatskill/Delawarewatershedstoenablecomparisonofresultsofthetwoindependently-createdsnowmaps.TheseincludedailyCollection5MODISstandardsnow-coverproductsat500-mresolution,andthenewNASAVIIRSsnow-coverproductsat375-mresolutionalongwithairtemperature,precipitationandstreamflowdata.Wefocusourevaluationonsimilaritiesanddifferencesinsnow-coverdepletiontiminginthesixCatskill/Delawarewatershedsusingthetwosnow-coverproductsduringtheMODIS-VIIRSoverlapperiodfrom2011–2015,toincludethefourwateryears:2011-12,2012-13,2013-14and2014-15.

Page 38: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page38

EvaluationofAlgorithmAlternativesforBlendedSnowDepthintheIMS

SeanR.Helfrich1,CezarKongoli,LawrenceVulis3,MiltonMartinez4,ChristopherGrassotti2,andNareshDevineni3

1NOAA/NESDIS/OSPO/NIC,Suitland,MD2NOAA/NESDIS/STAR,CollegePark,MD3EnvironmentalEngineering,CityCollegeofNewYork,NewYork4UniversityofPuertoRico,Mayaguez,PR

SinceDecember2014,theInteractiveMultisensorSnowandIceMappingSystem(IMS)hasgeneratedsnowdepthestimatesovertheNorthernHemisphereata4kmresolution.Thealgorithmappliesoptimalinterpolationwithanelevationnudgingtechniquetogenerateasnowdepthoverlocationswithin800kmofthesnowobservingsite.ThisdataisfurtherblendedusingaweightingschemawithpassivemicrowavebasedestimatesfromtheAdvancedTechnologyMicrowaveSounder(ATMS)instrumentandasnowdepthelevationclimatology.Improvementsintheblendedsnowdepthweresoughttoimproveperformance.Severalmethodsweretestedtoimprovesnowdepthestimatesbyrefiningmicrowaveestimateofsnowdepth,promotingapplicationofpriordayestimates,developingregionalsnowdepth/elevationrelationships,alteringthesourceofsnowdepthin-situobservations,andadjustingtheweightingschemabasedonelevationranges.Testingofthesealgorithmenhancementsarepresentedinthispostertodemonstratethemethodologyoftheenhancementsandprovideanevaluationofalgorithmperformancecomparedtothecurrentalgorithmbaseline.

Page 39: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page39

Comparisonofhigh-elevationLiDARsnowmeasurementswithdistributedstreamflow

observations

BrianHenn1,ThomasH.Painter2,BruceMcGurk3,GregStock4,NicoletaCristea1andJessicaD.Lundquist1

1CivilandEnvironmentalEngineering,UniversityofWashington,Seattle2NASA/JPL,Pasadena,CA3McGurkHydrologic4NationalParkService,YosemiteNationalPark

High-elevationspatialandtemporaldistributionsofsnowwaterequivalent(SWE)andprecipitationaredifficulttodetectduetotherelativelysparsecoverageofexistingmeteorologicalstations.AirborneLiDARprovidesremotelysensed,high-resolutionobservationsofsnowdepththatarecapableofresolvingthesepatterns.However,thereareuncertaintiesintheestimationofSWEfromLiDARduetouncertainsnowdensity,theeffectsofforestcanopycoverageonsnowdepthestimatesanduncertainbaselinesinareaswithglaciersandpermanentsnowfields.StreamflowobservationsofferanotherperspectiveonthedistributionsofSWE,asstreamflowintegratesthebasin’ssnowmeltresponse.BycomparingdistributedstreamflowobservationsfrommultiplenestedandadjacentbasinswithLiDAR-basedSWEestimates,wecanidentifyplacesandtimeswherethesetwoestimatesofthebasins’waterbudgetsagreeordisagree.Inthisstudy,weuseLiDARobservationsfromtheNASAAirborneSnowObservatory(ASO)overtheupperTuolumneRiverbasininYosemiteNationalPark,overwateryears2013-2015.Streamflowtimeseriesfrommultiplesub-basinsareavailablefromtheYosemiteHydroclimateNetwork.Foreachsub-basinintheTuolumnedomain,wecompareASOSWEvolumesfromeachLiDARflightwithstreamflowvolumesfortheremainderofthesnowmeltseason.ThisallowsforanevaluationoftheeffectivenessofLiDARSWEestimatesinstreamflowforecasting.Wealsoconsiderhowevapotranspirationandrainfall–basinwaterbalancecomponentsthatarereflectedinstreamflowbutnotinSWEvolumes–influenceskillinsnowmelt-drivenstreamflowforecasting.

Page 40: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page40

Evaluating50yearsoftropicalPeruvianglaciervolumechangefrommulti-temporaldigitalelevationmodels(DEMs)andglacierflowandhydrologyintheCordilleraBlanca,

Peru

KyungInHuh1,BryanG.Mark2,MicheleBaraer3,YushinAhn4,ChrisHopkinson5

1DepartmentofGeographyandAnthropology,CaliforniaStatePolytechnicUniversity,Pomona

2DepartmentofGeography,TheOhioStateUniversity,Columbus3Départementdegéniedelaconstruction,Écoledetechnologiesupérieure(ÉTS),

Montréal,Québec4SchoolofTechnology,MichiganTechnologicalUniversity,Houghton5DepartmentofGeography,UniversityofLethbridge,Water&Environmental,Alberta

Althoughfarsmallerthanlargepolaricecaps,mountainglaciersaresignificantcontributorstosealevelriseandtropicalglaciersinparticulararesourcesofcriticalwaterresourcestoregionalsocieties.TheglaciersinCordilleraBlanca,Peru,haveenvironmentalandeconomicimportanceasregionalwatersuppliestocommunitiesinthearidwesternpartofthecountryundercontinuedglobalclimatechange.

WequantifyglaciervolumechangeintheCordilleraBlancabyintercomparingdigitalsurfaceelevationsderivedfromthreesourcesofremotelysensedimagedataspanningalmost50years:ASTER(AdvancedSpaceborneThermalEmissionandReflectionRadiometer,2000-08);airborneLiDAR(LightDetectionandRanging,2008);andstereoaerialphotography(1962).WecharacterizethelimitationsinherentinprocessinghistoricaerialphotographywithdifferentviewinggeometriesoverhighlyruggedterrainreliefanduncertaintiesintheprocessingstageaswellasDEMcomparisonbyanalyzingDEMovernon-glacierizedterrain.WeconfirmvolumechangesfrompreviousstudiesintheCordilleraBlancaandextendtemporalresolutionintimeseriesbyaddingthefirstacquisitionofhigh-resolutionairborneLiDARachievedin2008.

WeassessthehistoricalcontributionofglaciericevolumelosstostreamflowbasedonreconstructedvolumechangesthroughLittleIceAge(LIA)canbedirectlyrelatedtotheunderstandingofglacier-hydrologyinthecurrentepochofrapidglaciericelossthathasdisquietingimplicationsforwaterresourcesintheCordilleraBlancaofthePeruvianAndes.WecomputetherateandmagnitudeofglaciervolumechangesforYanamareyandQueshque

Page 41: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page41

glaciersbetweentheLIAandmoderndefinedby2011ASTERGlobalDigitalElevationModelVersion2(GDEMV2)fromtheCordilleraBlanca.

Page 42: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page42

Evaluationofsatellite-basedobservationsforcapturingearlywintersnowmeltwithin

mid-latitudebasins

AdamHunsaker2,CarrieM.Vuyovich1,DouglasOsborne2,JenniferM.Jacobs2

1ColdRegionsResearchandEngineeringLaboratory,Hanover,NH

2UniversityofNewHampshire,Durham,NH

Overthepastfiftyyearsglobalclimatechangehasalteredvariousenvironmentalprocesses.Duetoglobalclimatechangeearlysnowmeltisoccurringmuchmorefrequentlythroughoutmuchoftheworld(Semmens,Ramage,Bartsch,&Liston,2013).Theincreasingfrequencyoftheseeventsisarelativelynewphenomenaanditischallengingtheeffectivenessofcurrentwaterresourcemanagementandfloodforecastingbestpractices.Earlysnowmelteventsarecausedbyabriefperiodofunusuallyhighairtemperature,highhumidity,orrain-on-snow(Semmens,Ramage,Bartsch,&Liston,2013).Thisresearchfocusesonthedetectionanddistributionofrain-on-snoweventsusingremotesensingapproachestoidentifyandquantifythefrequency,extentandmagnitudeofearlymeltevents.TheanalysishighlightsseveralrecentfloodeventsoccurringinNorthAmerica.Earlymeltevents,drivenbyheavyrainfallwiththepresenceofsnow,areidentifiedfromtheDartmouthFloodObservatoryarchives.PassivemicrowavedatafromtheAMSR-EandSSMIinstrumentsarecomparedwithMODISimageryandfieldobservationstoassessthemicrowaveproducts’reliabilityincapturingtheseevents.Earlymeltdetectionalgorithmsthatusepassivemicrowaveretrievalsfornorthernlatitudeareas,primarilyCanadawereevaluatedinthecontinentalUnitedStates.Thesealgorithmsfailedtocapturemidlatitudeearlysnowmelteventsprimarilyduetoclimatologicaldifferencesbetweennorthernandmidlatitudeareas.Thisresearchdevelopedanalternative,morereliablealgorithmusingthepassivemicrowavesignaturethatreflectstheinherentcharacteristicsofmidlatituderain-on-snowevents.Thetwoalgorithmsareusedtocomparetheirrelativevaluefordetectingmidlatituderain-on-snoweventsascomparedtonorthernlatitudeeventsforseveraldifferentfrequencyandlinkingperformancetoclimatologicalsignaturesofobservedrain-on-snowevents.

Page 43: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page43

TheGCOM-W1Satellite-basedMicrowaveSnowAlgorithm(SMSA)

RichardKelly,NastaranSaberiandQinghuanLi

InterdisciplinaryCentreonClimateChangeandDepartmentofGeographyandEnvironmentManagement,UniversityofWaterloo,Waterloo,ON

TheSatellite-basedMicrowaveSnowAlgorithm(SMSA)forestimatingsnowdepth(SD)andsnowwaterequivalent(SWE)isdescribed.CalibratedforusewiththeAdvancedMicrowaveScanningRadiometer–2(AMSR2)aboardtheGlobalChangeObservationMission–Water,theSMSAstandardSDproductforAMSR2hasbeenupdatedintwoways,fromtheexistingalgorithm.First,thedetectionalgorithmscreensvariousnon-snowsurfacetargets(waterbodies[includingfreeze/thawstate],rainfall,highaltitudeplateauregions[e.g.Tibetanplateau])beforedetectingmoderateandshallowsnow.Second,theimplementationoftheDenseMediaRadiativeTransfermodel(DMRT)originallydevelopedbyTsangetal.(2000)andmorerecentlyadaptedbyPicardetal.(2011)isusedtoestimateSWEandSD.TheimplementationcombinesaparsimonioussnowgrainsizeanddensityapproachoriginallydevelopedbyKellyetal.(2003).Snowgrainsizeisestimatedfromthetrackingofestimatedairtemperaturesthatareusedtodriveanempiricalgraingrowthmodel.SnowdensityisestimatedfromtheSturmetal.(2010)scheme.Resultsarepresentedfromrecentwinterseasonssince2012toillustratetheperformanceofthenewapproachincomparisonwiththeinitialAMSR2algorithm.

