7 Cervical Anatomy and Function in Turtles et al 2008...7 Cervical Anatomy and Function in Turtles...

50
7 Cervical Anatomy and Function in Turtles Anthony Herrel, Johan Van Damme, and Peter Aerts CONTENTS 7.1 Introduction ......................................................................................................................... 163 7.2 Materials and Methods ....................................................................................................... 165 7.2.1 Anatomical Studies .................................................................................................. 165 7.2.2 Kinematic Analyses ................................................................................................. 165 7.3 Results ................................................................................................................................. 166 7.3.1 Osteology ................................................................................................................. 166 7.3.2 Cervical Joints ......................................................................................................... 167 7.3.3 Musculature ............................................................................................................. 169 7.3.3.1 Chelodina ................................................................................................... 169 7.3.3.2 Apalone ...................................................................................................... 175 7.3.4 Neck Movements...................................................................................................... 179 7.3.4.1 Neck Retraction and Cervical Mobility in Apalone ferox ......................... 179 7.3.4.2 Kinematics of Snorkeling in C. longicollis ................................................ 180 7.4 Discussion ........................................................................................................................... 181 7.4.1 Vertebral Structure .................................................................................................. 181 7.4.2 Cervical Musculature............................................................................................... 181 7.4.3 Movement Patterns .................................................................................................. 183 Acknowledgments .......................................................................................................................... 184 References ...................................................................................................................................... 184 . INTRODUCTION Being mobile is an essential requirement for any animal. Not only do animals need to move about to find food or partners, they also need to be able to escape potential predators (Irschick & Gar- land, 2001). Interestingly, some vertebrate groups appear to have sacrificed part of their mobility in response to predation pressure by the development of a robust armored body (e.g., pangolins, glyptodonts, turtles, and so on). Although body armor can provide an animal with an adequate protection against predators, it also dramatically reduces its locomotor ability and overall agility (Wren et al., 1998; Zani et al., 2005). Thus, many armored vertebrates have specialized on eating non-mobile food items like plants, or clumped food sources such as ants or termites (King, 1996). However, some groups have developed an alternative strategy for capturing elusive prey by devel- oping long, mobile appendages such as projectile tongues (Deban et al, 1997; Herrel et al., 2000) or a long neck (Gans, 1992). For instance, many semi-aquatic and aquatic turtles have developed remarkably long necks that are used to capture elusive prey under water (Pritchard, 1984). Although the turtle carapace provides an excellent defense against predators, it is imperative that the long neck and head can be protected as well. To do so, the head-neck system needs to be withdrawn within the margins of the bony shell. This can be done in one of two ways: in the

Transcript of 7 Cervical Anatomy and Function in Turtles et al 2008...7 Cervical Anatomy and Function in Turtles...

���

7 CervicalAnatomyandFunctioninTurtles

Anthony Herrel, Johan Van Damme, and Peter Aerts

Contents

7.1 Introduction......................................................................................................................... 1637.2 MaterialsandMethods....................................................................................................... 165

7.2.1 AnatomicalStudies.................................................................................................. 1657.2.2 KinematicAnalyses................................................................................................. 165

7.3 Results................................................................................................................................. 1667.3.1 Osteology................................................................................................................. 1667.3.2 CervicalJoints......................................................................................................... 1677.3.3 Musculature............................................................................................................. 169

7.3.3.1 Chelodina................................................................................................... 1697.3.3.2 Apalone...................................................................................................... 175

7.3.4 NeckMovements...................................................................................................... 1797.3.4.1 NeckRetractionandCervicalMobilityinApalone ferox......................... 1797.3.4.2 KinematicsofSnorkelinginC. longicollis................................................ 180

7.4 Discussion........................................................................................................................... 1817.4.1 VertebralStructure.................................................................................................. 1817.4.2 CervicalMusculature............................................................................................... 1817.4.3 MovementPatterns.................................................................................................. 183

Acknowledgments.......................................................................................................................... 184References...................................................................................................................................... 184

�.� introduCtion

Beingmobileisanessentialrequirementforanyanimal.Notonlydoanimalsneedtomoveabouttofindfoodorpartners,theyalsoneedtobeabletoescapepotentialpredators(Irschick&Gar-land,2001).Interestingly,somevertebrategroupsappeartohavesacrificedpartoftheirmobilityinresponse topredationpressureby thedevelopmentofarobustarmoredbody(e.g.,pangolins,glyptodonts, turtles, and soon).Althoughbodyarmor canprovideananimalwith anadequateprotectionagainstpredators,italsodramaticallyreducesitslocomotorabilityandoverallagility(Wrenetal.,1998;Zanietal.,2005).Thus,manyarmoredvertebrateshavespecializedoneatingnon-mobilefooditemslikeplants,orclumpedfoodsourcessuchasantsortermites(King,1996).However,somegroupshavedevelopedanalternativestrategyforcapturingelusivepreybydevel-opinglong,mobileappendagessuchasprojectiletongues(Debanetal,1997;Herreletal.,2000)oralongneck(Gans,1992).Forinstance,manysemi-aquaticandaquaticturtleshavedevelopedremarkablylongnecksthatareusedtocaptureelusivepreyunderwater(Pritchard,1984).

Althoughtheturtlecarapaceprovidesanexcellentdefenseagainstpredators,itisimperativethat the longneckandheadcanbeprotectedaswell.Todo so, thehead-neck systemneeds tobewithdrawnwithinthemarginsofthebonyshell.Thiscanbedoneinoneoftwoways:inthe

3339.indb 163 11/26/07 12:07:41 PM

��� BiologyofTurtles

mid-sagittalplane(vertically),whichinvolvestheretractionoftheheadandneckwithinthebonyshell,orlaterally(inthehorizontalplane),wheretheneckisfoldedbetweenthedorsalandventralrimofthebonyshell.Inthiscase,theheadandneckdoremainpartiallyexposedintheoutercara-pacialchamberinfrontofthepectoralgirdle(VanDammeetal.,1995).ThisdifferenceinthemodeofneckretractioninturtleshasoftenbeenusedasanimportantcharacterforthesubdivisionoftheclassTestudinesintothesubclassesCryptodiraandPleurodira.Whereascryptodiresretracttheirhead-necksystemintheverticalplane,pleurodiresdosointhehorizontalplane(Figure7.1).

Accuratecontroloftheneckduringrapidmovementsassociatedwithescapeheadretractionandpreycaptureappearscrucialforturtles.However,theturtleneckisahighlycomplexmulti-jointedsystem,consistingofeightcervicalvertebrae,thehead,andthebodyandalargenumberofmusclesthatspananywherefromonetoovereightjoints.Thecontrolofsuchamulti-jointsystemwithalargenumberofdegreesoffreedomappearsinherentlycomplex.Althoughsomewaystofacilitatethecontrolofthesystemhavebeenidentifiedpreviously(Aertsetal.,2001),abetterunderstandingof thedetailedstructureandfunctionof themusculo-skeletalelementsof thecervicalsystemisessentialtogainbetterinsightintothecontrolofthecervicalsystem.Moreover,largedifferencesinvertebralstructure,inthemorphologyofassociatedmusculature,andinthecontrolofthecra-nio-cervicalsystemcanbeexpectedforturtlesthatretracttheirneckspredominantlyineitherthehorizontalorverticalplane.Unfortunately,previousauthorshavedescribeddifferencesinvertebralstructurebetweencryptrodiranandpleurodiranturtlespredominantlyfromataxonomicstandpoint(Vaillant,1881;Williams,1950;butseeWeisgram&Splechtna1990,1992).Thus,itremainspres-entlyunclearwhetherdifferentfunctionalcapacities(i.e.,rangesofmobility)areassociatedwitheithermorphology.Withoutthistypeofinformation,ourunderstandingofthecontrolofthecranio-cervicalsystemincryptodiranandpleurodiranturtlesmust,unfortunately,remainlimited.

Theaimof thepresent chapter is togiveadetailedmorphologicaldescriptionof thecervi-calsysteminpleurodiranandcryptodiranturtles.Indoingso,ouremphasiswillbeonthefunc-tionalconsequencesofdifferencesinmorphologyinthetwogroups.Additionally,somepreviouslyunpublisheddataon theactualkinematicsofneckmovementwillbepresented tohighlight theconsequencesofmorphologicaldifferencesinthetwogroups.Asourtyperepresentativesforcryp-todiranandpleurodiranturtleswehavechosenthegeneraChelodinaandApalone.TheAustralianpleurodiranturtlesofthegenusChelodinaarerenownedfortheirextremeelongatedneck.Becausetheneckislongerthanthecarapace,theseturtlesarealsoknownassnake-neckedturtles.Theseanimalsusetheirelongatedneckbothforquickstrikesatpreyandforsnorkeling,thusaspiratingairfromthesurfacewithoutexposingmorethanthetipofthesnout.Speciesfromthisgenuswillbeusedasatypicalrepresentativeofthepleurodirancondition.TurtlesofthegenusApalone,alsoknownasthesoft-shelledturtles,representthecryptodirancounterpartofChelodina.Theseani-malsarealsocharacterizedbyanextremelyelongatedneck,oftenlongerthanthecarapaceitself(Ernst&Barbour,1989).Soft-shellturtlestypicallyliveinshallowwaterandwillusetheirelon-gatenecktobreatheatthewatersurfacewithminimalmovement.Moreover,justlikeChelodina,

Cryptodira Pleurodira

figure�.� Schematicrepresentationofthetwomajormodesofheadretractioninturtles.Left,lateralviewonthecervicalsysteminacryptodire.Incryptodires,theheadisretractedintheverticalplane.Right,dorsalviewonthecervicalsysteminapleurodire.Heretheheadisretractedinthehorizontalplane.

3339.indb 164 11/26/07 12:07:42 PM

CervicalAnatomyandFunctioninTurtles ���

membersofthegenusApalonearevoraciouspredatorsthatwillactivelystrikeatelusivepreyunderwater(Dalrymple,1977;Ernst&Barbour,1989).

�.� materialsandmethods

7.2.1 AnAtomIcAlStudIeS

The anatomy of the cervical vertebrae, joint structures, and cervical musculature of Chelodinalongicolliswasstudiedbymeansofdissectionofapreservedspecimen(K.B.I.N.,R.G.nr.4566).Additionally,anadultC. reimani(cadaverobtainedthroughthecommercialpettrade)wasusedtostudythecervicalanatomy.OneindividualofthespeciesApalone feroxandoneA. spiniferusweredissectedtoinvestigatetheanatomyofthecervicalsysteminatypicalcryptodire.Animalswereobtainedthroughthecommercialpettrade,sacrificedbymeansofanoverdoseofNembutalandpreservedina10%aqueousformaldehydesolutionfor24hours.Next,animalswererinsedexten-sivelyandtransferredtoa70%aqueousethanolsolution.

