7. Design Methodology Part 1

64
1 Designing Combinational Logic Circuits DISEDIAKAN OLEH: AZMAN BIN MA T HUSSIN JABA TAN KEJURUTERAAN ELEKTRIK POLITEKNIK TUANKU SYED SIRAJUDDIN

Transcript of 7. Design Methodology Part 1

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 1/64

1

Designing Combinational

Logic CircuitsDISEDIAKAN OLEH: AZMAN BIN MAT HUSSIN

JABATAN KEJURUTERAAN ELEKTRIK

POLITEKNIK TUANKU SYED SIRAJUDDIN

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 2/64

2

Combinational Sequential 

Output = f  ( In )  Output = f  ( In, Previous In ) 

CombinationalLogic

Circuit

Out In

CombinationalLogic

Circuit

Out In

State

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 3/64

3

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 4/64

4

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 5/64

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 6/64

6

VDD 

F(In1,In2,…InN) 

In1In2

InN

In1In2

InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networks

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 7/647

Transistors can be thought as a switch controlled by its gate signal 

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 8/648

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 9/64

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 10/64

 

A stick diagram is a cartoon of a layout. Does show all components/vias (except

possibly tub ties), relative placement.

Does not show exact placement, transistor

sizes, wire lengths, wire widths, tubboundaries.

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 11/64

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 12/64

NMOS is formed when a polysilicon line is placed across an N-diffusion line.

PMOS is formed when a polysilicon line is placed across a

P-diffusion line.

Stick Diagram Rules

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 13/64

No electrical connection happens when 2 different layerscrossing each other (e.g polysilicon crosses metal).

To connect 2 different layers (e.g. polysilicon and metal), acontact is placed on the crossing line with a black circle or X

sign.

Stick Diagram Rules

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 14/64

Schematic Diagram Stick Diagram

VDD

GND

S D

S D

A

Y

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 15/64

Stick diagram of a complex CMOS logic circuitcan be obtained using the method called Euler

Path.

Euler-Path Method:

1. Label all the transistor terminals.

2. Determine the shortest path.

3. Transfer all the transistor terminals

onto the stick diagram according to theshortest path.

4. Make a connection using metal layer.

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 16/64

Example: 2-input NAND gate

2  3  4 

2 32 

PMOS 

1  1 

2  4 

3  3 

NMOS 

3  6 

2  4 

5  5 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 17/64

PMOS 

1  1 

2  4 

3  3 

NMOS 

3  6 

2  4 

5  5 

2  4 DD 

GND A  B 

1  3  1 

3  5  6 

2  4 DD 

GND A  B 

1  3  1 

3  5  6 

 

 

 

 

 

  

Example: 2-input NAND gate

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 18/64

Transistors can be used as switches

g

s d

g = 0

s d

g = 1s d

0 strong 0

Input Output

1 degraded 1

g

s d

g = 0

s d

g = 1

s d

0 degraded 0

Input Output

strong 1

g = 1

g = 1

g = 0

g = 0

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 19/64

NMOS is good at transferring logic ‘0’from input to output without voltagedrop.

PMOS is good at transferring logic ‘1’from input to output without voltage

drop.

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 20/64

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 21/64

 

1. Clock pulse is supplied to NMOS transistor, and PMOS is given the invertedclock pulse.

2. If the clock pulse is low (logic ‘0’), both NMOS & PMOS transistor if OFF. No

data is transferred to the output.

3. If the clock pulse is high (logic ‘1’), both NMOS & PMOS transistor if ON. If the

input is logic ‘0’, NMOS will transfer the data to the output. If the input is logic

‘1’, PMOS will transfer the data to the output.