Page 44: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page44

TheNASASnowExairbornesnowcampaign

EdwardKim1,CharlesGatebe1,DorothyHall1,MatthewSturm2andmanyothers

1NASAGoddardSpaceFlightCenter,Greenbelt,MD

2UniversityofAlaska,Fairbanks

NASAisplanningamulti-yearairbornesnowcampaigncalled“SnowEx,”beginningthenorthernhemispherewintersof2016-2017.TheprimarygoalofSnowExYear1isthecollectionofcoincidentobservationswithasuiteofsensortypesincludingactiveandpassiveopticalandactiveandpassivemicrowavesensors.Detailedgroundtruthwillalsobecollectedforalgorithmdevelopment.

TheobjectiveofthispresentationistoupdatethesnowcommunityonSnowExYear1plans,andtoprovideanopportunityforcommunityinputtohelpdesignthecampaigntowardtheultimategoalofdefiningfutureglobal-scalesnowsatellitemeasurementsystems.

Page 45: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page45

Spectralanalysisofairbornepassivemicrowavemeasurementsforclassification

ofalpinesnowpack

RhaeSungKimandMichaelDurand

SchoolofEarthSciencesandByrdPolar&ClimateResearchCenter,TheOhioStateUniversity,Columbus

Passivemicrowavemeasurementshavebeenwidelyusedandinvestedinordertoobtaininformationaboutsnowpackproperties.Accurateknowledgeandunderstandingthesignaturesofthisremotesensingdatafromlandsurfacesarecriticaltostudysnowdistributionoveralpinemountainousarea.However,thistaskoftenambiguousduetothelargevariabilityofphysicalconditionsandsurfaceobjecttypes.Basedontheliterature,itwashypothesizedthatsnowdepth,forestfraction,andliquidwaterwouldresultindistinctmicrowavespectra.Inthisstudy,wediscussandanalyzethespectraofmeasuredbrightnesstemperatures(Tb)andemissivitiesforthefrequencyrangeof10.7to89GHz.100mresolutionoftheMultibandpolarimetricScanningRadiometer(PSR)imagerywasusedoverNASAColdLandProcessesFieldExperiment(CLPX)studyareawithground-basedmeasurementsofsnowdepthandwetnessinformation.Atotalof900gridcells,eachonehectareinsizewereanalyzed,utilizingbothatotalof144snowpitsandatotalof900snowdepthtransects.Inaddition,twoobservationtimesinFebruary2003andMarch2003wereconsideredfornormalwintersnowpackandspringsnowmelt.VegetationinterfereswiththesignalthatwasreceivedbyPSRandtherefore,NLCD2001percenttreecanopydatasetwasusedforconsideringthevegetationinfluence.Snowclasseswithdifferentsnowdepthandwetnessconditionswerecreatedtodeterminewhethermicrowavespectrabearone-to-onecorrespondencewithsnowandlandscapepropertiestoenablesnowclassification.StatisticaltestsshowthatsnowdepthcanbedistinguishedevenwhenthepixelsarevegetatedwhenusingallPMfrequenciesinsteadofusingsingle37GHzfrequency.Inaddition,emissivityspectraandTbspectrawerequalitativelysimilar,thisenablingustoanalyzetheTbspectra.Supervisedclassificationschemewithusingderivedsnowclassesfromthisanalysiswillbeusedtoclassifyalpinesnowpackundervariousconditions.

Page 46: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page46

LargeprecipitationeventsatSNOTELsitesandstreamflowvariabilityintheUpper

ColoradoRiverBasin

JohnathanKirk

DepartmentofGeography,KentStateUniversity,Kent,OH

DecliningannualmountainsnowpackacrossthewesternUnitedStatesisplacingunprecedentedstrainsonregionalwatersupplies.Furthercomplicatingseasonalwatersupplyforecastingistheemergingprospectthatinterannualvariationinalpinesnowconditionsisgreatlyinfluencedbytheoccurrenceandmagnitudeoflargeprecipitationevents(LPEs)eachyear.TheoccurrenceofLPEscandictatewhetherayearproducesaboveorbelowaveragerunoff,underscoringtheneedformoretargetedinvestigation.

Usingobservationalprecipitationdatarecordedatasampleofsnowtelemetry(SNOTEL)monitoringstationslocatedamongsignificantrunoff-producingheadwaterregionsoftheUpperColoradoRiverBasin(UCRB)inColoradoandWyomingfrom1981-2014;thisstudydefines“largeprecipitationevents”andexaminestheirrelativeinfluenceonyearlystreamflowandreservoirinflow,asmeasuredthroughouttheUCRB.ResultsindicatethatinterannualprecipitationvariabilityattheSNOTELsitesissignificantlycorrelatedwithstreamflowvariability,asarethefrequencyandmagnitudeofLPEs.

Thisstudythenincorporatesasynopticclassificationofmid-troposphericcirculationpatternsassociatedwithLPEstoinvestigatepotentialpredictivesignals.ResultssuggestthatalatitudinalvariationexistsinthetypesofcirculationpatternswhichcoincidewithLPEsbetweenheadwaterregions,reinforcinganecdotalknowledgeofthevariablelocalresponsesattheSNOTELsitestosynoptic-scaleforcings.Suchrelationships,inadditiontotheoverallcharacteristicsofLPEsintheUCRB,maybefurtherintegratedintoactionableimprovementstowardsmoreaccurateandrepresentativeseasonalwatersupplyforecasts.

Page 47: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page47

DailysnowdepthatPalmerStation,Antarctica,2007-2014:aninitialanalysis

AndrewG.Klein

DepartmentofGeography,TexasA&MUniversity,CollegeStation

DailysnowdepthmeasurementmadeatPalmerStation,Antarctica,areavailablebeginninginDecember2006.Thestation’ssnowmeasurementboardiscurrentlylocatedjustoffaboardwalksurroundingthemainstationbuildings.BecauseitisnotpositionedasrecommendedbytheNationalWeatherServicedefiniteerrorsareevidentinthetimeseries.However,thesemeasurementsdoallowdetailedanalysisofsnowaccumulationpatternsatPalmerStationforthe2007-2014period.SnowdepthsfromJanuarytoearlytomid-Apriltoearly/midMayaretypicallylessthan10cmwithmanydaysbeingsnowfree.SnowdepthstypicallyincreaseirregularlyovertheaustralwinterreachingmaximumthicknessfromlateSeptembertothefirstweekofNovember.Considerablyvariabilityexistsinthisrelativelyshortrecordin(1)maximumsnowdepths,(2)thedateofmaximumaccumulationand(3)thefirstsnowfreedayinsummer.Maximumannualsnowdepthsvarybyafactoroftworangingfrom55to109cm.Inlowaccumulationyears(maximumdepthlessthan90cm),thedateofmaximumdepthoccursfrommid-AugusttothelastweekinSeptemberandthestationbecomessnowfreebyNovember23rd.Inhighaccumulationyears(maximumdepthinexcessof90cm),thedateofmaximumaccumulationisdelayedfromearlyOctobertoearlyNovemberandsnowpersistsintoDecember.TobetterunderstandtheclimaticcontrolsonsnowdepthatPalmerStation,thissnowaccumulationrecordwillbeanalyzedinrelationtoothermeteorologicalvariableswhicharerecordedatPalmerStationat2minuteintervals.ThistimeserieswillalsobecomparedtosnowobservationsmadeatotherscientificstationsalongtheWesternAntarcticPeninsula.TheworkisthefirststepinbetterunderstandingpatternsandpersistenceofsnowcovernearPalmerStationanditspossibleinfluencesonthespatialdistributionoflocalflora.

Page 48: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page48

Canassimilationofmicrowaveradiancedataimprovecontinental-scalesnowwater

storageestimates?

YonghwanKwon1,Zong-LiangYang1,LongZhao1,TimothyJ.Hoar2,AllyM.Toure3,andMatthewRodell3

1DepartmentofGeologicalSciences,JacksonSchoolofGeosciences,TheUniversityof

TexasatAustin2NationalCenterforAtmosphericResearch,Boulder,CO3HydrologicalScienceslaboratory,NASAGoddardSpaceFlightCenter,Greenbelt,MD

Understandingspatialandtemporalvariationsinsnowpackiscrucialforclimatestudiesandwaterresourcemanagement.Towardsthisgoal,theclimateandhydrologicalresearchcommunitieshavebeenworkingtogethertoimprovelarge-scalesnowestimates.Thisstudyaimstoaddressthefeasibilityofusingmicrowaveradianceassimilation(RA)methodstoestimatecontinental-scalesnowwaterstorage.TheRAsystemusedinthisstudyiscomprisedoftheCommunityLandModelversion4(CLM4)(forsnowenergyandmassbalancemodeling),radiativetransfermodels(RTMs)(forbrightnesstemperature(TB)estimates),andtheDataAssimilationResearchTestbed(DART)(forensemble-baseddataassimilation).TwosnowpackRTMs,theMicrowaveEmissionModelforLayeredSnowpacks(MEMLS)andtheDenseMediaRadiativeTransfer–MultiLayersmodel(DMRT-ML),areusedtosimulatethesnowpackTB.Itishypothesizedthatthecontinental-scaleRAperformanceinestimatingsnowwaterstoragecanbeimprovedbysimultaneouslyupdatingallmodelphysicalstatesandparametersdeterminingTBusingarule-basedapproach,inwhichpriorestimatesareupdateddependingontheircorrelationswithapriorTB.ThishypothesishasbeentestedthroughanalysisofresultsfromaseriesofRAexperiments.OurresultsalsoshowthattheperformanceoftheRAsystemcanbeimprovedfurther,especiallyforvegetatedareas,byassimilatingthebest-performingfrequencychannels(i.e.,18.7and23.8GHz)andbyconsideringthevegetationsinglescatteringalbedotorepresentthevegetationeffectonTBatthetopoftheatmosphere.