Cervicalmorphologywasstudiedbymeansofdissections.Inthemorphologicaldescriptions,vertebraeareindicatedbycapitalCorD(cervicalanddorsalvertebrae,respectively)followedbytheirserialnumber.C1isclosesttothehead.Jointsarelabeledbythenumberoftheadjacentver-tebrae:C(n)-(n −1),withnthenumberofthemorecaudalvertebraand(n −1)thenumberofthemorecranialoneassuggestedbyHeidweiller(1991).Forexample,thejointbetweenvertebra5and6isdefinedas“jointC6-5.”

7.2.2 kInemAtIcAnAlySeS

Tostudythekinematicsofsnorkeling,twoliveadultspecimensofChelodina longicolliswereusedfortheexperiments(onefemaleof730g,18cmcarapacelengthandonemaleof520g,15cmcara-pacelength).TheanimalswereobtainedwiththehelpoftheAntwerpZooandwerehousedinaglassaqua-terrariumona12-hourlight/darkcycle.OneliveApalone feroxandoneliveA. spiniferus,obtainedthroughthecommercialpettrade,wereusedtostudythemobilityofthecervicalvertebraeintheselong-neckedcryptodires.Thewatertemperaturewaskeptat28°Cforallspecies.Twiceaweek,theturtleswerefedwithmeat,mice,andsmallinvertebrates(crickets,grasshoppers).

Snorkelingmovements(neckmovementsintheverticalplane)ofC. longicolliswererecordedbymeansofcineradiographyinlateralviewusingaPolydoros80SgeneratorequippedwithaSiemensSiregraphD40x-rayflashapparatusat66kV.Thedigitalcineradiographicrecordings(dependingonthesequence4or6framespersecond,FluorospotH)wereprintedonScopixlaserfilm(35×43cm)bymeansofanAgfalaserprinter.Duringtherecordings,theanimalswererestrainedbymeansofabody-shapedcorselet.Thiscorseletwasmountedunderthewatersurfaceonafixedframe.

Thesequenceswereprojectedframebyframeanddigitized.Digitizationofthepositionofthejointsallowedthecalculationofseveralkinematicalparameters(jointangles,elevationofthehead,headposition)inaturtle-boundframe.Thesameterminologyofjointrotationsisusedasdescribedfortheneckmovementsinthehorizontalplane,i.e.,clockwiserotationsaredefinedaspositive.

MobilityofthecervicalvertebraeinA. feroxandA. spiniferuswasstudiedbymeansofCTscanning.TheanimalwasanesthetizedbymeansofintramuscularinjectionofKetamine(150mg/kgbodymass).CTscanswererecordedusingaCT-highlightAdvantagescannerattheUniversityofAntwerpHospital.Of10different staticneckpositions, ranging fromfullyextended to fullyretracted,3-slongrecordingsresultingin1.5mmthickslicesthroughthevertebralcolumnweremadeat140kV,140mA.ScanswereprintedonScopixLT2B-100NIFx-rayfilm.

3339.indb 165 11/26/07 12:07:42 PM

��� BiologyofTurtles

�.� results

7.3.1 oSteology

Thecervicalcolumninallrecentturtlesconsistsofeightelongatedvertebrae(C1toC8)andninejoints.Themostimportantelementofthevertebraeisthevertebralcentrum,whichispositionedrightbelow the spinalcord.From thecentrum, theneuralarch risesandcovers the spinalcord(Figure7.2).Theneuralspinesarepositionedmidventrallyontheneuralroofandarereducedinmost turtles (Figure7.2).Thearticulationof thedifferentvertebraeoccursbymeansof thever-tebral centra and the zygapophyses (Figure7.2).Theprezygapophysesof thevertebra articulatewiththepostzygapophysesofthemorecraniallysituatedvertebra.Whereasthearticularfacetsoftheprezygapophysesarepositioneddorsally,thoseofthepostzygapophysesareorientedventrally.Vertebralcentracanbebiconvex(C5andC8inChelodina),biconcaveoramphicoelous(C1inbothspecies;C7 inChelodina), procoelous (C6 inChelodina) or opisthocoelous (C2,C3, andC4 inChelodina;C2toC8inApalone).

Inatransversesection, thevertebralcentrumofChelodina issaddle-shaped(Figure7.3andFigure7.4).Thevertebralcentrumiswelldevelopedonlyattheleveloftheanteriorandposteriorarticulations.Theneuralspineisreducedtoaninconspicuouslongitudinalrim.Theanteriorzyg-apophysesareclearlyseparatedfromeachother(Figure7.3andFigure7.4).Theirarticularfacetsaremainlyorientedinthemedio-dorsaldirection.TheposteriorzygapophysesarefusedtoeachotherexceptthoseofC1(Figure7.3),butthearticularfacetsremainseparatedandfacemainlyven-trallyandslightlylaterally(Figure7.3andFigure7.4).Theelevationoftheposteriorzygapophysisgraduallyincreasesfromdistaltoproximal(Figure7.3andFigure7.4).Thetransverseprocessesarestronglydeveloped,especiallythoseonthemoreproximalvertebrae(Figure7.3andFigure7.4).

Thecervicalvertebrae inApalone are relativelygracileandelongated (Figure7.5andFig-ure7.6).Theybearwell-developedandwell-separatedpre-andpost-zygapophyses(Figure7.5and

A

Posterior zygapophysis

Caudal

Centrum

Ventral

Transverse process

BPosterior zygapophysisArticular facets

posterior zygapophysisAnterior zygapophysis

Neural canal

Transverse process

Posterior articular facetof the centrum

C Posterior zygapophysis

Anterior zygapophysis

Neural canal

Transverse process

Anterior articular facetof the centrum

Cranial

Anterior zygapophysisNeural arch

Dorsal

figure�.� Chelodina longicollis.Terminologyofthemostimportantstructuralelementsofacervicalverte-bra(C7).(A)Lateralview,(B)posteriorview,and(C)anteriorview(terminologyafterRomer&Parsons,1977).

3339.indb 166 11/26/07 12:07:44 PM

CervicalAnatomyandFunctioninTurtles ���

Figure7.6).Theorientationofthezygapophysesisvariablethroughouttheneck.Becauseoftheabsence of the iliocostalis and logissimus groups (discussed later), the transverse processes areonlypoorlydeveloped(Figure7.5andFigure7.6).Becauseof thestrongdivergenceof thepost-zygapophysesandtheabsenceofawell-developedneuralspine,ahiatusintervertebralis(Bojanus,1821)iscreated.InApalone,thishiatusiscoveredbyathickmembrane(Ogushi,1913).

7.3.2 cervIcAlJoIntS

Joint S(kull)-C1 (occipito-cervical joint). This procoelous ball-and-socket type joint allows theskulltomoveindependentlyfromtheneck.Theoccipitalisspherical.Theridgesofthecongru-entcotyleonC1arewelldeveloped.C1lacksanteriorzygapophyses.Theconnectionbetweenthe

Lateral view

Dorsal view

Frontal view

Caudal view

C1 C2 C3 C4

figure�.� Lateral,dorsal, frontal,andcaudalviewsof thefirst fourcervical (C1-C4)vertebrae inC. longicollis.

Lateral view

Dorsal view

Frontal view

Caudal view

C5 C6 C7 C8

figure�.� Lateral, dorsal, frontal, and caudal views of the last four cervical (C5-C8) vertebrae in C. longicollis.

3339.indb 167 11/26/07 12:07:47 PM

��� BiologyofTurtles

neuralarchofC1andthebaseoftheskullisligamentous.ThejointissimilarinbothApaloneandChelodina.

JointsC2-1,C3-2,C4-3,C5-4(anteriorpartoftheneck).Thearticulationfacetsofvertebraecomposing these joints are very similar. The vertebral centra are all opisthocoelous and haveananteriorellipticalcotyle,ofwhich the longaxis isorientedvertically inChelodinaandhori-zontallyinApalone,andaposteriorcondylewithenlargedlateralridges.Thearticularfacetsofthezygapophysesof themostcranial jointof thisgroup(C2-1)are lessstronglydeveloped.TheelongatedneuralspineofC2extendsanteriorlybeyond thearticular facetsof theposteriorzyg-apophysesofC1inbothgroups.TheposteriorzygapophysesofC1areclearlyseparated.In themorecaudaljoints,thezygapophysesareelongatedandslightlyelevated(Figure7.3).Thearticularfacetsoftheanteriorzygapophysesareslightlyconcaveandtheiroutlineiskidney-shaped.Theyareoriented in a dorso-medial direction.Theposterior zygapophyseal facets are ventrolaterallyinclined.LateralmobilityisstronglyreducedinApalonecomparedtoChelodinabecauseofthepairedpost-zygapophyses.

Lateral view

Dorsal view

Frontal view

Caudal view

C5 C6 C7 D1C8

figure�.� Lateral,dorsal,frontal,andcaudalviewsofthelastfourcervical(C5-C8)andthefirstdorsalvertebra(D1)inA.spinifera.

Lateral view

Dorsal view

Frontal view

Caudal view

C1 C1́ C2 C4C3

figure�.� Lateral,dorsal,frontal,andcaudalviewsofthefirstfourcervical(C1-C4)vertebraeinA. spi-nifera.C1′istheintercentrumoftheatlas.

3339.indb 168 11/26/07 12:07:49 PM

CervicalAnatomyandFunctioninTurtles ���

JointsC6-5andC7-6.ThecentraljointsC6-5andC7-6areprocoelousinChelodinabutopis-thocoelousinApalone.Inposteriorview,theposteriorcondyleofC5inChelodinahastheshapeofaraindrop.Alternatively,inChelodinathecondyleofC6isalmostspherical.ThecongruentcotyleontheanteriorsideofC6andC7haspronouncedlateralandventralridges.Thearticularfacetsoftheposteriorzygapophysisarewelldevelopedandalsohaveakidney-shapedoutline.Thebilateralposteriorzygapophysealfacetscontacteachothermedially,formingasemicircularorhorseshoe-shapedarticularsurface.Thearticularfacetsoftheanteriorzygapophysesaremoreoval(almostcircular)ascomparedtothemoredistaljoints.InApalone,thearticulatoryfacetsofthepost-zyg-apophysesarepositionedhorizontally.Thepost-zygapophysesthemselvesarenearlyinlinewiththelongaxisofthevertebrae(lessthan6°).