SYMBOL

SCHEMATIC LAYOUT

TRANSMISSION GATE

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 22/64

22

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 23/64

23

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 24/64

24

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 25/64

Standard Cells◦ General purpose logic◦ Can be synthesized◦ Same height, varying width

Datapath Cells◦ For regular, structured designs (arithmetic)◦ Includes some wiring in the cell◦ Fixed height and width

25

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 26/64

26

signals

Routingchannel

VDD

GND

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 27/64

27

M2

No Routingchannels

VDD

GNDM3

VDD

GND

Mirrored Cell

Mirrored Cell

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 28/64

28

Cell boundary 

N Well 

Cell height 12 metal tracksMetal track is approx. 3 + 3 Pitch =repetitive distance between objects

Cell height is “12 pitch” 

Rails ~10 

In Out 

V DD 

GND 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 29/64

29

In Out 

V DD 

GND 

In  Out 

V DD 

GND 

With silicideddiffusion

With minimaldiffusionrouting

Out In

V DD

M 2 

M 1

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 30/64

30

Out 

V DD 

GND 

2-input NAND gate

B

V DD

 A

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 31/64

31

High noise margins :

V OH and V OL are at V DD and GND , respectively.

No static power consumption : There never exists a direct path between V DD  and

V SS ( GND ) in steady-state mode .

Comparable rise and fall times: (under appropriate sizing conditions)

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 32/64

Full rail-to-rail swing; high noise margins Logic levels not dependent upon the relative

device sizes; ratioless Always a path to Vdd or Gnd in steady state;

low output impedance Extremely high input resistance; nearly zero

steady-state input current No direct path steady state between power

and ground; no static power dissipation Propagation delay function of load

capacitance and resistance of transistors

32

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 33/64

33

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 34/64

34

      I    n 

    p      u      t     s 

  Switch

Network 

Out Out 

 A

 B

 B

 B

• N transistors

• No static consumption

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 35/64

35

 B

 B

 F  = AB

0

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 36/64

36

V DD

In

Out 

 x 

0.5m/0.25m0.5m/0.25m

1.5m/0.25m

0  0.5  1  1.5  2 0.0 

1.0 

2.0 

3.0 

Time [ns] 

   V   o

   l   t  a  g  e    [   V

   ]

Out 

In 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 37/64

37

A = 2.5 V 

C = 2.5 V 

C L 

A = 2.5 V 

C = 2.5 V 

M 2 

M 1 

M n 

Threshold voltage loss causes 

static power consumption

V

 B

 

does not pull up to 2.5V, but 2.5V -

TN

 

NMOS has higher threshold than PMOS (body effect)

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 38/64

38

M 2 

M 1 

M n 

M r 

Out A 

V DD 

V DD Level Restorer 

• Advantage: Full Swing 

• Restorer adds capacitance, takes away pull down current at X 

• Ratio problem 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 39/64

39

0  100  200  300  400  500 0.0 

1.0 

2.0 

W / L r =1.0/0.25 W / L 

r =1.25/0.25

W / L r =1.50/0.25

W / L r =1.75/0.25

   V 

  o   l   t  a  g  e

   [   V   ]

Time [ps] 

3.0 •Upper limit on restorer size•Pass-transistor pull-downcan have several transistors instack

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 40/64

40

Out 

V DD 

V DD 

2.5V 

V DD 

0V  2.5V 

0V 

WATCH OUT FOR LEAKAGE CURRENTS

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 41/64

41

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=AÝ

F=AÝ

OR/NOR  EXOR/NEXOR AND/NAND

F

F

Pass-Transistor

Network 

Pass-Transistor

Network 

AABB

AABB

Inverse

(a)

(b)

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 42/64

42

A  B 

A  B 

C L 

C = 0 V 

A = 2.5 V 

C = 2.5 V 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 43/64

43

V out 

0 V

2.5 V

2.5 VR n

R  p

0.0 1.0 2.00

10

20

30

V out , V

essance,o

ms

R n

R  p

R n || R  p

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 44/64

44

AM2

M1

B

S

S

S   F

VDD

GND

VDD

 

In1  In

2 S S

S S

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 45/64

45

M1 

M2 

M3/M4 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 46/64

46

V 1  V i-1 

2.5  2.5 

0  0 

V i  V i+1 

C C 

2.5 

V n-1  V n 

C C 

2.5 

In 

V 1  V i  V i+1 

V n-1  V n 

C C 

In 

R  eq R  eq  R  eq  R  eq 

C C 

(a) 

(b) 