Page 49: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page49

Rain-on-snowandicelayerformationdetectionusingpassivemicrowaveradiometry:Anarcticperspective

A.Langlois1,2,B.Montpetit1,C.Dolant1,2,L.Brucker3,F.Ouellet1,2,C.A.Johnson4,A.Richards5,A.Roy1,2,andA.Royer1,2

1Centred’ApplicationsetdeRecherchesenTélédétection(CARTEL),UniversitédeSherbrooke,Quebec

2Centred’étudenordiques,Quebec3NASAGoddardSpaceFlightCenter,CryosphericSciencesLaboratory,Greenbelt,MD4CanadianWildlifeService,EnvironmentCanada,Ottawa,ON5ClimateResearchDivision,EnvironmentCanada,Toronto,ON

WiththecurrentchangesobservedintheArctic,anincreaseinoccurrenceofrain-on-snow(ROS)eventshasbeenreportedintheArctic(land)overthepastfewdecades.Severalstudieshaveestablishedthatstronglinkagesbetweensurfacetemperaturesandpassivemicrowavesdoexist,butthecontributionofsnowpropertiesunderwinterextremeeventssuchasrain-on-snowevents(ROS)andassociatedicelayerformationneedtobebetterunderstoodthatbothhaveasignificantimpactonecosystemprocesses.Inparticular,icelayerformationisknowntoaffectthesurvivalofungulatesbyblockingtheiraccesstofood.Giventhecurrentpronouncedwarminginnorthernregions,morefrequentROScanbeexpected.However,oneofthemainchallengesinthestudyofROSinnorthernregionsisthelackofmeteorologicalinformationandin-situmeasurements.TheretrievalofROSoccurrenceintheArcticusingsatelliteremotesensingtoolsthusrepresentsthemostviableapproach.

Here,wepresenthereresultsfrom1)ROSoccurrenceformationinthePearycaribouhabitatusinganempiricallydevelopedROSalgorithmbyourgroupbasedonthegradientratio,2)icelayerformationacrossthesameareausingasemi-empiricaldetectionapproachbasedonthepolarizationratiospanningbetween1978and2013.Adetectionthresholdwasadjustedgiventheplatformused(SMMR,SSM/IandAMSR-E),andinitialresultssuggesthigh-occurrenceyearsas:1981-1982,1992-1993;1994-1995;1999-2000;2001-2002;2002-2003;2003-2004;2006-2007;2007-2008.AtrendinoccurrenceforBanksIslandandNWVictoriaIslandandlinkagestocariboupopulationispresented.

Page 50: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page50

EstimatingsnowwaterequivalentinamountainousSierraNevadawatershed

withspaceborneradiancedataassimilation

DongyueLi1,MichaelDurand1,StevenA.Margulis2

1SchoolofEarthSciencesandByrdPolar&ClimateResearchCenter,TheOhioState

University,Columbus2DepartmentofCivilandEnvironmentalEngineering,UniversityofCaliforniaLos

Angeles

GiventhecriticalroleoftheSierraNevadamountainsnowinthewatersupplyandtheecologicalsysteminthewesternU.S.,beingabletoimprovetheestimateofsnowwaterequivalent(SWE)intheSierraNevadahassocietalandnaturalmerit.Inthisstudy,wedemonstratetheaccurateretrievalofSWEfromspacebornepassivemicrowavemeasurementsforthesparselyforestedUpperKernwatershed(511km2)inthesouthernSierraNevada.ThisisaccomplishedbyassimilatingAMSR-E36.5GHzmeasurementsintomodelpredictionsofSWEat90-mspatialresolutionusingtheEnsembleBatchSmoother(EnBS)dataassimilationframework.Foreachwateryear(WY)from2003to2008,SWEwasestimatedfortheaccumulationseason,fromOctober1sttoApril1standvalidatedagainstsnowcoursesandsnowpillows.Onaverage,theEnBSaccumulationseasonSWERMSEwas77.4mm,despiteaveragepeakSWEof~556mm;thepriormodelestimatewithoutassimilationhadanaccumulationseasonaverageRMSEof119.7mm.Afterassimilation,theoverallbiasoftheaccumulationseasonSWEestimateswasreducedby84.2%,andtheirRMSEreducedby35.4%.TheassimilationalsoreducedthebiasandtheRMSEoftheApril1stSWEestimatesby80.9%and45.4%,respectively.Sensitivityexperimentsindicatedoptimalresultswhentherawobservationsareassimilated,ratherthanfirstaveragingoverthewatershed.Thismethodisexpectedtoworkwellabovetreeline,andfordrysnow.

Page 51: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page51

HowmuchwesternUnitedStatesstreamfloworiginatesassnow?

DongyueLi1,MelissaWrzesien1,MichaelDurand1,JenniferAdam2,DennisLettenmaier3

1SchoolofEarthSciencesandByrdPolar&ClimateResearchCenter,TheOhioState

University2DepartmentofCivilandEnvironmentalEngineering,WashingtonStateUniversity3DepartmentofGeography,UniversityofCalifornia,LosAngeles

SnowisavitalcomponentofthewatersupplyinthewesternUnitedState.Quantifyingthefractionofstreamflowthatoriginatesassnowiscriticalforassessingtheavailabilityandvulnerabilityofwaterresources,particularlyinachangingclimate.Althoughmanyestimatesofthisfundamentalquantityhavebeensuggested,noneofthem(toourknowledge)hasbeenbaseduponasystematicstudy.Here,weexaminetheratioofthesnow-derivedstreamflowtothetotalstreamflowoverthewesternUnitedStatesfortheperiodof1950to2100.Byusinganewmethodfortracingsnowmeltfatewithinamacroscalehydrologicalmodel,weshowthatsnowaccountsfor53%ofthetotalstreamflowinthewesternUnitedStates,despiteonly37%ofthetotalprecipitationbeingsnowfall.Inthemountainrangesofthewest,71%ofthestreamflowcomesfromsnow,andthesnowmeltcharges66%ofthemajorreservoirsinthewesternUnitedStates;suchreservoirstorageiscriticaltomeetthepeakwaterdemandsinthesummerandfall.Further,wedemonstratethatthecontributionofsnowmelttostreamflowwilllikelydecreaseinawarmerclimate,especiallyintheCascadesandtheSierraNevadawheretheratiocoulddeclineby33%by2100incomparisonwiththehistoricalrecord.

Page 52: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page52

Terrestriallaserscanningobservationsoftreecanopyinterceptedsnow

QinghuanLi,RichardKelly

DepartmentofGeographyandEnvironmentalManagement,UniversityofWaterloo,ON

Thedistributionofsnowinforestcanopiesisimportantforboththewatermassandenergybudgetsofforestedenvironments.Snowaccumulationinforestcanopiescanbesignificantforthetreewaterdemandwhilstcanopysnowcanalsoactasabuffertotheunderstorywiththrough-fallduringthewinterseasonoccurringsporadically.Moreover,significantamountsofwaterequivalentcanalsobelostthroughsublimationfromthecanopysnow.

Understandingcanopysnowdynamicsisimportantforunderstandingforesthydrologybutalsoforunderstandingtheremotesensingresponseofforestcanopies,especiallyatmicrowavewavelengthswhicharesensitivetoforestcanopyvolumescatteringprocesses.Theoverallgoalofthestudywastoestimatethesnowvolumeinterceptedinaconiferouscanopyusingaterrestriallaserscanner(TLS).ThestudywasperformedontwoconiferoustreesinsouthernOntarioontheUniversityofWaterloocampus.Thelaserscanner,aLeicaMS50multi-station,wasusedtoscanthetreewhensnowwaspresentandthenwhensnowwasremoved.Snowpropertiesinthecanopyandonthegroundwereevaluatedusingtraditionalmeasurementsofgrainsizeandbulkproperties.ThepaperdemonstratestheutilityofhighresolutionTLSandshowshowthesimplicityoftime-differencingTLSmeasurementapproachesarecomplicatedbytheneedtoaccountforthemechanicsofsnowloadingandunloadingwhichareafunctionofthetreebiophysicalproperties(e.g.elasticity).

Page 53: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page53

DevelopmentofUniversalRelationshipsbetweenSnowDepth,SnowCoveredAreaandTerrainRoughnessfromNASAAirborne

SnowObservatorydata

NoahMolotchandDominikSchneider

DepartmentofGeography,INSTAAR,andCWEST,UniversityofColoradoBoulder

SnowmeltistheprimarywatersourceintheWesternUnitedStatesandmountainousregionsglobally.Forecastsofstreamflowandwatersupplyrelyheavilyonsnowmeasurementsfromsparseobservationnetworksthatmaynotprovideadequateinformationduringabnormalclimaticconditions.UsingobservationsLiDARandHyperspectralobservationsfromtheNASAAirborneSnowObservatory,wehavedevelopedtransferablefunctionalrelationshipsbetweenterrainroughness,snowcoveredarea,andsnowdepth.Weshowthattherelationshipbetweensnowcoveredareaandsnowdepthvariessystematicallyasafunctionofterrainroughness.Regressionanalysesthatusefractionalsnowcoveredastheindependentvariabletoestimatesnowdepthresultinrelativemeansquarederrorsbetween39%and58%ofmeasuredsnowdepthfordifferentroughnessclassifications.Futureworkwilllookatthechangesintherelationshipbetweensnowdepthandsnowcoveredareathroughtheablationseasontodeterminetherelationship’sutilitytowatersupplyforecasting.Theimportanceofthisworkisillustratedthroughexamplesthatestimatesnowdepthforselectalpineregions.

Page 54: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page54

ElevationAngularDependenceofWidebandAutocorrelationRadiometric

(WiBAR)RemoteSensingofDrySnowpackandLakeIcepack

SeyedmohammadMousavi1,RogerDeRoo2,KamalSarabandi1,andAnthonyW.England3

1ElectricalEngineeringandComputerScienceDepartment,UniversityofMichigan,AnnArbor

2ClimateandSpaceSciencesandEngineeringDepartment,UniversityofMichigan,AnnArbor

3CollegeofEngineeringandComputerScience,UniversityofMichigan,Dearborn

Inmostremotesensingapplications,thegrossparameterofthetarget,suchassnowdepthandsnowwaterequivalent(SWE),areoftentheparametersofinterest.Anovelandrecentlydevelopedmicrowaveradiometrictechnique,knownaswidebandautocorrelationradiometry(WiBAR),offersadeterministicmethodtoremotelysensethemicrowavepropagationtimeofmulti-pathmicrowaveemissionoflowlossterraincoversandotherlayeredsurfacessuchasdrysnowpackandfreshwaterlakeicepack.Themicrowavepropagationtimethroughthepackyieldsameasureofitsverticalextent;thus,thistechniqueisadirectmeasurementofdepth.Thistechniqueisinherentlylow-powersincethereisnotransmitterasopposedtoactiveremotesensingtechniques.Italsoworksatanglesawayfromnadir.