JointC8-7.C8-7isopisthocoelousandtheshapeofitscondyleandcotyleresemblepreviouslydescribedophisthocoelousjointsinbothgroups.ThecotylehasenlargedlateralridgesinChelo-dinaandisfullysplitinApalone.TheposteriorzygapophysisofC7iselongated,inclinedindorsaldirectioninbothgroups(Figure7.4).Thearticularfacetsareclearlydistinguishablefromthoseoftheremainderof thezygapophysesandare laterallyorientedinChelodina.TherathershortbutstronglyelevatedanteriorzygapophysesofC8tendtoinclinedorsomediallyinChelodinabutmorelaterallyinApalone.

JointD1-C8(cervico-dorsal joint).D1-C8 isprocoelous inChelodina. InApalone, this jointlacksacentralarticulation.InChelodina,theratherflattenedcondyleontheposteriorpartofC8isalmostcircular.Thearticularfacetfacescaudo-ventrally.ThecircularcongruentcavityontheanteriorpartofD1isshallowerthanthoseonthemoreanteriorjoints.Theelongateposteriorzyg-apophysisinChelodinaismoreelevatedinthedorsaldirectionthanthatofjointC8-7(Figure7.4).Thearticularfacetsofthezygapophysesaremoreinclinedthanthoseinthepreviouslydescribedjoints.OnC8,thearticularfacetsofbothsidesfuseandareclearlydistinguishablefromthepos-teriorzygapophysis.Theirappearanceisthatofaverticallypositionedcylinder(approximatingaverticalhingejoint).TheanteriorzygapophysesonD1arerathershortandpresentanincreaseddor-somedialinclinationofthearticularfacets.InApalone,thepost-zygapophysesofC8areextremelywelldevelopedandwider than thoseof themoreanteriorly situatedvertebrae (Figure7.6).Thearticulatoryfacetsarestronglyconcave.Thepre-zygapophysesofD1havebeenrearrangedtohori-zontallyorientedcylinders.Onlyventroflexionispossibleatthisjoint.

7.3.3 muSculAture

ThefollowingshortdescriptionofthecervicalmusculatureisbasedontheterminologyofShah(1963)forChelodinaandthatofOgushi(1913)forApalone.Othermorphologicalaccountsonthecervicalmusculatureinturtles(Bojanus,1819;George&Shah,1954,1955;Scanlon,1982)wereconsultedtoclarifythepositionofcertainmuscleswhereneeded.

�.�.�.� Chelodina

m.constrictorcolli.Thisisathinsheet-likemusclewhichcoversthefirsttwothirdsoftheneck.Themusclehasadualorigin:somefibersoriginateonthesquamosalandthedorsalconnectivetissueassociatedwiththeoccipitalspineandothersoriginateontheneuralspinesofC2-C6.Thefibersrunventrallyandinsertmidventrallyonacentralconnectivetissuesheet(medianraphe).

m.retrahenscapitisetcollique(Figure7.7).Thismuscleconsistsofanumberofwell-developedandindividualizedbundlesthatconnectthecarapacetotheneckandhead.ThefirstbundleisthelongestandoriginatesatthelateralaspectofD8andtheadjacentpartofthecarapace.Themusclerunscraniallyandinsertsbymeansofalongtendonatthebasioccipital.AnumberoffibersfromthefirstbundleinsertonthelateralaspectofC1-C5.ThesecondbundleoriginatesatthelevelofD5.ThemusclerunscraniallyandinsertstendinouslyatthelateralaspectofC5.Thethirdbundle

3339.indb 169 11/26/07 12:07:50 PM

��0 BiologyofTurtles

Carapace

Tendon

Bundle 2 Bundle 3

Bundle 1 Tendon

Bundle 4

Bundle 2 *

Bundle 2 *

Bundle 6 Bundle 5

Bundle 7 Bundle 4

m. longissimus cervicis

m. longissimus thoracis

Lateral bundles

Medial bundle

Bundle 3 *

Bundle 3 *

Bundle 1 * Bundle 1 *

Bundle 4 *

Bundle 4 *

Pectoral girdle

*

Skull

m. retrahens capitis collique

figure�.� Schematicrepresentationofthem.retrahenscapitiscollique,them.longissimuscervicis,andthem.longissimusthoracisinC. longicollis.

3339.indb 170 11/26/07 12:07:54 PM

CervicalAnatomyandFunctioninTurtles ���

m. semispinalis

m. testocapitis

m. spinalis cervico-capitis

Medial bundle

Lateral bundle

figure�.� Schematicrepresentationofthem.semispinalis,them.testocapitis,andthem.spinaliscer-vico-capitisinC.longicollis.

3339.indb 171 11/26/07 12:07:55 PM

��� BiologyofTurtles

m. rectus cervicis

m. scalenus complex

m. scalenus I

m. scalenus II

m. scalenus III

m. scalenus IV

Tendon of m. retrahens capitis collique

figure�.� Schematicrepresentationofthem.rectuscervicisandthem.scalenuscomplexinC. longicollis.

3339.indb 172 11/26/07 12:07:56 PM

CervicalAnatomyandFunctioninTurtles ���

m. constrictor hyoideus

mm. intertransversarii colli

m. longus colli

b8 b6

b7 b5

6

5 4 3 2 1

b3

b4 b2

figure�.�0 Schematicrepresentationofthem.constrictorhyoideus,themm.intertransversariicolli,andthem.longuscolliinC.longicollis.

3339.indb 173 11/26/07 12:07:58 PM

��� BiologyofTurtles

originatesatD4and insertsat the lateral aspectofC7.The fourthbundleoriginatesatD3andinsertsatthetransverseprocessofC8.

m.longissimuscervicis(LC,Figure7.7).Thisisasegmentallyarrangedmusclewithamorecomplexarrangement.TheLCofC7originatesonthepre-zygapophysisofC8.Themusclebellyrunsanteriorlyanddividesintoamoremedialandalateralbundle.Thelateralbundleinsertsonthepost-zygapophysisofC6andthemedialonthelateralaspectofC5.TheLC6originatesonthepre-zygapophysisofC7andinsertsonthepost-zygapophysisofC5.TheLC5originatesonthepre-zygapophysisofC6andinsertsonthepost-zygapophysisofC4.TheLC4originatesonthepre-zygapophysisofC5andinsertsmainlyontheneuralarchofC1.Duringthecourseofthemuscle,fibersdivergeandinsertonthepost-zygapophysesofC3andC2aswell.

m.longissimusthoracis(Figure7.7).Thismuscleisresponsibleforlateralflexionoftheposte-riorpartoftheneckandconsistsofonemedialandtwolateralbundles.Allbundlesoriginateattheventralaspectofthecarapace,cranialtotheoriginofthem.testocapitis.ThemedialbundleinsertsatthelateralaspectofC8.ThefirstlateralbundleinsertsbymeansofatendononC6atthelevelofthepost-zygapophysis.ThefibersofthelateralmostbundleruninitiallyventraltothepreviousbundlebutrunmorelaterallyatthelevelofC7.Themusclebundleinsertstendinouslyatthelevelofthepost-zygapophysisofC5.

mm.semispinalis(Figure7.8).Thisisaseriesofshortseriallyarrangedmusclesthatspanadja-centvertebraeandrunfromC2toC8.Themusclesoriginateattheneuralspineofthemoreposte-riorvertebraandrunanterolaterallytoinsertonthepost-zygapophysisoftheanteriorvertebra.

m. testocapitis (Figure7.8). This is a very long muscle that consists of two distinct musclebundlesthatconnectthecarapacetotheheadandneck.Bothbundlesoriginateattheventralaspectofthecarapace,lateraltothescapula.ThefibersofthemedialbundleconvergeontoastrongtendonthatinsertsatthelateralaspectofC5.ThelateralbundleinsertsthroughacomplexarrangementoftendonsintheanteriorpartoftheneckatthelateralaspectofC4-C2.

m.spinaliscervico-capitis(Figure7.8).Thisissuperficialdorsalcervicalmusclebundle.ThemuscleoriginatesattheneuralspinesofC3-C5andrunsobliquelyanteriorly.Themoremediallypositionedfibersinsertonthelateralaspectoftheoccipitalspineandthemorelateralfibersonthedorsalaponeurosiscoveringthem.adductormandibulae.

m.rectuscervicis(Figure7.9).This isaverylongandventrallypositionedmusclethatcon-nectsthepectoralgirdlewiththeventralaspectofthehyobranchium.Themuscleoriginatesatthemid-dorsalaspectofthecoracoid.Thefibersrunventrallyandjointhefibersofthem.constrictorhyoideusofthesameside.Atthelevelofthehyobranchium,thetwomusclesseparateagainandthefibersofthem.rectuscervicisinsertpartiallyonthesecondceratobranchialandpartiallyonthebasibranchium.

m. scalenus complex (Figure7.9).This is a seriesof fourmuscles that connect thepectoralgirdlewiththelateralaspectoftheposteriorneck.Themostsuperficialbundleisverythinandrunsbetweentheacromion,thedorsalaspectoftheplastron,andtheposteriormostcervicalvertebrae(C6-C8).Thesecondandventralmostbundleofthescalenuscomplexoriginatesontheacromionbutdistallytothefirstbundle.ThefibersinsertattheventrolateralaspectofC4andC5.Thethirdbundleoriginatespartlyonthescapulaandpartlyontheacromion.ThefibersconvergeonaflattendonthatinsertsattheventrolateralaspectofC5.Thefourthpartistheshortestandoriginatesacrosstheentirewidthofthescapula.Themuscleinsertsontheproximalaspectofthetendinousinsertionofthesecondbundleofthem.retrahenscapitisetcollique.

m.constrictorhyoideus(Figure7.10).ThismuscleoriginatesatthelateralaspectofC6,runscraniallyandinsertsattheposterioraspectofthefirstceratobranchial.Althoughitsprimaryfunc-tionispresumablyrelatedtotheabductionandretractionoftheceratobranchial,itpresumablyalsoplaysaroleduringlateralbendingoftheneck.

mm. intertransversarii colli (Figure7.10). This is another segmentally arranged muscle thathasadualorigin.Thelateralbundleoriginatesattheventralaspectandthemedialbundleatthe

3339.indb 174 11/26/07 12:07:58 PM

CervicalAnatomyandFunctioninTurtles ���

diapophysisofthecervicalvertebra.Bothbundlesjoinandinsertattheposterioraspectofthever-tebralcentrumofthemorecraniallypositionedvertebra.

m.longuscolli(Figure7.10).Thismuscleconsistsofaseriesofsegmentallyarrangedsmallmusclebundlesthatrunincloseassociationtothem.retrahenscapitisetcollique.Thelonguscollibundlesofthefirstfivevertebraeoriginateattheventralaspectoftherespectivevertebrae.Inser-tiontakesplacebymeansofthetendinousinsertionofthesecondbundleofthem.retrahenscapitisetcolliqueonthelateralaspectofC4-C1.Themusclesinthemoreposteriorpartoftheneckaresomewhatmorecomplex.Them.longuscolli8originatesontheventralsideofC8andinsertsonthetendonofthesecondbundleofthem.retrahenscapitisetcollique.Thelonguscolli7originatesattheventralaspectofC7andinsertsbymeansoftheinsertionofthetendonofthesecondbundleofthem.retrahenscapitisetcolliqueatthelateralaspectofC5.Thelonguscolli6originatesattheventralaspectofC6andinsertsatthelateralaspectofC5.