R  eq  R  eq 

C  C 

R  eq 

C  C 

R  eq  R  eq 

C  C 

R  eq 

In 

(c) 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 47/64

47

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 48/64

48

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 49/64

In static circuits at every point in time(except when switching) the output isconnected to either GND or VDD via a lowresistance path.◦ fan-in of n  requires 2n  (n  N-type + n  P-type)

devices

Dynamic circuits rely on the temporarystorage of signal values on the capacitance

of high impedance nodes.◦ requires on n  + 2 (n +1 N-type + 1 P-type)transistors

49

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 50/64

51

In1

In2 PDN 

In3

Me

Mp

Clk 

Clk 

Out 

CL

Out 

Clk 

Clk 

Mp

Me

Two phase operationPrecharge (Clk = 0)Evaluate  (Clk = 1) 

on 

off  

off  

on 

((AB)+C) 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 51/64

Once the output of a dynamic gate isdischarged, it cannot be charged again untilthe next precharge operation.

Inputs to the gate can make at most one

transition during evaluation.

Output can be in the high impedance stateduring and after evaluation (PDN off), state

is stored on CL

52

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 52/64

Logic function is implemented by the PDNonly◦ number of transistors is N + 2 (versus 2N for static

complementary CMOS)

Full swing outputs (VOL = GND and VOH = VDD) Non-ratioed - sizing of the devices does not

affect the logic levels

Faster switching speeds◦ reduced load capacitance due to lower input capacitance (Cin)

◦ reduced load capacitance due to smaller output loading (Cout)

◦ no Isc, so all the current provided by PDN goes intodischarging CL

53

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 53/64

Overall power dissipation usually higher thanstatic CMOS◦ no static current path ever exists between VDD and

GND (including Psc)◦

no glitching◦ higher transition probabilities◦ extra load on Clk

PDN starts to work as soon as the input

signals exceed VTn, so VM, VIH and VIL equal toVTn ◦ low noise margin (NML)

Needs a precharge/evaluate clock

54

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 54/64

55

CL

Clk 

Clk 

Out 

Mp

Me

Leakage sources 

CLK 

VOut

Precharge 

Evaluate 

Dominant component is subthreshold current

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 55/64

56

CL

Clk 

Clk 

Me

Mp

Out 

Mkp

Same approach as level restorer for pass-transistor logic 

Keeper 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 56/64

57

CL

Clk 

Clk 

CA

CB

B=0 

Out 

Mp

Me

Charge stored originally on CL isredistributed (shared) over CL andCA leading to reduced robustness

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 57/64

58

CL=50fF

Clk 

Clk 

A  A 

B  B  B  !B 

C C 

Out 

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 58/64

59

CL

VDD

CL

Vout

t Ca

VDD

VTn

VX  –  +=

or 

 Vout Vout t VDD – 

CaC

L-------- VDD VTn VX  –   – = =

 Vout

  VDD

Ca

Ca  C

L+

----------------------

 – =

case 1) if V ou t 

 < V Tn 

case 2) if V ou t 

 > V Tn 

B = 0 

Clk  

C L 

C a 

C  b 

Out 

M  p 

M a 

V DD 

M  b 

Clk   M e 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 59/64

60

Clk 

Clk 

Me

Mp

Out 

MkpClk 

Precharge internal nodes using a clock-driven transistor (at the costof increased area and power)

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 60/64

61

CL1

Clk 

Clk 

B=0 

A=0 

Out1 Mp

Me

Out2 

CL2 In 

Dynamic NAND  Static NAND 

=1  =0 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 61/64

-1

0

1

2

3

0 2 4 6

62

Time, ns 

Clk 

In 

Out1 

Out2 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 62/64

63

CL

Clk 

Clk 

Out 

Mp

Me

Coupling between Out and Clkinput of the precharge device dueto the gate to drain capacitance.So voltage of Out can rise above

VDD. The fast rising (and fallingedges) of the clock couple to Out.

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 63/64

64

-0.5

0.5

1.5

2.5

0 0.5 1

Clk 

Clk 

In1

In2

In3

In4

Out 

In &Clk 

Out 

Time, ns 

Clock feedthrough 

Clock feedthrough 

8/11/2019 7. Design Methodology Part 1

http://slidepdf.com/reader/full/7-design-methodology-part-1 64/64

Capacitive coupling Substrate coupling

Minority charge injection

Supply noise (ground bounce)