Wehaveconfirmedtheexpectedsimpledependenceofthemicrowavepropagationtimeontheelevationanglewithground-basedWiBARmeasurementsoftheicepackonDouglasLakeinMichiganinearlyMarch2016.TheobservationsaredoneintheX-bandfortheicepack.Atthesefrequencies,thevolumeandsurfacescatteringaresmallinthepack.ThesystemdesignparametersandphysicsofoperationoftheWiBARisdiscussedanditisshownthatthemicrowavepropagationtimecanbereadilymeasuredfordrysnowpackandlakeicepackforobservationanglesawayfromnadirtoatleast70◦.

Page 55: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page55

FormulationofaBayesianSWEretrievalalgorithmusingX-andKu-measurements

JinmeiPan,MichaelDurand

SchoolofEarthScienceandByrdPolar&ClimateResearchCenter,TheOhioStateUniversity,Columbus

Whenthesnowradarwasappliedforthesnowwaterequivalentretrieval,anadvancedalgorithmisrequiredtoseparatetheinfluenceoftheunderlyingsoil,andtakingthepenetrationdepthandthestratigraphyofthenaturalsnowpitintoconsideration.Inthisstudy,theBayesian-basedMarkovChainMonteCarlomethodisappliedtoestimateSWEbasedonactivebackscatteringcoefficientmeasurementsatX-andKu-bandsfortaigasnowpitsatSodankyla(Lemmentyinenetal.,2013).ThisalgorithmsamplestheSWEaswellasthesnowandsoilpropertiesthatcanreproducetheradarmeasurementsfromasetofglobally-availablepriordistributionsoftheseparameters.TheactiveMicrowaveEmissionModelofLayeredSnowpacks(MEMLS)convertedfromthepassiveMEMLSisusedastheobservationmodel.Thismodelseparatedtheequivalentreflectivity(1-emissivitiy)atthesnowsurfaceintoaspecularscatteringpartandadiffusescatteringpart,andlatersemi-empiricallyconvertedthemintothecorrespondingcontributionstothebackscatteringcoefficient.Therefore,thecomputationcostofactiveMEMLSissimilartopassiveMEMLS,andthusissuitablefortheMCMCapplication.BasedonpreviousMCMCretrievalstudiesusingpassivebrightnesstemperature(TB)asobservations,atthistime,theobservationmodelwillberevisedasactiveMEMLSforSWEestimation,andtheretrievalsystemwillbeformulated.BesidestheparametersalreadyincludedinpassiveMEMLS,theactiveMEMLSintroducedthreeempiricalparameters,whicharethecoefficienttosplitthecross-andlike-pol.backscatteringcoefficients,theratioofthespecularpartintheroughsoilreflectivity,andtheroughnessoftheair-snowinterface.HowtheseadditionalparameterswillinfluencetheMCMCretrievalperformancewillbestudied.

Page 56: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page56

In-situLightEmittingDiodeDetectionandRangingfortheMappingofSnowSurface

TopographyandDepth

N.ReedParsons,ChristopherHopkinson

DepartmentofGeography,UniversityofLethbridge,AB

TheWestCastlecatchmentstudysite,amountainoussub-basinoftheOldmanRiverBasin,isavitalhydrologicalresourceaswellasanequallyecologicallyandgeomorphologicallydiverseregioninsouthwestAlberta.TheARTeMiSResearchTeamhaveinstalledthreemeteorologicalstationsatthreeelevations:valley(1415mASL);treeline(1850mASL);andalpineridge(2130mASL)withintheboundariesoftheWestCastleMountainSkiResort.Currentacceptedmethodsofin-situsnowdepthmonitoring,suchasultrasonicrangedetectionsensors,areonlycapableofmeasuringanaverageaccumulationoverasmallfootprintleavingsnowsurfaceprofilemappingtobeconductedmanually.Furthermore,inareasinwhichtheprimarysnowtransportationprocessisaeolian,thedepositionalanderosionalfeaturesarenotaccuratelyestimated.Thus,underthecurrentlyacceptedin-situsnowdepthmeasurementregime,theresultsareoftenoverorunderestimated.LeveragingtheMeteorologicaltowerinfrastructure,aconventionalSR50Asonicrangingdepthsenorisco-locatedwithaLightEmittingDiodeDetectionandRanging(LEDDAR)solutionprovidedbyCanadiantechstart-up,LeddarTech.InthisstudywemapsnowaccumulationandsnowsurfacetopographyusingLEDDAR,andcomparetheaccuracy,precision,andsusceptibilitytoextremealpineconditionstothatoftheSR50A.

Page 57: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page57

MeltontheMargins:CalibratedEnhanced-ResolutionBrightnessTemperaturesto

MapMeltOnsetNearGlacierMarginsandTransitionZones

JoanRamage,1MaryJ.Brodzik2andMollyHardman2

1EarthandEnvironmentalSciencesDepartment,LehighUniversity,Bethlehem,PA2UniversityofColorado/NSIDC/CIRES,Boulder

Passivemicrowave(PM)observationsfromSpecialSensorMicrowaveImager/Sounder(SSMIandSSMIS),andAdvancedMicrowaveScanningRadiometerforEOS(AMSR-E)at18-19GHzand36-37GHzchannelshavebeenimportantsourcesofinformationaboutsnowmeltstatusinglacialenvironments,particularlyathigherlatitudes.PMdataaresensitivetothechangesinnear-surfaceliquidwaterthataccompanymeltonset,meltintensification,andrefreezing.Overpassesarefrequentenoughthatinmostareasmultiple(2-8)observationsperdayarepossible,yieldingthepotentialfordeterminingthedynamicstateofthesnowpackduringtransitionseasons.Limitationstothisapproachincludeglacier-marginalzoneswherepixelsmaybeonlyfractionallysnow/icecovered,andareaswheretheglacierisnearlargebodiesofwater:evensmallregionsofopenwaterinapixelseverelyimpactthemicrowavesignal.Weusetheenhanced-resolutionprototypeCalibratedPassiveMicrowaveDailyEASE-Grid2.0BrightnessTemperatureEarthSystemDataRecord(CETB)producttoevaluatemeltcharacteristicsalongglaciermarginsandmeltzoneboundariesduringthemeltseasonsin2003-2004fortheAlaskanCoastRangeandAkademiiNaukIceCap,SevernayaZemlya,locationswherelegacymethodsweresuccessfulthatspanawiderangeofmeltscenarios.Sitesincludepixelsthatwerepreviouslyexcludedduetomixedpixeleffects.Weanticipatethatimprovementfromtheoriginal25km-scaleEASE-Gridpixelstotheenhancedresolutionof6.25kmwilldramaticallyimprovetheabilitytoevaluatemelttimingacrossgradientsinglaciermarginsandtransitionzonesinglacialenvironments.

Page 58: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page58

StatusoftheMODISC6SnowCoverandNASASuomi-NPPVIIRSSnowCoverData

Products

GeorgeA.Riggs1,DorothyK.Hall2andMiguelO.Román2

1SSai,Lanham,MD2NASAGoddardSpaceFlightCenter,Greenbelt,MD

Anupdatedsynopsisofthesoon-to-be-releasedNASASuomi-NPP(S-NPP)VisibleInfraredImagerRadiometerSuite(VIIRS)snowcoverdataproductsproducedintheLandScienceInvestigator-ledProcessingSystem(LSIPS)andtherecentlyreleasedMODISCollection6(C6)dataproductsispresented.TheVIIRSsnowcoveralgorithmanddataproductcontentarethesameaspresentedatthe72ndESChoweverthedataproductformathaschangedtoHDF5andNetCDFClimateForecast(CF)conventionshavebeenadoptedfortheattributes.ForwardprocessingandreprocessingoftheMODISC6dataproductsbeganinApril2016andproductshavebeenreleased.NotablerevisionsmadeintheMODISC6snowcoveralgorithmarethechangetonormalizeddifferencesnowindex(NDSI)outputsreplacingthethematicandthefractionalsnowcovermaps,changesindatascreenstoreducesnowcommissionerrorsandoutputofaqualityassessmentarrayofbitflagsreportingdatascreenresults.UsersthushaveincreaseddataandinformationcontentascomparedtoMODISC5products.

Page 59: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page59

50YearsofSatelliteSnowCoverExtent

MappingOverNorthernHemisphereLands

DavidA.Robinson

GlobalSnowLab,DepartmentofGeography,RutgersUniversity

Thisfallmarksahalf-centuryofcontinuoussatellitemappingofsnowcoverextent(SCE)overNorthernHemispherelands.NOAAhasproducedtheprimarydatasetthroughoutthistime,recentlyincooperationwiththeUSNavyandCoastGuardattheNationalIceCenter.Throughoutthe50years,trainedanalystshaveprimarilyemployedvisiblesatelliteimageryandinteractivemeansofmappingtheSCEonaweekly(1966-1999)anddaily(1999-present)basis.Thedatasethasbeencarefullyevaluatedovertheyearstoensurethebestpossiblecontinuityinwhathasemergedasaprimarysatelliteclimatedatarecord(CDR).Infact,thisCDRisthelongest,continuoussatellite-derivedenvironmentalrecordinexistence.Thispresentationwilldiscussthehistoryofthemappingprogram,trendsandvariabilityinSCEoverthedecadesgleanedfromthemaps,andtheutilizationofthisCDRinnumerousclimatestudies.SpecialattentionwillbepaidtoeasternNorthAmerica.Thiswillincludethefirstpresentationofashort-termclimatology(1999-present)basedonthe24kmresolutionInteractiveMultisensorSnowandIceMappingSystemproduct.Acomparisonofthisproductoverthecoarserspatialresolutiononethatextendsbackto1966willbeincludedinthediscussion.