�.�.�.� Apalone

NotableinApaloneisthestrongreductionoftheepaxialmusculature(Hofstetter&Gasc,1969),theabsenceofthelongissimussystem,andtheabsenceoftheiliocostalissystemthatischaracteristicforallturtles.

m. constrictor colli (m. sphincter colli, Ogushi, 1913). This muscle is poorly developed inApaloneandconsistsoftwodiscreteparts.Theanteriorpartcoversthelateralandventralaspectoftheanteriorneckregion.Itoriginatesonthedorsalconnectivetissueassociatedwiththeoccipitalspineandrunsventrallytoinsertonthemedianraphe.Theposteriorpartisoftendifficulttodis-cernandoriginatesmoreposteriorlyintheneckonthenuchalconnectivetissueassociatedwiththeneuralspinesandinsertsventrallyonthemedianraphe.

m.rectuscervicis(m.coraco-hyoideus,Ogushi,1913).Thisistheventral-mostmuscleinthecervicalregion.Themusclehasadualorigin—onepartoriginatesonthedorsalaspectoftheproxi-malpartoftheprocoracoid,andtheotherpartoriginatesatthedorsalaspectoftheepicoracoid.Themusclerunsanteriorlyandinsertsattheposterioraspectofthebasibranchium.

m.carapaco-basioccipitis (Figure7.11).This isavery longmuscle that runs fromthepelvicgirdletothecranium.Threedistinctoriginsonthecristamedianaventralisofthefirst,second,andthirdcaudalvertebraearepresent.Inaddition,threeaccessorysitesoforigincanbediscerned:ontheproximalaspectofthefifthrib,acrosstheentirelengthofthesixthcostalplate,andalongtheentireseventhribandassociatedcostalplate.Thefibersofthislastbundleinitiallyrunatanangleofatmost90°tothelongaxisoftheremainderofthemuscle.

m. carapaco-basioccipitis

Costal plate Rib

figure�.�� Schematicrepresentationofthem.caracapo-basioccipitisinA. spinifera.

3339.indb 175 11/26/07 12:07:59 PM

��� BiologyofTurtles

A

m. spinalis cervico-capitis - cauda hyoidea

m. spinalis cervico-capitis - cauda squamosi

m. spinalis cervico-capitis - cauda occipitalis

m. spinalis cervico-capitis - cauda cornu branchiale II

m. spinalis cervico-capitis

m. articulo-transversalis longus

B E

C F

D

figure�.�� Schematicrepresentationofthem.spinaliscervico-capitiscomplex(A–D),them.cervico-spinalis(E),andthem.articulo-transversalislongus(F)inA. spinifera.

A

m. articulo-transversalis brevis

m. articulo-cruralis longus

m. intertransversalis

m. transverso-corporis

m. cervico-spinalis lateralis brevis dorsalis

m. epistropheo-squamosus ventralis

B E

C F

D

figure�.�� Schematicrepresentationofthem.articulo-transversalisbrevis,them.articulo-cruralislon-gus,them.intertransversalis,them.transverso-corporis,them.cervico-spinalislateralisbrevisdorsalis,andthem.epistropheo-squamosusventralisinA. spinifera.

3339.indb 176 11/26/07 12:08:02 PM

CervicalAnatomyandFunctioninTurtles ���

A

m. epistropheo-squamosus dorsalis

m. epistropheo-atlantis dorsalis

m. epistropheo-atlantis ventralis

m. atlanto-exoccipitis

m. atlanto-basioccipitis medialis

m. atlanto-opisthoticus

B E

C F

D

figure�.�� Schematicrepresentationofthem.epistropheo-squamosusdorsalis,them.epistropheo-atlan-tisdorsalisandventralis,them.atlanto-exoccipitis,them.atlanto-basioccipitismedialis,andthem.atlanto-opisthoticusinA.spinifera.

A

B m. epistropheo-odontoideus

m. cortico-cervicale I

m. cortico-cervicale II

m. cortico-cervicale III

C

D

figure�.�� Schematic representation of the m. epistropheo-odontoideus and the m. cortico-cervicalegroupinA. spinifera.

3339.indb 177 11/26/07 12:08:04 PM

��� BiologyofTurtles

m. spinalis cervico-capitis (cervico-hyo-capitis, Ogushi, 1913; Figure7.12). This is a largemusclethatconsistsoffourdistinctmusclebellies—thecaudahyoidea, thecaudasquamosi, thecaudaoccipitalis,andthecaudacornubranchialeII.Thecaudahyoidea(Figure7.12A)originatesattheneuralroofofC6,runsanteriorlyandmergeswiththefibersofthem.rectuscervicis.Thecaudasquamosi(Figure7.12B)partoriginatesattheneuralroofofC5,runscranially,andinsertsbymeansofabroadaponeurosisattheposterioraspectofthesquamosum.Thecaudaoccipitalis(Figure7.12C)originatesattheneuralroofofC4,runscranially,andinsertsontheexternalfas-ciacoveringtheexternaladductor.ThecaudacornubranchialeII(Figure7.12D)originatesattheneuralroofofC3,runscranially,andinsertsattheconnectivetissueassociatedwiththetipofthesecondceratobranchial.

m.cervico-spinalismedialis(Figure7.12E).Thisisasegmentallyarrangedmuscle.Themus-clesoriginatetendinouslyattheanterioraspectofthecristamedianaventralis,runanteriorly,andinserttendinouslyattheposterioraspectofthecristamedianaventralisofthethirdmorecraniallypositionedvertebra.ThemusclesoriginatingontheC2-C4mergeandinsertjointlyattheventralaspectofthebasioccipitalbymeansofawell-developedtendon.

m.cervico-spinalislateralislongi(Figure7.12&Figure7.13).Thisconsistsofthreelong,super-ficialmusclesthatoriginateatthelateralaspectofthezygapophysesofC5throughC8:

Them.articulo-transversalislongus(Figure7.12F)originatesonthelateralaspectofthepre-zygapophysesofthelastfivecranialvertebrae.Themusclerunscraniallyacrosstheventralaspectofthetwomorecraniallysituatedvertebraeandinsertsonthetransverseprocessofthefollowingvertebra.Them.articulo-transversalisbrevis (Figure7.13A)runsacross threevertebrae. Itorigi-natesatthedorsalaspectofthepre-zygapophysesandinsertsjointlywiththem.articulo-transversalislongus.Them.articulo-cruralislongus(Figure7.13B)originatestendinouslyatthedorsalaspectof thepre-zygapophyses, runscranially, and insertsdirectlyat thedorsal aspectof thepost-zygapophysesofthethirdmorecraniallypositionedvertebra.

mm.cervico-spinalislateralisbrevesventrales(Figure7.13).Thisconsistsoftwodistinctmus-clegroups,themorelaterallypositionedmm.intertransversales(Figure7.13C)andthemoremedi-allypositionedmm.transverso-corporis(Figure7.13D).Theformeroriginatestendinouslyatthetransverseprocess,runscranially,andinsertsdirectlyontheposterolateralaspectofthepre-zyg-apophysisandtheposterioraspectofthetransverseprocessofthemorecraniallysituatedvertebra.Them.transverso-corporisoriginatesontheventralaspectofthetransverseprocessandtheverte-bralbody,runscranially,andinsertsonthecondyleofthemorecraniallysituatedvertebra.

mm.cervico-spinalis lateralisbrevisdorsales(Figure7.13E).This isasegmentallyarrangedmusclerunningfromC7toC3.Eachsegmentconsistsoftwodistinctparts.Themedialpartorigi-natesatthelateralaspectofthecristalateralisofthepost-zygapophysisandinsertsatthedorsalaspectofthebaseofthepost-zygapophysesonthemorecraniallypositionedvertebra.Thelateralpartoriginatestendinouslyontheconnectivetissuesurroundingthezygapophysealarticulationandinsertsatthedorsolateralaspectofthepost-zygapophysisofthemorecraniallysituatedvertebra.

m.epistropheo-squamosusventralis (Figure7.13F).Themuscleoriginatesaponeuroticallyattheposterioraspectofthecristamedianaventralisoftheaxis.Themusclerunsanterodorsallytoinsertattheprocessusmastoideus(Ogushi,1913)ofthesquamosal.

m. epistropheo-squamosus dorsalis (Figure7.14A). This originates fleshy at the neural archandtheposterioraspectoftheneuralroofoftheaxis.Themusclerunsanteriorlyandinsertsattheprocessusmastoideusofthesquamosalandtheposterioredgeoftheopisthoticum.

m.epistropheo-atlantisdorsalis(Figure7.14B).Thisoriginatesattheanterioraspectoftheneu-ralarchoftheaxis.Themusclerunsanteriorlyandinsertstendinouslyattheprocessusarticularistransversalisventralisoftheatlas.

3339.indb 178 11/26/07 12:08:05 PM

CervicalAnatomyandFunctioninTurtles ���

m.epistropheo-atlantisventralis(Figure7.14C).Thisliesventraltothepreviousmuscle.Itorig-inatesfleshyatthelateralaspectoftheaxis,bothdorsalandventraltothetransverseprocess,andinsertsbymeansofashortaponeurosisattheprocessusarticularistransversalisoftheatlas.

m.atlanto-exoccipitis(Figure7.14D).Thisoriginatesatthetendinousinsertionofthem.rectuslateralisontheatlasandinsertsfleshyattheexoccipital.

m.atlanto-basioccipitismedialis(Figure7.14E).Thisoriginatesbymeansofashorttendonattheprocessusarticularisventralisoftheatlas.Themusclerunscraniallyanddivergestowarditsoriginonthebasioccipital.

m.atlanto-opisthoticus(Figure7.14F).Thisoriginatesatthedorsolateralaspectoftheatlasandinsertsatthedorsalsurfaceoftheopisthoticum.

m.epistropheo-odontoideus(Figure7.15A).Thisoriginatesatthelateralaspectoftheatlas,justdorsaltothecristamedianaventralis,andinsertsbymeansofanarrowtendonattheprocessusodontoideus.

m.cortico-cervicaleI(Figure7.15B).Thisoriginatesfleshyattheanteromedialaspectofthenuchalplateandinsertsmusculouslyatthelateralaspectofthepost-zygapophysisofC6.

m. cortico-cervicale II (Figure7.15C). This originates at the nuchal plate, just posterior totheoriginof them.cortico-cervicale I.Themuscle insertsfleshyat theneural roofofC6, justposteriortotheinsertionofthecaudahyoideaofthem.cervico-hyo-capitis.

m. cortico-cervicale III (Figure7.15D). This has adualorigin.The lateralpartof themuscleoriginatesatthelateralaspectoftheventralsideofthenuchalplatebymeansofanarrowandlongmuscularhead.Themedialheadoriginatesposteriortotheoriginofthem.cortico-cervicaleII.Bothheadsmergetowardtheoriginontheneural roofofC7, lateral to the insertionof them.cer-vico-spinalislateralisbrevisdorsalis.

m.spinalisdorso-lumbalis.Thissegmentallyarrangedmuscleispositionedinthecanaliscollateralisvertebralis(Vallois,1922).Theoriginispartlyontheinneraspectofthecanalandpartlyonthedorsalaspectofthecapitulumoftherib.Themuscleleavesthecanaliscollateralisver-tebralisrightposteriortotheribassociatedwithD1andinsertsdirectlyatthepost-zygapophysisofC8.

7.3.4 neckmovementS

NeckmovementsinChelodinaaredescribedindetailbyVanDammeetal.(1995,2002),Aertsetal.(2001),Weis-gram et al. (1992), and Van Damme and Aerts (1997).PreviouslyunpublishedinformationonneckmovementsinApaloneandChelodinaarepresentedhere.

�.�.�.� neckretractionandCer�icalmobilityinApalone ferox

Intheextendedconfiguration,jointsC9-8,C8-7,andC7-6showthelargestinitialangles.Themorecraniallyposi-tioned joints are all in the extended configuration. TheretractionoftheneckinApaloneischaracterizedbyrela-tivelysmallangularchangesinthefirstthree(C3-2,C2-1,andS-C1)andthelastcervicaljoint(C9-8).Thelargest

A

B

C

figure�.�� Static cineradiographsrecorded in dorso-ventral view, showingtheconfigurationofthecervicalvertebraein(A)fullyextended,(B)relaxed,and(C)fullyretractedpositionsof theneckinA. spinifera.

3339.indb 179 11/26/07 12:08:06 PM

��0 BiologyofTurtles

angularchangesduringretractionoccur in themiddleregionoftheneck.JointsC8-7andC7-6extendduringthecourseoftheretraction.ThesituationforjointsC6-5,C5-4,andC4-3ismorecomplex.C6-5initiallyflexesduringtheretrac-tionbutextendsagaintowardthelatterpartofneckretraction.Thetwomorecraniallysituatedjointsstartwithaninitiallyextendedconfigura-tion.Duringretraction,theangleofthesejointsgraduallyincreases.

The potential range of movement in thedorso-ventraldirectionisrelativelylargeinmostvertebral joints but largest in joints C8-7, C5-4, C4-3, and C3-2. However, joint angles dur-ingasimulatedsnorkelingmovementaremostpronouncedatthemostposteriorcervicaljoints(D1-C8,C8-7,andC7-6).Theanteriorjointsarekept relatively constant throughout the move-ments, as is observed during neck retraction(Figure7.16 and Figure7.17). Lateral mobility

oftheneckinA. spiniferaisalsosurprisinglyhigh,withthemoreproximaljointsbeingtheonesallowingmostmovement in thehorizontalplane. Incon-trast, thelastthreecervicaljointsallowalmostnolateralmovements.

�.�.�.� KinematicsofsnorkelinginC. longicollis

Neck movements during snorkeling in C. longicollis aremuch slower in comparison with those involved duringfeeding behavior (Aerts et al., 2001; Van Damme et al.,2002) and escape retraction (Van Damme et al., 1995).The total duration of a typical ventroflexion followed byadorsiflexionisabout6s.Eachcomponentofthemove-ment takes about 3 s. The representative example of asnorkeling movement in C. longicollis is represented bysuccessivestickdiagramsinFigure7.19.Startingfromanextendedconfigurationinwhichheadandneckareslightlydepressed, the animal initially balances its neck aroundthis configuration.This configuration is characterizedbyverysmall startingangles inall joints (withexceptionofD1-C8). Minor changes in joint angles occur during thefirstphaseofthemovementmainlyintheposteriorpartoftheneck(Figure7.20).Duringthisphase,noconspicuouschangesoftheelevationoftheheadandheadpositionareobserved. After approximately 3 s, a conspicuous, rathersteady increase in the elevation of the head is observed,mainlyasaresultofchangesintheangleofjointsC4-3toC7-6.InpatternsobservedinC8-7andD1-C8inthemostposteriorpartoftheneckandS-C1andC2-1inthemostanteriorpartoftheneck,changesinvertebral jointangle

A

B

figure�.�� (A) Static cineradio-graphs recorded in dorso-ventral viewillustratingthepositionandshapeofthecervical vertebrae inC. longicollis. (B)LateralviewofthecervicalsysteminC. longicollis during snorkeling. Note theradio-opaquemarkers insertedonto thecervicalvertebraetofacilitatetheanaly-sesofvertebralmovements.

A

B

C

figure�.�� CT-scan showing the configurationof the neck and the cervical vertebrae of A. spi-niferainfullyextended,relaxed,andfullyretractedpositions.

3339.indb 180 11/26/07 12:08:08 PM

CervicalAnatomyandFunctioninTurtles ���

appear less conspicuously related to the observed movements,showlessoverallchange,anddisplayagenerallymoreirregularmovementpattern.Atveryhighdegreesofelevation—atwhichalso head position is also starting to change—changes in jointanglearemainlyoccurringin jointsC5-4,C6-7,andespeciallyC4-3(morethan30°ofdorsiflexion).ThisisnotthecaseforC6-5.Thisjointreachesupto20°ofdorsiflexionandthenlevelsoff.Figure7.21illustratestheabsoluterangeofmovement(expressedin degrees of flexion) of each joint during the whole sequence.Notice therelativelyminor jointrotations in theanterior(S-C1,C2-1, andC3-2) andposterior parts (C8-7,D1-C8)of theneck.Asmentionedpreviously,themostconspicuouschangesinjointangleareobservedinthemiddlepartoftheneck,especiallyinjointsC4-3,C5-4,andC7-6.

In summary, the range of mobility in the vertical plane ofthecervical joints is limited,especially incomparisonwith thechangesofjointangleinthehorizontalplane.Dorsiflexionofthejoints is more conspicuous than ventroflexion. Ventroflexion inthe joints isnearlynon-existent.Thedominantchanges in jointangleareobservedinthemiddlepartoftheneck.

�.� disCussion

7.4.1 verteBrAlStructure

Thenatureofretractionofthehead-necksysteminturtles(intheverticalplaneasinApaloneorinthehorizontalplanasinChelo-dina)hasprofoundimplicationsonthemorphologyofthecervi-cal system.Although inboth species thecervicalvertebraearemarkedlyelongated,inChelodinathevertebraearerathernarrowand tall. However, in Apalone the situation is reversed and thevertebraearewideandrathershallow.AnothermarkeddifferenceisthepresenceofapronouncedventralvertebralcrestinChelo-dina.InApalone,thesecrestsareonlypresentinthemostanteriorvertebrae.The transverseprocesses that serveas insertion sitesforthemusclesofthelongissimusarewelldevelopedinChelodinaandarepositionedlaterallyattheborderbetweentheneuralroofandthevertebralcentrum.Becausethelongissimussystemisabsent inApalone, the transverseprocessesarepoorlydevelopedandpositionedmorecranially.Also,thestructureoftheposteriorzygapophysesismarkedlydifferentbetweenthetwospecies.WhereasinChelodinathereisonlyasinglebasalelementcarryingthetwohorizontallyorientedarticularfacets,inApalonetwoseparatepost-zygapophysesarepresent.Additionally,thearticularfacetsaremuchmorecurvedinApalonecomparedtothoseinChelodina.However,inbothspeciesthestructureofthezygapophyseslimitsventroflexionconsiderably.

7.4.2 cervIcAlmuSculAture

Thedifferencesinretractionmodeinthetwogroupsarealsoreflectedinthestructureanddifferen-tiationofthecervicalmusculature.Asmentionedpreviously,forexample,thelongissimussystemappearstobecompletelyabsentinApalone.Ashead-neckmovementstypicallyoccurintheverti-calplaneintheseanimals,thisisnotunexpected.Alternatively,inChelodinathelongissimussys-temisstronglydeveloped.Notableinthecryptodiresisthecortico-cervicalmuscularsystemthat

A

B

B ∆T = 0.25 sec.

A

C

Ventroflexion

Horizontal extension

Breathing

Carapace

Dire

ctio

n of

mov

emen

t

figure�.�� (A) Schematicillustration of the neck configu-rationinC. longicollis.(B)Stickdiagram representing an actualsnorkeling movement in C. longicollis.

3339.indb 181 11/26/07 12:08:10 PM

��� BiologyofTurtles

50

40

30

Deg

rees

20

10

0S-C1 C2-1 C3-2 C4-3

Joint

Absolute Range of Movement

C5-4 C6-5 C7-6 C8-7 D1-C8

figure�.�� MovementrangeofthecervicaljointsinC. longicollisintheverticalplane.

80 40

0 –40

40 20

0

20

0

20

0

10

20 10 0

–10

–10

0

8 Head position

Elevation

S−C1

C2−1

C3−2

C4−3

C5−4

C6−5

C7−6

C8−7

D1−C8

4

0 40

20

0

40

20

0

40

20

0

40

20

0.0 1.0 2.0 Time (s)

3.0 4.0 5.0 6.0 0.0 1.0 2.0 Time (s)

3.0 4.0 5.0 6.0

0

0 –40

80 40

0 –40

80 40

0 –40

80

Deg

rees

Join

t Ang

le (°

)

40 0

–40 80 40

0 –40

40 0

–40

40

0

–40

0 –20

–60 –40

0

–40

40

figure�.�0 Kinematicplotsillustratingtimeprofilesofjointangle(dashedcurves,rightverticalaxis)andelevationanglewithrespecttothehorizontalofthemoredistalofthesegmentsconstitutingthejoint(solidcurve,leftverticalaxis)duringasnorkelingmovementinC. longicollis.Thefirstpanelrepresentselevationoftheheadsegmentandtherectilineardistance(rightaxisincm)betweenheadandcarapace.