Page 60: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page60

Comparisonofthreemicrowaveradiativetransfermodelsforsimulatingsnow

brightnesstemperature

AlainRoyer1,2,AlexandreRoy1,2,BenoitMontpetit1,OlivierSt-Jean-Rondeau1,2,GhislainPicard4,LudovicBrucker5andAlexandreLanglois1,2

1CARTEL,UniversitédeSherbrooke,Québec2Centred'ÉtudesNordiques,Québec3LGGE,CNRS-UJF,Grenoble,France4NASAGSFC,Greenbelt,MD

Thispresentationcomparesthreemicrowaveradiativetransfermodelscommonlyusedforsnowbrightnesstemperature(TB)simulations,namely:DMRT-ML,MEMLSandHUTn-layersmodels.Usingthesamenewcomprehensivesetsofground-basedmeasureddetailedsnowpackphysicalproperties,wecomparedsimulationsofTBsat11,19and37GHzfromthese3modelsbasedondifferentelectromagneticapproachesusingthreedifferentsnowgrainmetrics,i.e.respectivelymeasuredspecificsurfacearea(SSA),calculatedcorrelationlengthusingtheDebyrelationshipandmeasuredmaximumdiameterextent.Comparisonwithsurface-basedradiometricmeasurementsfordifferenttypesofsnow(insouthernQuébec,andinsubarcticandarcticareas)showssimilaraveragedrootmeansquareerrorsintherangeof10KorlessbetweenmeasuredandsimulatedTBswhensimulationsareoptimizedusingscalingfactorsappliedonthesemetrics.Thismeansthat,inpractice,thedifferentapproachesofthesemodels(physicaltoempirical)convergetosimilarresultswhendrivenbyappropriatescaledin-situmeasurements.Wediscussedtheresultsrelativelytotheuncertaintiesinsnowmicrostructuremeasurements.Inparticular,weshowthatthescalingfactortobeappliedontheSSAmeasurementsinordertominimisedtheDMRT-MLsimulatedTBscomparedtomeasuredTBsisnotduetouncertaintyinSSAdata.

Page 61: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page61

SnowPropertiesRetrievalusingDMRT-MLinaStatisticalFrameworkUsingPassiveMicrowaveAirborneObservations

NastaranSaberiandRichardKelly

InterdisciplinaryCentreonClimateChange,andDepartmentofGeographyandEnvironmentalManagement,UniversityofWaterloo,Waterloo,ON

Forwardradiativetransfermodelstoestimatethepassivemicrowavebrightnesstemperaturefrommulti-layeredsnowareincreasinginmaturity.Thechallengenowisintheretrievalsbecauseaninversemodelingapproachshouldbeemployed.Inverseapproachesincludestatisticalmethodsandtechniquesbasedonmachinelearningoptimization,whereacostfunction(afunctionofdifferencebetweenobservedandmodeleddata)isminimizedusinglinearornon-linearoptimizationapproaches.InthisstudyusingtheDenseMediaRadiativeTransfer-MultiLayered(DMRT-ML)model,amodel-basedinversionalgorithmisusedtoretrievesnowdepthwithpassivemicrowaveobservationsfromairborneradiometermeasurementsalignedwithground-basedsnow-surveysintheArcticEurekaregionduringApril2011.Theacknowledgedchallengeinpassivemicrowaveinversion,thatofdealingwithunderdeterminedsetofequations,isaddressedbyexploringtheparameterizationofphysicalquantitiesrequiredtoconstraintinputvariablessuchasgrainsize,density,physicaltemperatureandstratigraphyalsoknownasaprioriinformation.Basedonknownemissionsensitivity(capturedbythemodels),grainsizeasanunknownquantityisoftenusedinthecostfunctionminimizingprocesswhilesnowdepth,thevariabletobeestimated,maybeknownatsomeplacesfrominsitumeasurementsandcanbeusedinthecostfunctionapproach,perhapsthroughamaximumlikelihoodsolutiontothesimulation.ThisgeneralretrievalapproachisusedintheGlobsnowapproachthatemploysemissionmodelofHelsinkiUniversityofTechnology(HUT)whichisitselfbasedonPulliainen’s(2011)method.

IncontrastwithGlobsnow,thisexperimentalstudyemploysmoredetailedcharacteristicsofthesnowpackfromin-situmeasurementsandunlikeGlobsnow,whereabackgroundsnowdepthmapisassimilatedintotheretrievalprocesstomitigateerrors,arangeofacceptablesnowdepthvaluesareconsidered.Insitusnowdepthmeasurementsareusedtoprovideinsightintotheplausibilityofthesnowdepthsused.Moreover,grainsizeisestimatedasanopticalsizeofgrains(asrequiredbytheDMRT-ML).Surfacephysicaltemperatureestimatedfromairborneobservationsisusedasatuningparametertoupdatetheacceptablerangeforretrievedsnowdepth.Theapproachprovidesinsightintothefeasibilityandapplicabilityofthe

Page 62: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page62

proposedmethodologygloballyforspaceborneretrievalssinceitisafairlyfaststatistics-basedframeworkthatleveragesaphysicsbasedmodelsnowradiativetransfermodelinaparsimoniousmanner.

Page 63: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page63

Parameterizationofsnowmicrostructureforpassivemicrowaveradiometry

OlivierSaint-Jean-Rondeau1,2,AlainRoyer1,2,AlexandreRoy1,2,AlexandreLanglois1,2,Jean-BenoîtMadore1,2

1CARTEL,UniversitédeSherbrooke,Sherbrooke,Québec2Centred'ÉtudesNordiques,Québec,Canada

Passivemicrowave(PMW)remotesensinghasprovedtobethemostpracticalapproachincharacterizingtheseasonalsnowpackofremotenorthernregionsatthesynopticscale.Thisisattributedtotheavailabilityofadailysurfacecoveragesince1978andthesensitivityofPMWtothedielectricpropertiesofsnow.Thepolarizedthermalmicrowaveradiationemittedbythegroundistransmitted,absorbedandscattered,becomingsensitivetotheverticalprofileofsnowmicrostructure.Radiativetransfermodelsareusedtocalculatethebrightnesstemperatureasafunctionofmicrostructuralproperties:snowdensity,grainsize,and3-Dgrainstructure.

However,microstructureisdifficulttodescribewithaquantifiablemetric;itcanbeassesseddirectlyorindirectlybyvariousmethodsandinstruments,whichprovidecomplementaryinformation.Thesemethodsincludesnowdensitycuttermeasurement,infraredreflectometryforspecificsurfacearea(SSA)retrieval,micropenetrometry(SMP),thermalconductivity,andvisualgrainsizeandclassification.

Thisstudyaimstoassessthevalueofeachofthesemeasurementsasproxiesformicrostructuralparametersinaphysically-basedmodel,namelytheDenseMediaRadiativeTransfer–Multi-Layer(DMRT-ML).Forthispurpose,measurementcampaignswereconductedduringthewintersof2015and2016inSouthernandNorthernQuébec.In-situmeasurementsarecomparedtoDMRT-MLbrightnesstemperaturesusingeitherinfraredreflectometryorSMPderivedSSAassnowgrainmetric,aswellasvariousdensityandstratificationmetrics.Furthermore,anexperimentrelatingtheabsorptionanddiffusioncoefficientsofsampledhomogeneouslayersofsnowtomicrostructuralpropertieswasrealised.

Page 64: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page64

Energybalanceandmeltoverapatchysnowcover

SebastianSchlögl1,2,RebeccaMott1andMichaelLehning1,2

1WSLInstituteforsnowandavalancheresearchSLF,Davos,Switzerland2SchoolofArchitecture,CivilandEnvironmentalEngineering,ÉcolePolytechnique

FédéraledeLausanne,Lausanne,Switzerland

Apatchysnowcoversignificantlyaltersthesnowsurfaceenergyexchangeandthereforesnowmeltespeciallydueto(i)horizontaladvectionofwarmairfromthebaregroundtothesnowpatchand(ii)thedevelopmentofstrongstabilityclosetotheground,whichareopposingeffects.Assnowandhydrologicalmodelsaretypicallylimitedtosimulatingpointwiseverticalexchangebetweenthegroundandtheatmosphereanddonotincludelateraltransport,meltingratesaresufficientlyrepresentedexclusivelyforhomogeneoussnowcovers.Forapatchysnowcover,modelledmeltingratesofsnowpatchesareunderestimatedattheupwindedge.Inthisstudyweassesstherelativecontributionoftheadvectiveheatfluxtothetotalsurfaceenergybalanceandthereforesnowmeltusing(i)high-resolutionmeasurementsofsnowdepthchangesobtainedfromTerrestrialLaserScanning,(ii)theatmosphericmodelAdvancedRegionalPredictionSystemARPSand(iii)thedistributedandphysics-basedsnowmodelAlpine3D.WeforceAlpine3Dwithairtemperatureandwindvelocityfieldscalculatedfromthenon-hydrostaticatmosphericmodelARPS.

Analysisofmeasuredmeltrateshaveshowna5%increaseinsnowmeltingduetotheeffectoftheadvectiveheatfluxforatypicalspringsnowdistribution.WenumericallyinvestigatetheeffectofatmosphericflowfielddynamicsoverapatchysnowcoveronthetotalsurfaceenergybalancebyforcingAlpine3Dwithfullyresolvedmeteorologicalfields(airtemperatureandwindvelocity)obtainedfromARPSclosetothesurface.Asareferenceandforcomparison,themodelisforcedwithairtemperatureandwindvelocityfieldsabovetheblendingheight.Wepresentquantitativeexperimentalandnumericalresultsthatshowhowthesnowmeltratechangeswithsnowcoverfraction(SCF)andthemeanperimeterofthesnowpatchesandincreaseswithdecreasingSCFanddecreasingperimeter.

Page 65: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page65

Howdostabilitycorrectionsperformoversnow?

SebastianSchlögl1,2,RebeccaMott1andMichaelLehning1,2

1WSLInstituteforsnowandavalancheresearchSLF,Davos,Switzerland2SchoolofArchitecture,CivilandEnvironmentalEngineering,ÉcolePolytechnique

FédéraledeLausanne,Lausanne,Switzerland

Modellingturbulentheatfluxesoversnowisachallengingissue.Onespecificcomplicationisthatstabilitycorrectionsaretypicallydeterminedovernon-snowsurfacesbutoftenappliedoversnow.Thisstudyfocusesonsensibleheatfluxparametrizationsinstableconditionsbytestingfivewell-establishedanddevelopingtwonewstabilitycorrectionfunctionsfortwoalpineandtwopolartestsites.

Theperformancetestofdifferentstabilitycorrectionsrevealsanoverestimationoftheturbulentsensibleheatfluxforhighwindvelocitiesandagenerallypoorperformanceofallinvestigatedfunctionsforlargetemperaturegradients.Thestabilityparametrizationsproduceanerrorbetween7and12Wm-2onaverage.ThesmallesterrorofpublishedstabilitycorrectionsisfoundfortheHoltslagscheme,whichisrecommendedforverystableconditions.Thenewlydevelopedunivariateparametrization(classicallydependentonthestabilityparameter)hasitsstrengthforatmosphericconditionsnearneutralandformoderatewindvelocities(2-5m/s).Ournewlydevelopedbivariateparametrizationbasedonasimplelinearcombinationofbuoyancyandsheartermswasfoundbetoaviablealternativeespeciallyinregionswithlargewindvelocities.Thebivariateparametrizationalsoavoidsknowndifficultiesforlargevaluesofζ.