3339.indb 182 11/26/07 12:08:13 PM

CervicalAnatomyandFunctioninTurtles ���

presumablyfunctionstoprotractandretracttheneck.PreliminaryelectromyographicdataforthecryptodireT. scripta elegans(VanDamme,unpublished)supportthishypothesis.InpleurodireslikeChelodina,thissystemisabsent.Ratherunexpectedly,them.sphinctercolliispoorlydevelopedinApalone.InChelodinaandmostotherpleurodires,thismuscleappearsmuchbetterdevelopedandmayactuallyplayaroleinaligningthecervicalmusclebundlesalongthecervicalcolumnduringneckmovements.However,thisremainsspeculativeandmustbetestedbyelectromyography.Also,thedominantheadretractormuscle,them.retrahenscapitisetcolliqueinChelodina(Shah,1963)andthem.carapace-basioccipitisinApalone(Ogushi,1913),isnotablydifferentinthetwospecies.InApalone,thismuscleconsistsofapairedmassivemusclebundlerunningfromthefirstcaudalvertebratothebackoftheskull.InChelodina,thismuscleismorecomplexandconsistsofseveraldiscretebundlesthatinsertonspecificsitesalongthecervicalcolumn.

However,astrikingsimilarityamongthetwogroupsistheextremelengthoftheheadretrac-tormuscle.Presumably,elongationoftheretractormuscleallowsformoresarcomerestobeplacedinseries,whichmayconsiderablyincreasethecontractionspeedofthemuscle(Josephson,1975).Moreover, by increasing the number of sarcomeres in series, each individual sarcomere has tocontract less and may thus potentially operate continuously on the plateau of its length-tensionrelationship.However,foranextremelyelongatedmuscletocontractefficiently,allpartsmustcon-tractsimultaneously.Thepolyneural,polysegmentalinnervationofthem.carapaco-basioccipitisin turtles (Guthe,1981)mayallowfor this.Unexpectedly, them.carapace-basioccipitisconsistsnotonlyoffasttwitchfibersbutalsohasaconsiderablepopulationoftonicfibers(Guthe,1981),whichmayhelpcontrolthepositionoftheheadandneckduringslowmovementsornear-stationarybehaviorssuchassnorkeling.

7.4.3 movementpAtternS

Thecranio-cervicalsysteminturtlescanbecharacterizedasanopenkinematicchainofeightver-tebraeandninejoints.Becauseeachjointtheoreticallyhasthreerotationaldegreesoffreedom(andtoalimitedextentalsothreetranslationaldegreesoffreedom),andbecausethepositioningofthevertebraemustbeachievedbythecombinedactionsofroughly50symmetricalmusclebundles,thecontrolofthepositionoftheheadinspaceobviouslypresentsachallengingcontrolproblem(Aertsetal.,2001).However,thecontrolofthesystemislargelysimplifiedbyanumberofmorphologicalconstraintslimitingthemobilityateachjoint.Forexample,inChelodinathehorizontalnatureofthezygapophysealarticularfacetsandtheverticalorientationofthearticularfacetsofthecondyleandthevertebralcentrumwillfacilitatemovementsinthehorizontalplane.Additionalsimplifica-tionofthecontroloftheneckinChelodinaisachievedbythepresenceofdistinctareasofrota-tionalongtheneck(VanDammeetal.,1995).Forinstance,thejointbetweencervicalvertebrae7and8andthejointsbetweencervicalvertebrae6-5and5-4typicallyshowthegreatestrangeofangularchange.Moreover, therestingpositionoftheneckischaracterizedbyadistinctbendattheselocations,facilitatingthecorrectretractionoftheneckusingonlyasimpleactivationofthem.retrahenscapitisetcollique(Aertsetal.,2001).Dorso-ventralmobilityisgreatestatthejointsC3-2throughC6-5.Thejointssurroundingthebi-convexarticularcentrumofC5showthegreatestangularchangeduringdorsiflexion.

ThecervicalsysteminApaloneisnotablydivergentandthekinematicpatternsarealsomark-edlydifferentfromthoseobservedinChelodina.Uponretractionoftheneck,themorecaudallypositionedvertebraearethefirsttostarttheirrotationaroundatransverseaxis.Theangularchangesin all vertebrae arenegativeduring retraction, suggesting that theneck is retractedas a safety-linked bicycle chain. Cervical vertebrae 5, 6, and 7 undergo an angular change of nearly 180°,whichimpliesthatthesevertebraeendupwiththeirventralaspectalongsidetheventralaspectoftheimmobiledorsalvertebrae.Thisismadepossiblebythenearlycompletereductionoftheventralcrestofthesevertebrae.ItisalsostrikingthatC8remainsinanear-verticalpositionatthemomentoffullprotraction.Themoreanteriorvertebrae(C1toC4)donotcontributetoneckretractionat

3339.indb 183 11/26/07 12:08:13 PM

��� BiologyofTurtles

all.Thebicycle-chain-likeretractionpatternobservedforApaloneisincontrasttotheretractionpatternssuggestedinothercryptodiressuchasTestudoorTrachemys(Scanlon,1982;Weisgram&Splechtna,1990).Inthelatterspecies,aswellasinChelodina,distinctrotationcentersarepresentwherethemajorityoftheangularrotationtakesplace.Thus,theextremelyelongatedneckandasso-ciatedmorphologyofApalonemaynotberepresentativeforthecryptodiranconditioningeneralbutprovideanexcellentexampleofahighlyspecializedcervicalsystemthatcanbecomparedtotheconditioninChelodina.Clearly,furtherinvestigationintothemorphologyandfunctionofthecervicalsysteminturtlesisneededtoincreaseourunderstandingoftheevolutionofthecervicalsystemanditscontrolinturtles.Especiallyinsightfulwouldbestudiesexploringcervicalstructureandfunctioninabroadersampleofturtlesincludingshort-neckedrepresentativesofbothcrypto-diresandpleurodires.Functionalapproachesincludingelectromyographyofthecervicalmuscles,albeitchallenging,areessentialtofurtherourunderstandingoftheevolutionofthecervicalsysteminturtles.

aCKnoWledgments

WethankA.DeSchepper(UniversityHospitalAntwerp)forallowingustousethecineradiographymachineandCTscanner;theAntwerpZooforprovidinguswiththespecimensofChelodina lon-gicollis;G.A.Wood(Wood,1982)forprovidinguswithasoftwarepackagefordatasmoothinganddifferentiation;andA.CuylitsformakingthedrawingsofthecervicalvertebraeinC. longicollis.ThisstudywassupportedbyIWONL-grant910091(JV)andFKFO-grant2.9005.90(FDV).AHisapostdoctoralfellowofthefundforscientificresearch,Flanders,Belgium(FWO-Vl).

referenCes

Aerts,P.,VanDamme,J.,andHerrel,A.,Intrinsicmechanicsandcontroloffastcraniocervicalmovementsinaquaticfeedingturtles,Am. Zool.,41(6),129–1310.2001.

Bojanus,L.H.,Anatome Testudinis Europaeae, Vol. 1.,Vilnae,Luthuania, republished in1970,FacsimilereprintsinHerpetology,no.26,SocietyfortheStudyofAmphibiansandReptiles,Ohio,1819.

Bojanus,L.H.,Anatome Testudinis Europaeae, Vol. 2.,Vilnae,Luthuania, republished in1970,FacsimilereprintsinHerpetology,no.26,SocietyfortheStudyofAmphibiansandReptiles,Ohio,1821.

Dalrymple,G.H.,IntraspecificvariationinthecranialfeedingmechanismofturtlesofthegenusTrionyx,J. Herpetol.,11,255–285,1977.

Deban,S.M.,Wake,D.B.,andRoth,G.,Salamanderwithaballistictongue,Nature,389,27–28.1997.Ernst,C.H.,andBarbour,R.W.,Turtles of the World,Washington,DC:SmithsonianInstitutionPress,1989.Gans,C.,Whydevelopaneck?,inThe Head-Neck Sensory Motor System,A.Berthoz,P.Vidal,andW.Graf

(eds.),NewYork:OxfordUniversityPress,1992,17–21.George,J.C.,andShah,R.V.,ThemyologyoftheheadandneckofthecommonIndianpondturtle,Lissemys

punctatagranosaSchoepff,J. Anim. Morph.,1,1–12,1954.George,J.C.,andShah,R.V.,ThemyologyoftheheadandneckoftheIndiantortoise,Testudo elegans,J.

Anim. Morph.Physiol.,2,1–13,1955.Guthe,K.F.,Reptilianmuscle:Finestructureandphysiologicalparameters,inBiology of the Reptilia, Vol 1,

C.GansandT.Parsons(eds.),NewYork:AcademicPress,1981,265–354.Heidweiller,J.,VanDerLeeuw,A.H.J.,andZweers,G.A.,Cervicalkinematicsduringdrinkingindeveloping

chickens,J.Exp. Zool.,262,135–153,1991.Herrel,A.,Meyers,J.J.,Nishikawa,K.C.,andAerts,P.,Themechanicsofpreyprehensioninchameleons,J.

Exp. Biol.,203,3255–3263,2000.Hofstetter,R.,andGasc,J.P.,Vertebraeandribsofmodernreptiles,inBiology of Reptilia, Vol. 1,C.Gansand

T.Parsons(ed.),NewYork:AcademicPress,1969,201–231.Irschick,D.J.,andGarland,T.Jr.,Integratingfunctionandecologyinstudiesofadaptation:Investigationsof

locomotorcapacityasamodelsystem,Ann. Rev. Ecol. System.,32,367–396,2001.Josephson,R.K.,Extensive and intensive factors determining theperformanceof striatedmuscle, J. Exp.

Biol.,194,135–154,1975.King,G.,Reptiles and Herbivory,London:Chapman&Hall,1996,160.

3339.indb 184 11/26/07 12:08:14 PM

CervicalAnatomyandFunctioninTurtles ���

Ogushi,K.,AnatomischeStudienander japanischendreikralligenLippenschildkröte (Trionyx japonicus):Muskelundperipheresnervensystem,Morph. Jb.,46,299–562,1913.

Pritchard,P.C.H.,Piscivoryinturtles,andevolutionofthelongneckedChelidae,Symp. Zool. Soc. Lond.,52,87–110,1984.

Romer,A.S.,andParsons,T.S.,The Vertebrate Body,Philadelphia:W.B.Saunders,1977,161–167.Scanlon,T.C.,AnatomyoftheneckoftheWesternPaintedturtle(Chrysemys picta belliGray;Reptilia,Tes-

tudinata),unpublisheddiss.,UniversityofMichigan,UniversityMicrofilmsInternational,1982.Shah,R.V.,TheneckmusculatureofaCryptodire(Deirochelys)andaPleurodire(Chelodina)compared,Bull.

Mus. Comp. Zool.,129,343–368,1963.Vaillant,M.L.,Mémoiresurladispositiondesvertebrescervicaleschezleschéloniens,Ann. Sci. Nat. Zool.

Paleont.,Ser.6,10,1–106,1881.Vallois,H.V.,Lestransformationsdelamusculaturedel’épisomechezlesvertébrés,Arch. Morph. Gen. Exp.,

13,180–217,1922.VanDamme,J.,andAerts,P.,KinematicsandfunctionalmorphologyinaquaticfeedinginAustraliansnake-

neckedturtles(Pleurodira;Chelodina),J. Morph.,233,113–125,1997.VanDamme,J.,Aerts,P.,andDeVree,F.,Kinematicsoftheescapeheadretractioninthecommonsnake-necked

turtle,Chelodina longicollis(Testudines:Pleurodira:Chelidae),Belg. J. Zool.,125,215–235,1995.VanDamme,J.,andAerts,P.,CervicalmovementsduringpreycaptureinAustraliansnakeneckedturtles,

genusChelodina(Pleurodira,Chelidae),inTopics in Functional and Ecological Vertebrate Morphol-ogy, A Tribute to Frits De Vree,P.Aerts,K.D’Août,A.Herrel,andR.VanDamme(eds.),ShakerPub-lishingBV,2002,77–94.

Weisgram,J.,andSplechtna,H.,Intervertebralmobilityintheneckoftwoturtlespecies(Testudo hermanni hermanni,Pelomedusa subrufa),Zool. Jb. Anat.,120,425–431,1990.

Weisgram,J.,andSplechtna,H.,CervicalmovementsduringfeedinginChelodina novaeguinaeae(Chelonia,Pleurodira).Zool. Jb. Anat.,122,331–337,1992.

Williams,E.E.,Variationandselectioninthecervicalcentrearticulationsoflivingturtles,Bull. Amer. Mus. Nat. Hist.,94(9),505–562,1950.

Wood,G.A.,Datasmoothinganddifferentiationproceduresinbiomechanics,inExercise and Sports Sciences Reviews,10,308–362,1982.

Wren,K.,Claussen,D.L.,andKurz,M.,Theeffectsofbodysizeandextrinsicmassonthelocomotionoftheornateboxturtle,Terrapene ornata,J. Herpetol.,32,144–150,1998.

Zani,P.A.,Gottschall,J.S.,andKram,R.,Gianttortoiseswalkwithoutinvertedpendulummechanical-energyexchange,J.Exp. Biol.,208,1489–1494,2005.

3339.indb 185 11/26/07 12:08:14 PM

3339.indb 186 11/26/07 12:08:14 PM

���

8 FunctionalEvolutionofFeedingBehaviorinTurtles

Vincent Bels, Sabine Baussart, John Davenport, Marc Shorten, Ruth M. O’Riordan, Sabine Renous, and Julia L. Davenport

Contents

8.1 Introduction......................................................................................................................... 1878.2 Objective............................................................................................................................. 1888.3 FeedingStructures.............................................................................................................. 1898.4 OverviewofFeedingandDrinkingBehaviors................................................................... 1898.5 Kinematics.......................................................................................................................... 192

8.5.1 TerrestrialFeeding................................................................................................... 1928.5.1.1 Ingestion..................................................................................................... 1928.5.1.2 Intra-oralTransportCycle.......................................................................... 1958.5.1.3 Swallowing................................................................................................. 197

8.5.2 AquaticFeeding....................................................................................................... 1988.5.2.1 IngestionCycle........................................................................................... 1988.5.2.2 ManipulationandTransportCycle.............................................................204

8.5.3 FeedinginDermochelys coriacea:ATypicalExampleofaMarineTurtlewithaHighlySpecializedDiet........................................................................................2048.5.3.1 MaterialsandMethods...............................................................................2048.5.3.2 Results........................................................................................................204

8.6 EvolutionofFeedingBehaviorinTurtles...........................................................................2088.6.1 Ingestion...................................................................................................................2088.6.2 Transport(andOtherFeedingPhases).....................................................................208

Acknowledgments.......................................................................................................................... 210References...................................................................................................................................... 210

�.� introduCtion

Turtleshaveoneofthemostunusualbodyplansamongtheamniotes,withacarapacethatconstrainstheirbehavioralactivitiesdifferentlyfromallothertetrapods(Gaffney,1979;Reisz&Laurin,1991;Laurin&Reisz,1995;Lee,1997;Schafferetal.,1997;Poughetal.,2001;Cebras-Thomas,2005;Kear&Lee,2006;Shedlocketal.,2007).Althoughtheoriginandevolutionofthiscladeofverte-bratesisstilluncleardespitethoroughdiscussion(Joyce&Gauthier,2004;Hill,2005;Nagashimaetal.,2005),suchabodyplanappearstobeconservative.However,reductionoftheshellhasbeenreportedinrelationtochelonianlifestrategies,especiallyinaquaticturtles(Pritchard,1979).Evo-lutionarytransformationsofthelocomotorsysteminaquaticturtlesenablethemtodisplayhighlyadaptedmobilityandmaneuvering,presumablyforoptimizingsearchingforfood,sexualpartners,andareasforegglaying(Davenport&Clough,1986;Renous&Bels,1989;Wyneken,1997;Chap-ter5).Althoughsomeseaturtlepopulationsnestandfeedinthesamegeneralareas,others(speciesorpopulationswithinaspecies)canmigrateovergreatdistances.Leatherbackshaveprobablythe

3339.indb 187 11/26/07 12:08:15 PM

��� BiologyofTurtles

longestmigrationofallseaturtlesbecausetheycanbefoundmorethan7000kmfromtheirnestingbeaches(Hughesetal.,1998).

Despitetheir“armoredtank”shape,turtleshaveadoptedspecializedforagingandfeedingstrat-egiesderivedfromthoseofthestemreptilesthathaveprovidedenduringadvantageswhilesimulta-neouslyimposingbasicrestrictions.Thelivingspeciesofturtles,distributedamong99generaand14families(Ernst&Barbour,1989),inhabitalargenumberofvariousecologicalnichesinmarine,freshwater,andterrestrialhabitatsfromtemperateandtropicalregionsofallcontinentsexceptAnt-arctica,andinalloceans.Itiswellknownthatturtlesareeitherspecializedorgeneralizedintheirdiet,withpossibleontogenicdietaryshiftsbeingcommon(Pritchard,1979).Foragingandfeedingbehaviorshavebeengenerallydescribedforalmostallfamiliesofturtles(Pritchard,1979).Dietarypreferencesandontogenicchangesduringthelifecyclesofturtleshavebeenreportedinnumer-ousspecies,particularlyinmarineturtles.Mostcheloniansshowdietaryfluctuationsduringtheirlivesandcanshiftfromcarnivoroustoomnivorousandherbivorousdietsastheyage(Harless&Morloch,1979;McCauley&Bjorndal,1999;Bouchard&Bjorndal,2006).Briefly,trueterrestrialturtles(Testudinidae)aretheonlyspeciesabletoingestandswallowfoodonland,soaresubjecttothesameconstraintsasallothertrulyterrestrialvertebrates.Apartfromtheseturtles,alargenum-berofspeciesmakeforaysintoterrestrialhabitatsforfeedinganddrinking(e.g.,Emydidae).Someotherspeciesarewhollywater-feedersandchasetheirfoodbyusingvariousstrategiesfromactiveforagingtosit-and-waitpredatorbehavior(e.g.,softshells,Tryonichidae).Somespeciescancapturelivefoodonlandbutswallowitinwater.Severalherbivorousspecies(e.g.,Bataguridae)canfeedonplantmaterialatthesurfaceofthewaterorcandragterrestrialvegetationintothewater(Davenportetal.,1992).Somespeciescanfeedonlandorinwater,completingtheprocessfromfoodcapturetoswallowingineithermedium(e.g.,Terrapene carolina,Emydidae).Althoughbaskingonlandhasbeenreportedinafewcases,marineturtlesaregenerallyfoundonlandonlyintwosituations:whenadultfemalesreturntothelandforegglayingandwhenhatchlingsmusttravelfromthenestdownthebeachtothesea.Marineturtlesalwaysforageandfeedinthewater.

Aseriesofphylogeneticstudieshavedemonstratedsignificantrelationshipsbetweenvariouscharacteristicsofthetrophicsystemandcorrespondingecologicalspecializationsinsomegroupsof turtles (Gaffney, 1975, 1979; Claude et al., 2004). From these data, there have been severalhypothesesgenerated todemonstrate a relationshipbetween feedingperformancesand thephy-logenetichypotheses.Forexample,themorphologicalvariationofthesuperfamilyTestudinoidearelatestobothdietandhabitat(Claudeetal.,2004).Theseauthorssuggestthataspectsofthefeed-ingmode(e.g.,diet)canbeakeyfactorindeterminingmorphologicalevolutionanddiversificationofturtleskulls.Phylogenyappearstoconstrainonlylocalizedfeaturesoftheskullandremainsofminorinfluence.

�.� oBJeCtive

Therearesubstantialproblemsinprovidingacompleteoverviewofthefeedingbehaviorofturtlesusingaquaticandterrestrialhabitatsbasedonlyonpreviouslypublisheddata:kinematicandfunc-tionalanalysesofcompletefeedingmechanismsarerelativelyrare,andfeedingbehaviorhasbeenstudiedusingnon-standardizedmethodsandtechniques.Inhiscomprehensivevolumeofevolutionoffeedingbehaviorintetrapods,Schwenk(2000)providesanexhaustivelistofliteraturedescrib-ingfeedingbehaviorandmechanismsinturtles.Thepresentchapterprovidesthefirstcomparativeanalysisoffeedingbehaviorinturtles.Thoughaquaticfeedinghasbeenstudiedinseveralverydif-ferentrepresentativespeciesdrawnfromfreshwaterfamilies,fewdataareavailableconcerningthefeedingbehaviorofmarineturtlesorofterrestrialturtles.Consequently,thischapterwillnotonlyprovideinformationfromtheliteraturebutwillalsopresentdatacollectedbythechapter’sauthors,togetherwiththeiranalysesoffeedingbehaviorinterrestrialandaquaticspecies.Allofthesedataareconsideredfromacomparativeviewpoint.Whennecessary,arapidsurveyofthemethodsused

3339.indb 188 11/26/07 12:08:16 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

forcollectingdataisprovidedforeachofthefeedingmodes,terrestrialandaquatic.Themecha-nismofneckmovementsthatplayakeyroleinfeedinginturtlesisdiscussedinChapter7.

�.� feedingstruCtures

Detailedanalyseshavebeenmadeoftheskull,hyobranchium,andtongueinturtles(Lindeman,2000;Schwenk,2000;Claudeetal.,2004).Whenneeded,weprovidemorphologicaldatathatarenecessary to explain the functional andbiomechanical aspectsof feedingbehavior.Some func-tionalanalysesdemonstratehowstructuresareusedinvariousphasesoffeedinginaquaticturtles(Schwenk,2000;Lemelletal.,2002).