Page 66: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page66

2ndEuropeanSnowScienceWinterSchool

Schneebeli,M.1,Lemmetyinen,J.21WSLInstituteforSnowandAvalancheResearchSLF,Switzerland2FinnishMeteorologicalInstituteFMI,Finland

ThecryosphereformsanintegralpartoftheEarth.Theseasonalsnowcoverextendsto49%ofthetotallandsurfaceinmidwinterinthenorthernhemisphere.Monitoringofseasonalsnowcoverpropertiesisthereforeessentialinunderstandinginteractionsandfeedbackmechanismsrelatedtothecryosphere,butalsotoecosystems.However,asacomplexandhighlyvariablemedium,manyessentialpropertiesofseasonalsnowcoverhavetraditionallybeendifficulttomeasure.Thepast10yearssnowsciencehasseenarapidchangefromasemi-quantitativetoaquantitativescience;especiallythenewmethodsallowimprovedquantificationofthesnowmicrostructure.Understandingphysicalandchemicalprocessesinthesnowpackrequiresdetailedmeasurementsofthemicrostructure.TheSnowGrainSizeIntercomparisonWorkshop2014recentlysolidifiedtheprogressinquantitativemeasurements.

The2ndEuropeanSnowScienceWinterSchoolinPreda,Switzerland,inFebruary2016aimedatteachinggraduatestudentsinmodernsnowmeasurementtechniques.Inadditiontothelectures,differentmeasuringinstrumentswereavailableforthestudentstogethands-onexperienceinthefield.Thelistofinstrumentswaslong,rangingfromhandlensesandcrystalplatesfortraditionalsnowpitsuptohigh-resolutionlasersandpenetrometers.Fieldmeasurementsoccurredinsmallgroupsandareportisprepareddescribingthemethods,resultsandinterpretation.

Thesestate-of-the-artsnowmeasurementtechniqueswillbetaughtinfutureinanannualsnowschoolheldinvariousplacesinEurope.The2017willoccurinSodankyla,Finland.

Page 67: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page67

Singleandmulti-sensorsnowwetnessmappingbySentinel-1andMODISdata

RuneSolberg1,ØysteinRudjord1,ØivindDueTrier1,GheorgheStancalie2,AndreiDiamandi2andAnisoaraIrimescu2

1NorwegianComputingCenter,Oslo,Norway2RomanianNationalMeteorologicalAdministration,Bucharest,Romania

Snowmonitoringisessentialforpredictionoffloodingduetorapidsnowmelt,toprovidesnowavalancheriskforecastsandforwaterresourcemanagement–includinghydropowerproduction,agriculture,groundwateranddrinkingwater.Snowwetnessandsnowliquidwaterareessentialvariablesformonitoringthesnowstateandprovidingearlywarningoffloodriskandsnowavalanchesduringthemeltingseason.ThepresentationshowsthefirstresultsfromtheSnowBallprojectofsingle-sensorandfusionalgorithmsappliedonSentinel-1SARandMODISdataforfrequentmonitoringofthesnowwetnessduringthemeltingseasonsinNorwayandRomania.

Sentinel-1C-bandSARissensitivetopresenceofwetsnow.Wetsnowcanbedetectedsincetheradarbackscatterdropssignificantly.However,withC-bandSARitisdifficulttoquantifyhowwetthesnowis.WetsnowmappingintoasetoffivecategoriesofwetnesshasbeendemonstratedinthepastbyNRusingMODISdata.Thecombinationofsurfacetemperatureandthetemporaldevelopmentoftheeffectivesnowgrainsizeareusedtoinferapproximatelyhowwetthesnowis.IntheSnowBallprojectthisapproachisnowportedtothecombineduseoftheSentinel-3OLCIandSLSTRsensors.Thepreviousalgorithmisalsoadvancedtoenablefurtherdiscriminationofsnowwetnessclassesquantitativelyrelatedtothesnowliquidwater(volumeofliquidwaterpervolumeofsnow)forthesnowsurface.Fieldmeasurementshavebeenaccomplishedusingspectroradiometermeasurementsanddirectmeasurementsofsnowliquidwaterwithadielectricprobetodeveloptheretrievalmodel.TheretrievalmodelwillalsobeadaptedtoSentinel-3dataandappliedinthenewalgorithm.

Furthermore,toutilisethecombinedcapabilityofSentinel-1andMODIS/Sentinel-3formoreaccurateretrievalandimprovedtemporalcoverage–giventhatopticalsensorsarelimitedbycloudcoverandSARonlydetectswetsnow–wedevelopasensor-fusionapproach.ThealgorithmappliesahiddenMarkovmodel(HMM)tosimulatethesnowwetnessstatesthesnowsurfacegothrough,giventhetemporalobservationsofthesurfaceconditions.Themostlikelycurrentsnowstateisestimated,givingthecurrentsnowliquidwatercategory.

ThesnowproductsfromSAR,opticalandthemulti-sensorapproacharevalidatedagainstcal/valsitesprovidingfrequentsnowmeasurementsinRomaniaandNorway,andadditionalfieldcampaignswhereasignificantterrainreliefispresentprovidingcorrespondingsignificant

Page 68: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page68

gradientsinsnowwetnessduringthesnowmeltseason.Successfulalgorithmsareimplementedanddemonstratedinaprototypesystemproducingdailywet-snowmapsofRomaniaandNorway.Whenthesystemisoperationalised,theproductswillbeusedinoperationalhydrologicalmodelsassistingfloodpredictionforissuingfloodwarnings.Similarly,theproductswillbeusedbythesnowavalancheserviceprovidingavalanchewarnings.

Page 69: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page69

Modelingpolaricesheetemissionfrom0.5-2.0GHzwithapartiallycoherentmodel

oflayeredmediawithrandompermittivitiesandroughness

ShurunTan1,LeungTsang1,TianlinWang1,MohammadrezaSanamzadeh1,JoelJohnson2,andKennethJezek3

1RadiationLaboratory,DepartmentofElectricalEngineeringandComputerScience,

UniversityofMichigan,AnnArbor2ElectroScienceLaboratory,TheOhioStateUniversity,Columbus3SchoolofEarthSciences&ByrdPolarResearchCenter,TheOhioStateUniversity,

Columbus

Thesurfaceofthepolaricesheetischaracterizedbyrapiddensityvariationsoncentimeterscalesduetotheaccumulationprocess.Thefluctuationformslayersnearthetopoftheicesheetaswellasintroducinginterfaceroughness.Thefluctuatingpermittivitiesamonglayersasaresultofdensityvariationcausereflectionsandmodulatetheicesheetemission.Interfaceroughness,ontheotherhand,cancauseangularandpolarizationcoupling.Ourinterestsarethebrightnesstemperaturesbetween0.5to2.0GHzfortheUltra-wideBandSoftwareDefinedRadiometer(UWBRAD)project.TheUWBRADgoalistosensetheinternaltemperatureprofileoftheicesheetusinglowfrequencyultra-widebandradiometry.Previouslyincoherentmodelsandcoherentmodelswereusedtocalculatethebrightnesstemperaturesofmultilayeredmediaconsistingofthousandsoflayers.Inthispaper,weuseapartiallycoherentapproach.

Whenthecorrelationlengthsofthedensityfluctuationsarewithinawavelengthinsidetheicesheet,thecoherentinterferenceduetoreflectionsremainsevenafterstatisticalaveragesoverdensityprofiles.Thecoherentwaveeffectsare“localized”inrandomlayeredmediatospatialscaleswithinafewwavelengths.Thuswecandividetheentireicesheetintoblocks,witheachblockontheorderofafewwavelengths,andapplyfullycoherentscatteringmodelswithinasingleblock.Theblocksarealsosizedtocorrespondtothebandwidthofthemicrowavechannelsothatinterferenceeffectswithinachannelcanbecaptured.Wethenincoherentlycascadetheintensitiesamongdifferentblocks.AsmallernumberofrealizationsisthenrequiredintheMonteCarloaveragingprocessforeachblockduetothesmallernumberofinterfaces.Thispartiallycoherentapproachhasprovedtobemuchmoreefficientthanapplyingthefullycoherentmodeltotheentireicesheet,andtoproduceresultsinagreementwiththefullycoherentapproach.

Page 70: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page70

Thepartiallycoherentapproachalsoenablesustoexamineinterfaceroughnesseffectsbyapplyingafullwavesmallperturbationmethoduptosecondorder(SPM2)tothemulti-layeredroughnessscatteringproblemwithinthesameblock.TheSPM2hastheadvantageofconservingenergy.Wereportnumericalresultsincheckingenergyconservationandillustratetheangularandpolarizationcouplingeffectsarisingduetointerfaceroughness.

Page 71: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page71

SpatialvariabilityofsnowatTrailValleyCreek,NWT

AaronThompson1,RichardKelly1,PhilipMarsh1,TylerdeJong2

1InterdisciplinaryCentreonClimateChangeandDepartmentofGeographyand

EnvironmentalManagement,UniversityofWaterloo,ON2WilfridLaurierUniversity,Waterloo,ON

Witharenewedfocusonlargescale,globalremotesensingofsnow,bolsteredbyupcomingprojectslikeNASA’sSnowExcampaign,theimportanceofgroundreferencingthroughinsitumeasurementsisemphasized.RecentstudieshavesuggestedthatmicrostructuralelementsofthesnowpackmaybeacriticaldriveroftheradarresponseatKu-andX-bandfrequenciesfurtherhighlightingtheimportanceofacomprehensivefielddataset(Thompsonetal.,inpreparation).

Afieldcampaign,inApril2016,locatedatEnvironmentCanada’sTrailValleyCreekresearchbasinintheNorthwestTerritoriesfocusedoninsitusnowpackmeasurements,andlaythefoundationfora3-yearstudythatwillcombineground-basedradarobservationsatKu-andX-bandfrequenciesusingUW-SCAT,withdifferentialinterferometricSARtechniquesaimedatextractingsnowvolumeinformation,andwillthereforerequirearobustsuiteoffieldmeasurements.

Theseobservationsallowedustoexplorethespatialvariabilityofsnowmicrostructureinavarietyofseasonalarcticaccumulationenvironmentsincludingaforestedsite,wind-swepttundra,anddriftedsnow.Measurementsincludedsnowdepth,densityandtemperatureprofiles,alongwithsnowgrainandstratigraphyobservationsaugmentedbyNIRphotography.Employingaseriesof5mby5morthogonalsnowtrenchesateachsite,weinvestigatedthespatialvariabilityofthesesnowpackcharacteristicsovershortdistancescales.Localmeteorologicaldata,collectedattwoofthesites,providedevidenceoftheprocessesthatcontrolledthesnowpackdevelopmentandmetamorphosis.Collectively,thesemeasurementsnotonlyprovidedinsightintothenatureofsnowmicrosctructurevariabilityintheseenvironments,butalsohelpedtoidentifyoptimalsiteswithinTrailValleyCreekforfutureradaracquisitions.

Page 72: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page72

Long-termtrendsandvariabilityofwintersnowaccumulationatWhiteGlacier,

Nunavut,Canada

LauraThomsonandLukeCopland

DepartmentofGeography,UniversityofOttawa,Ontario

ThemeasurementofwintersnowaccumulationhascontinuedaspartoftheglaciologicalmassbalanceobservationsatWhiteGlacier(90°47’W,79°29’N,100-1780ma.s.l.)sinceglacierresearchbeganonAxelHeibergIslandin1959.Inthisstudyweexaminethevariabilityofsnowaccumulationwithelevationover55yearsofobservationsandconsidertrendsinaccumulationoverthistimeperiod.Decliningseaiceextentanddurationoverthepasttwodecadesareexpectedtoleadtocorrespondingincreasesinoceantemperatures,evaporation,andprecipitationovertheCanadianArctic.ThishaspromptedpredictionsthatsnowaccumulationwillincreaseovertheQueenElizabethIslands,asobservedattheEurekaWeatherStation(85°56’W,79°59’N,10ma.s.l.).However,todatenostatisticallysignificanttrendofincreasingsnowaccumulationhasbeenobservedintheaccumulationareaofWhiteGlacier.Inadditiontoconductinganalysisofspatialandtemporalvariabilityinsnowfallovertheglacier,weconsidertheimpactsonglaciermassbalance,whichhasshownasignificantdecreaseinthepastdecade,andicedynamics.Sincethemassimbalancebetweentheaccumulationandablationareasofaglacieristheprimarydrivingforceforicemotion,weintegratesnowaccumulationandiceablationobservationsatWhiteGlaciertomodelmasstransferthroughcross-sectionalfluxgatesat370,580,and870ma.s.l.Comparisonofthesemodelledicefluxeswithobservationsoficemotion,whichindicatethatvelocitieshavedecreasedontheorderof45%,15%,and5%attheserespectivelocationssince1960,enablesustoestimatethedynamicresponsetimeofWhiteGlacier.

Page 73: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page73

SnowMicrostructureCharacterizationandNumericalSimulationofMaxwell’s

Equationin3DAppliedtoSnowMicrowaveRemoteSensing

LeungTsang1,ShurunTan1,JiyueZhu1,andXiaolanXu2

1RadiationLaboratory,DepartmentofElectricalEngineeringandComputerScience,TheUniversityofMichigan,AnnArbor

2JetPropulsionLaboratory,Pasadena,CA

Inthispaper,wereviewourrecentresearchresultsonsnowmicrostructurecharacterizationandphysicalmodelsofmicrowaveremotesensingofterrestrialsnow.ThestudydomainisfocusedontheSnowColdLandProcessexperiment(SCLP)thatisintheDecadalStudy.TheSCLPconsistsofradarbackscatteringatX-andKubandandradiometricbrightnesstemperaturesatKu-andKaband.

Insnowmicrostructure,weusecorrelationfunctiontocharacterizethesnow.Weusethebicontinuousmediamodeltogeneratecomputersnow.Thebicontinuousmediahascorrelationfunctionsdependentontheinputparameters.Fordenselydiscretescatterers,weusethepairdistributionfunctionsofstickyspheresandmultiplesizespheres.Recently,weshowthatthecorrelationfunctionscanbederivedfromthepairdistributionfunctions.Thusthecorrelationfunctionbecomesthebasisofcomparisonsofbicontinuousmediaofcomputersnow,denselypackedspheres,andrealsnow.Thederivedcorrelationfunctionsaredistinctlydifferentfromthetraditionalexponentialcorrelationfunctions.Theyareexponentialneartheoriginbuthavetailsforlongerdistances.Thusatleasttwoparametersareneededtocharacterizethecorrelationfunctioninsteadofone.Fieldmeasurementsofsnowmicrostructuretypicallyprovideavisualgrainsize,whichisthemaximumextentofthedominantsnowgrains.Ontheotherhand,theemergingmeasurementsofthespecificsurfacearea(SSA)ismoresensitivetofinesnowgrains.TheSSAcanbeconvertedtoanequivalentopticalgrainsize.Knowingtheopticalgrainsizeandthevisualgrainsize,wewillapproximatethecorrelationfunctionofsnowmicrostructurefromthepairdistributionfunctionsoftwo-sizesphereswithvaryingnumberdensities.

Thebicontinuousmediahasbeencombinedwiththepartiallycoherentapproachofdensemediaradiativetransfer(DMRT)toprovidelookuptablesofbackscatterandbrightnesstemperaturesofsnowpackundervariousconditions.InDMRT,Maxwell’sequationissolvedwithinseveralcubicwavelengthsofstatisticallyhomogeneoussnowvolumetocomputethe

Page 74: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page74

phasematrix.Thephasematrix,accountingforthecoherentnearfieldandintermediatefieldinteractions,isthensubstitutedintotheradiativetransferequationtopropagatetheintensityoverthesnowvolume,accountingfortheincoherentfarfieldandvolume/surfaceinteractions.Suchforwardsnowpackscatteringmodelhasbeenappliedtodevelopsnowwaterequivalent(SWE)retrievalalgorithmsandshowntobesuccessfulwhentestedovertheFinlandSnowScatandSnowSARdataset.

Afullycoherentsnowpackscatteringmodelisalsodevelopedtocomputethebackscatteringcoefficientsandthebrightnesstemperaturesofasnowpack.ThemodelisbasedonnumericallysolvingtheMaxwell’sequationin3D(NMM3D)directlyovertheentiredomainofsnowpack.Weuseahalf-spacetorepresentthesoilorseaiceunderthesnowpack,andusethebicontinuousmediatorepresentthesnowvolume.Thefullycoherentapproachpredictsthecomplexscatteringmatrixfromthesnowpack,includingbothmagnitudeandphase.Inpassiveremotesensing,thisapproachallowsarbitrarytemperatureandlayerprofilesofthesnowpack.ThebrightnesstemperaturesandbackscattersoutofthefullycoherentmodelarecomparedagainsttheresultsofDMRTforvarioussnowpackconfigurations.Wealsoillustratetheco-polarizationphasedifferenceofananisotropicsnowlayerextractedfromfullwavesimulations.

Page 75: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page75

ComparisonofSatellitePassiveMicrowave,AirborneGammaRadiationSurvey,andGroundSurveySnowWaterEquivalentEstimatesintheNorthernGreatPlains

SamuelTuttle1,EunsangCho1,CarrieM.Vuyovich1,2,CarrieOlheiser3,JenniferM.Jacobs1

1UniversityofNewHampshire,Durham,NH2U.S.ArmyCorpsofEngineersColdRegionsResearchandEngineeringLaboratory,

Hanover,NH3NationalWeatherServiceNationalOperationalHydrologicRemoteSensingCenter,

Chanhassan,MN

Remotesensinghasthepotentialtoenhanceoperationalriverflowforecastingbyhelpingtoconstrainestimatesofsnowwaterequivalent(SWE).SnowmeltcontributessignificantlytorunoffinnorthernandmountainousareasofNorthAmerica.InthenorthernGreatPlains,meltingsnowisaprimarydriverofspringflooding,soknowledgeofthemagnitudeandspatialdistributionofSWEisnecessaryforaccuratefloodforecasting.However,groundsurveysarerelativelysparseintheregionandprovideonlypointestimates.AirbornegammaradiationsurveysfromtheU.S.NationalWeatherService(NWS)provideSWEestimatesatlargerresolution(approximately5-7km2),butareavailableonly1-4timesperwinter.Thus,satelliteremotesensingcanincreasethespatiotemporalcoverageofSWEobservationsavailableforforecastingpurposes.WecomparesatellitepassivemicrowaveestimatestoNWSairbornegammaradiationsnowsurveyandU.S.ArmyCorpsofEngineers(USACE)groundsnowsurveySWEestimatesinthenorthernGreatPlains.ThethreeSWEdatasetscomparefavorablyinthelowrelief,lowvegetationstudyarea,butthedifferentspatialextentsofeachmeasurementcomplicatesthecomparison.Additionally,theeffectofsnowgrainsizechangesandwetsnowonthesatelliteSWEestimatesremainlimitationsofthepassivemicrowavemethod.AwarenessofwhenandhowsnowpackphysicalconditionsimpactretrievalscanoptimizetheusefulinformationprovidedbypassivemicrowaveSWEobservationsforoperationalflowforecasting.

Page 76: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page76

Sensitivityanalysisofpassivemicrowavebrightnesstemperaturestodistributed

snowmelt

C.M.Vuyovich1,J.M.Jacobs2,C.A.Hiemstra3,E.J.Deeb1,J.B.Eylander

1ColdRegionsResearchandEngineeringLaboratory,Hanover,NewHampshire2CivilandEnvironmentalEngineering,UniversityofNewHampshire,Durham3ColdRegionsResearchandEngineeringLaboratory,Fairbanks,Alaska4HQAFWeatherAgency,OffuttAFB,Nebraska

Globaldatasetsofrecordedpassivemicrowaveemissionsprovidenon-destructive,dailyinformationonsnowprocesses,andthemicrowavesignalishighlyresponsivetosnowwetnessduetothesensitivityoftheradiancetochangesinthedielectricconstant.Akeychallengetousingthemicrowavemeltsignalisthatitsspatialresolutionisquitecoarseandnotabletoexplicitlycharacterizesub-gridscalevariationsneededformostwaterresourceapplications.Theobjectiveofthisresearchistotestthesensitivityofbrightnesstemperatureswithinamicrowavepixelasitrelatestospatiallydistributedliquidwatercontentofthesnowpack.Dailysnowstatesweresimulatedfora14-yearperiodusingahigh-resolution(50m)energybalancesnowmodelovera34x34kmpixel.Thesedatawerefedintoamicrowaveemissionmodeltosimulatebrightnesstemperaturesduringwetsnowevents.Asensitivityanalysiswasconductedtodeveloparelationshipbetweenthechangeinmicrowavebrightnesstemperatureandthepercentareaaffectedbyliquidwatercontentinthesnowpack.ThemodeloutputwasalsocomparedtoAMSR-Epassivemicrowavesatellitedataanddischargedataatabasinoutletwithinthestudyarea.Theresultsareusedtohelpunderstandthehydrologicalimpactoflarge-scalesnowmelteventsasdetectedbypassivemicrowavedata.

Page 77: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page77

UAVMappingofDebrisCoveredGlacierChange,LlacaGlacier,CordilleraBlanca,

Peru

OliverWigmoreandBryanMark

DepartmentofGeographyandByrdPolar&ClimateResearchCenter,TheOhioStateUniversity,Columbus

TheglaciersoftheCordilleraBlancaPeruarerapidlyretreatingasaresultofclimatechange,alteringtiming,quantityandqualityofwateravailabletodownstreamusers.Furthermore,increasesinthenumberandsizeofproglaciallakesassociatedwiththesemeltingglaciersisincreasingpotentialexposuretoglacierlakeoutburstfloods(GLOFs).Understandinghowtheseglaciersarechangingandtheirconnectiontoproglaciallakesystemsisthusofcriticalimportance.Mostsatellitedataaretoocoarseforstudyingsmallmountainglaciersandareoftenaffectedbycloudcover,whiletraditionalairbornephotogrammetryandLiDARarecostly.RecentdevelopmentshavemadeUnmannedAerialVehicles(UAVs)viableandpotentiallytransformativemethodforstudyingglacierchangeathighspatialresolution,ondemandandatrelativelylowcost.

Usingacustomdesignedhighaltitudehexacopterwehavecompletedrepeataerialsurveys(2014and2015)ofthedebriscoveredLlacaglaciertongueandproglaciallakesystem.Analysisofhighlyaccurate10cmDEM'sandorthomosaicsrevealshighlyheterogeneouschangesintheglaciersurface.Themostrapidareasoficelosswereassociatedwithexposedicecliffsandmeltwaterpondsontheglaciersurface.Significantsubsidenceandlowsurfacevelocitieswerealsomeasuredonthesedimentswithinthepro-glaciallake,indicatingthepresenceofextensiveregionsofburiediceandcontinuedconnectiontotheglaciertongue.Onlylimitedhorizontalretreatoftheglaciertonguewasrecorded,indicatingthatsimplemeasurementsofchangesinaerialextentareinadequateforunderstandingactualchangesinglaciericequantity.

Page 78: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page78

ImprovingatmosphericcirculationandturbulentheatfluxeswiththeArctic

SystemReanalysis

AaronB.Wilson1,DavidH.Bromwich1,2,Le-ShengBai1,G.W.KentMoore3,FlavioJustino1,4

1PolarMeteorologyGroup,ByrdPolarandClimateResearchCenter,TheOhioStateUniversity,Columbus

2AtmosphericSciencesProgram,DepartmentofGeography,TheOhioStateUniversity,Columbus

3DepartmentofPhysics,UniversityofToronto,Toronto,Ontario4DepartmentofAgriculturalEngineering,UniversidadeFederaldeViçosa,Viçosa,Brazil

TheArcticSystemReanalysis(ASR),ahigh-resolutionregionalassimilationofmodeloutput,observations,andsatellitedataacrossthemid-andhighlatitudesoftheNorthernHemispherefortheperiod2000–2012hasbeenperformedat30km(ASRv1)and15km(ASRv2)horizontalresolution.AcomparisonbetweentheadvancedASRv2andtheglobalEuropeanCentreforMediumRangeForecastingInterimReanalysis(ERAI)showsthetropospheretobewellrepresentedintheASRv2.Monthlyandannualtemperature,humidity,pressure,andwinddifferencescomparedtosurfaceandupper-airobservationsaresmall.Thehigh-resolutionlandsurfacedescriptioninASRv2leadstomoreaccuraterepresentationoftopographically-forcedwindevents,suchastipjetsandbarrierwindsalongthesoutheastcoastofGreenland,aswellasatmosphericcirculationthroughouttheArctic.Withsensibleandlatentheatfluxesstronglylinkedtowindspeedandland-surfacechange,ASR’shighresolutionandweekly-updatedvegetationfromtheMODISleadtomuchimprovedturbulentheatfluxescomparedtoglobalreanalyses.Analysisofsurfaceevaporationshowsthatwhileglobalreanalysesexhibitweakintraseasonalvariability,weeklychangesinthesnow-albedofeedbackandassociatedchangesintheleafareaindexproduceabetterdepictionoftheseasonalityofsurfaceheatfluxesoverland.Therefore,theASRhasproventobeanimportantresourceformanyArcticstudiesincludinginvestigationsofmesoscalephenomenaaswellasthediagnosisofchangeinthecoupledArcticclimatesystem.

Page 79: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page79

ConsiderationofMountainSnowStoragefromGlobalDataProducts

MelissaL.Wrzesien1,MichaelT.Durand1,andTamlinM.Pavelsky2

1SchoolofEarthSciencesandByrdPolarandClimateResearchCenter,theOhioState

University2DepartmentofGeologicalSciences,UniversityofNorthCarolinaatChapelHill

Seasonalsnowaccumulationandablationareimportantcomponentsinnotonlytheglobalwaterbalance,butalsotheenergybudget.Despiteitsimportance,webelieveanestimateofglobalsnowstorage–particularlyinmontaneregions–isnotwellconstrainedbycurrentdatasets,whetherobservationalormodel-based.Herewepresentestimatesofsnowstorage,bothgloballyandforonlyregionsofcomplextopography,frommultipleglobaldatasets,includingsatelliteproductsandreanalyses.GlobalproductsincludeAMSR-E,GLDAS,MERRA,andERA-Interim,allofwhichhavespatialresolutionof~25kmorlarger.WeconsiderbothApril1andpeaksnowwaterequivalent(SWE)overtheperiodof1980-2010,orwherethedataisavailable.Mostproductsestimate~2000-4000km3ofsnowstorage,globally,whenaveragedovertheperiodofrecord,with30-50%ofthesnowstorageexistinginmountains.However,regionalclimatemodelsimulationsforahandfulofNorthAmericamountainranges(withspatialresolutionof3-9km),whicharealsopresentedhere,suggest>500km3ofsnowaccumulatesannuallyintheSierraNevadaofCaliforniaandtheCoastMountainsofBritishColumbiaalone.Wefurtherdiscussthepossibilityofbiasesincurrently-availableglobalproductsandwhetherregionalclimatemodelresultsmaypresentamorereliableglobalSWEestimate.

Page 80: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page80

Canregional-scalesnowwaterequivalentestimatesbeenhancedthroughtheintegrationofamachinelearning

algorithm,passivemicrowavebrightnesstemperatureobservations,andaland

surfacemodel?

YuanXue,BartonA.Forman

UniversityofMarylandCollegePark,DepartmentofCivilandEnvironmentalEngineering

Toaccuratelyestimatethemassofwaterwithinasnowpack(a.k.a.,snowwaterequivalent(SWE))acrossregionalorcontinentalscalesisachallenge,especiallyinthepresenceofdensevegetation.InordertoovercomesomeofthelimitationsimposedbytraditionalSWEretrievalalgorithmsandradiativetransfer-basedsnowemissionmodelsinforestedregions,thisstudyexplorestheuseofawell-trainedsupportvectormachine(SVM)enroutetomerginganadvancedlandsurfacemodelwithinaradianceemission(i.e.,brightnesstemperature(Tb))assimilationframeworkinordertoimprovemodel-basedSWE(andsnowdepth)estimates.Inanassimilationcontext,thegoalofdirectTbassimilationispreferableasitavoidsinconsistenciesintheuseofancillarydatabetweentheassimilationsystemandtheindependently-generatedgeophysicalretrieval.ExistingstudiesalsosuggestthataSVM-basedobservationoperatorismorereliablewithinanassimilationframework(relativetoasnowemissionmodel)withouttheneedtoassumeauniformsnowpackorfixedsnowdensityorfixedsnowgrainsize.However,itiswidely-acknowledgedthatsatellite-basedpassivemicrowave(PMW)Tbobservationsareoftencontaminatedbyoverlyingatmosphericandforestrelatedemissionsignals.Therefore,theutilizationofaSVM-basedPMWTbpredictionmodeltrainedondecoupled,satellite-basedTbestimatesforintegrationintoanexistinglanddataassimilationsystemisexploredinthisstudy.Theperformanceoftheoriginal(i.e.,coupled)Tbassimilation,anddecoupledTbassimilationproceduresareevaluatedviacomparisonstostate-of-the-artSWE(orsnowdepth)productsaswellasavailableground-basedobservations.ItisshownthatSVMperformanceimproveswhenintegratingatmosphericandforestdecouplingprocedures.

Page 81: 73rd Eastern Snow Conference Scientific Program & Abstracts

73rdEasternSnowConference

❄Page81

Decouplingatmospheric-andforest-relatedradianceemissionsfromsatellite-basedpassivemicrowaveobservationsover

forestedandsnow-coveredlandinNorthAmerica

YuanXue,BartonA.Forman

UniversityofMarylandCollegePark,DepartmentofCivilandEnvironmentalEngineering

Thisstudyaddressestwosignificantsourcesofuncertaintyprevalentinsnowwaterequivalent(SWE)retrievalsderivedfromAdvancedMicrowaveScanningRadiometer(AMSR-E)passivemicrowave(PMW)brightnesstemperature(Tb)observationsat18.7GHzand36.5GHz.Namely,atmosphericandoverlyingforesteffectsaredecoupledfromtheoriginalAMSR-EPMWTbobservationsusingrelativelysimple,first-orderradiativetransfermodels.ComparisonsagainstindependentTbmeasurementscollectedduringairbornePMWTbsurveyshighlighttheeffectivenessoftheproposedAMSR-Eatmosphericdecouplingprocedure.Theatmospherically-contributedTbrangesfrom1Kto3KdependingonthefrequencyandpolarizationmeasuredaswellasmeteorologicalconditionsatthetimeofAMSR-Eoverpasses.Itisfurthershownthatforestdecouplingshouldbeconductedasafunctionofbothlandcovertypeandsnowcoverclass.Theexponentialdecayrelationshipbetweentheforeststructureparameter,namelysatellite-scaleleafareaindex(LAI),andsatellite-scaleforesttransmissivityisfittedacrosssnow-coveredterraininNorthAmerica.Thefittedexponentialfunctioncanbeutilizedduringforestdecouplingactivitiesforevergreenneedleleavedforestandwoodysavannaregions,butremainsuncertaininotherforesttypesduetosparsecoverageinsnow-coveredregions.Byremovingforest-relatedTbcontributionsfromtheoriginalAMSR-Eobservations,theresultsshowthatTbspectraldifferencebetween18.7GHzand36.5GHzincreasesacrossthinly-vegetatedtoheavily-vegetatedregions,whichcanbebeneficialwhenusingwithtraditionalSWEretrievalalgorithms.ComparisonsaremadebetweensnowdepthandSWEestimates,state-of-the-artretrievalproducts,andindependentground-basedobservations.WhenusingthedecoupledPMWTbestimates(relativetousingtheoriginal,coupledAMSR-ETbobservations),snowdepthbiasisreducedby60%andSWEbiasisreducedby55%.However,computedRMSEvaluessuggestrandomerrorsinthesnowdepthandSWEretrievals(withorwithoutapplicationofthedecouplingprocedures)aresignificantandremainsanissueforfurtherstudy.