�.� overvieWoffeedinganddrinKingBehaviors

Arapidsurveyoftheevolutionofturtlesandtheirdietshowthatturtlesusetwomainfeedingstrate-giestogainwater,energy,andnutrients:feeding/drinkingonlandandfeedinginwater.Drinkingwaterisaparticularproblemforterrestrialturtlesandforsometurtleslivinginsaline/marinehabi-tats.Alloftheseturtlesneedtodrinkwater(whenavailable)tomaintainthehydricbalancethatisessentialtowelfareandsurvival.Waterintakeratesandfrequenciesarehighlyvariableamongturtles.Forexample,somedesertturtlesareabletoconsumealargeamountofwaterinoneintake,therebyincreasingbodymassbyupto40%.Drinkinginaquaticturtleshasbeenrarelydescribed.Arecentstudydemonstratedthathatchlingseaturtlescanosmoregulateeffectivelyandgainmassbydrinkingseawater(Reinaetal.,2002).Althoughwellreportedintheliterature,drinkingbehav-iorhasbeenquantifiedonlyinMalaclemys terrapin(Davenport&Macedo,1990;Belsetal.,1995).Thisspeciesisabletomodulateitsdrinkingpostureinrelationtothewatersource;itcandrinkfromverythinfilmsoffreshwatereitherontheseasurfaceoronthesurfaceofintertidalmud,andcanevendrinkdirectlyfromfallingrainorfromwaterdropletsonvegetation(Davenport&Macedo,1990).Malaclemyscanalsoforciblyexpelwateroutofthebucco-pharyngealcavitywhendisturbedduringthedrinkingsequence,orwhenthevolumeofwaterwithinthiscavityistoogreat.Malaclemyscanexpelwaterveryquickly(lessthan1s)byasuddengapeincreaseaccompaniedbythroatelevationandneckretraction(Belsetal.,1995).

Asrecognizedforallvertebrates,feedingbehaviorinturtlesisamodal-action-pattern(MAD),involvingmovementsofthetrophicelementsintegratedwithneckdisplacements,sometimesasso-ciatedwithcomplexlimbmovements,sometimesnot.Allofthesecoordinatedsensori-motormove-mentsdefinethefeedingstrategyofturtles.Anyfooditemconsumedbyturtles(fromplantmaterialtofast-movingmobileprey)mustbelocatedandingestedbyarhythmicseriesofhead,jaw,andhyo-lingualmovements.Therearethreemajorsuccessivephasesinterrestrialturtles(Schwenk,2000):ingestion(capture),transportandintrabuccalmanipulation,andswallowing.Afourthphasecalledpharyngealpackingoccursattheendofseveralfeedingsequencesbutdoesnotinvolveanyjawopening-closingcyclicmovement(Figure8.1).Sincetheearliestfunctionalstudiesofvertebrates,acleardifferencehasbeendemonstratedbetweenfeedingstrategiesinwaterandonland(Liem,1990).Incompressiblewatercanbeusedtodriveamobilefooditem(livingprey)intothebuccalcavitybyproducingnegativepressureinsidethatcavity.Whenfoodiscaught,itmustbetransportedandswallowed.

Allfeedingphasesarebasedonrhythmiccoordinatedseriesofmovementsofthetrophicele-ments (e.g., jaws, tongue, hybranchium) associated with neck movements producing whole dis-placement of the head (Figure8.1). These movements are probably the result of rhythmic jawmovementsgeneratedbyacentralneuronalpopulationcalledthecentralpattern(orrhythm)gener-ator(CPG)(Schwenk,2000).Allrhythmicjawopening-closingactivitiesaremodulatedbysensoryfeedbackgeneratedbyvariousstructureswithin thebuccalcavity.Forexample, tastebudshavebeendescribedin thebuccalandtongueepitheliumofseveralspeciesof turtles(Iwasaki,1992,2002;Iwasakietal.,1996a,1996b,1996c,1996d;Beisseretal.,2001).Althoughalargenumberof

3339.indb 189 11/26/07 12:08:17 PM

��0 BiologyofTurtles

studiesprovideinformationontheforagingbehaviorofturtles,noquantitativeanalysishasactu-allydemonstratedtheeffectoffoodproperties(i.e.,texture,volume,size)onthemodulationofthemovementsofthetrophicsystem(e.g.,jaws,tongue,andhyobranchium).Inthemajorityofstudies,turtleshavebeenfedinthelaboratoryonstandardizedpreyitems(e.g.,livefishaselusiveprey)orplantmaterial(e.g.,fruitsandlettuceitemsforterrestrialspecies,availableplantsforaquaticspe-cies)forherbivorousspecies.

Foraquaticturtlesmainlylivingonthesubstratum,huntingstrategiesusuallyinvolveimmobil-itywhileawaitingpreyproximitybeforestriking,ormovingslowlytowardtheprey.Forexample,averyslow(0.4cms-1)stalkingmotionisreportedinthehighlycamouflagedpleurodiranChelus fimbriatusthatmovestowarditspreyuntilthetipofthesnoutisclosetothepreyitself(Lemellet al., 2002).Lemell andWeisgram (1997)described the feeding sequence in the aquaticPelu-sios castaneuswhilecatchingpreyonthesubstratumbyassociatingmovementsoftheturtleandthe use of the trophic system. Lauder and Prendergast (1992) described a preparatory phase in

figure�.� SeriesofframesdepictingthesuccessiveeventsofatypicalfeedingsequenceinGeochelone radiataeatingapieceofgrape.(A)Ingestioncycle,(B)transportcycle,(C)swallowingorpharyngealpack-ing,and(D)pharyngealcompression.Foodingestionalwaysinvolvescontactbythetonguepriortosurround-ingbythejawsforgrasping.Foodingestionandtransportinvolverhythmiccyclicjawandtonguemovements.Intransport,theforwardmovementofthetongueismodulatedbythepositionofthefoodinthebuccalcavity.Inswallowing,themouthisopenedandthefoodmovedtowardthepharynx.Inpharyngealcompression,thejawsalwaysremainclosed.Thetimingofeachframeisprovidedinms(lastthreenumbersrecordedontheframes).

3339.indb 190 11/26/07 12:08:19 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

Chelydra serpentinafeedingonvariouspreytypesthatconsistsofaslow,voluntarystalkingmove-mentwithlittlehorizontalbodyandneckmovementbeforeafastopeningofthemouthassociatedwithasuddenneckextension(seeChapter7).SlowstalkingmovementpriortomouthopeningwasalsoreportedinM. terrapineatingfoodonthesubstratum(Belsetal.,1998).

Fromafunctionalpointofview,itisratherdifficulttodeterminetheintegrationbetweenloco-motorandtrophicsystemsfortheseturtlesbecauseinthelaboratory,foodisoftenpresentedattooshortadistancefromtheheadtomeasurethekinematicandhydrodynamiccharacteristicsofthefeedingbehavior.However,itisclearthattheneuromotorintegrationbetweenbothsystemsplaysaparticularlykeyrolewhenturtlesarehuntinginthewatercolumn,orwhenthepreyitemsshowspecializedbehaviororphysical texture (e.g., shells inmollusksandcrustaceans).Manyaquaticturtlesmustassociatecomplexlimbmovementswithneckmovementsandrhythmicmovementsofthetrophicsystemtosupportthecomplexmaneuveringabilitythatimprovesfoodcapturesuc-cess(Figure8.2).DavenportandClough(1985)reportanapparentlyuniquefeedingbehaviorthatinvolvedtheuseoftheforeflipperstogainfoodinthemarineturtleCaretta caretta.Theseauthorsobservedtheroleof“pseudoclaws”(sharp-pointedscales)ontheproximalportionsoftheforelimbsofyoungspecimenstoallowthecombineduseofforeflippersandbeaktotearfooditemsthatareotherwisetoolargetobeswallowedwholeorreadilybittenintochunks(thusmimickingthefeedingbehavioroffreshwaterturtlessuchasemydidsthatusetrueclawsandthebeaktoachieveasimilargoal)andallowingfoodmorselsadheringtothepseudoclawstobeingestedbytheturtle.

Feedingbehaviorinthebrackish-wateremydidM. terrapinisthebestexamplecurrentlyavail-able in the literature todemonstrateplasticity inneuromotor integrationof limb,neck,and tro-phicsystemsduringpreycapture(Belsetal.,1998).Capturingimmobileprey(e.g.,mussels)on

figure�.� (continued)

3339.indb 191 11/26/07 12:09:20 PM

��� BiologyofTurtles

thesubstratumismainlyachievedbycoordinatedneckextensionandjawopeningwithrelativelysmallinertialsuction(VanDamme&Aerts,1997;seefollowingfordiscussion).Capturingmobileandaggressivelydefensiveprey in thewatercolumn(e.g., livingcrabs) requirescoordinationofneckextensionandjawopeningwiththelimbcyclesusedforswimming.Inallcases,theneckisextendedtoplacetheopeningjawsclosetothepreyduringlimbretraction,toincreasethethrustoftheturtletowardtheprey(Figure8.2).Anothersortofcoordinationoflimb,neck,andjawshasalsobeendescribed.BelsandRenous(1992)andBelsetal.(1998)demonstratedthatfeedingonsoft,slowlyswimmingprey(jellyfish)byyoungleatherbackturtlesalwaysinvolvesplacementofthelongforeflippersalongsidethebodyduringthecatchingcycles.Theysuggestthatthisstrategystronglydecreasesthepossibilityoflimbmovementsdisplacingjellyfishawayfromthebuccalcav-ity.Interrestrialhabitats,turtlesoftenapproachfoodslowlyandstopallmovementsbeforecaptur-ingthepreyorbitingtheplantmaterial.

Theuseofthelimbsinallotherfeedingphasesremainsrelativelypoorlyunderstood.Forturtlesfeedinginthewatercolumn(e.g.,Emydidae),thelimbsplayamajorruleinoptimizingfoodtrans-port(Belsetal.,1998);typically,theforelimbclawsareusedtotearlargefooditemsintosmallerpieces.However,forturtlesthatfeedinterrestrialhabitats,thelimbsonlyplayanoccasionalrolebystabilizingthepositionofafooditemonthesubstratumoraidingtheseizureof“difficult”hardfooditemsbetweenthejaws(e.g.,Testudinidaeeatinglivingpreysuchassnails).Alloftheseexamplesshowthatfunctionalstudiesmustbeecologicallyrelevant toyieldafullunderstandingof turtlefeedingstrategiesandtheirplasticitythatplaysakeyroleintheoverallfitnessoftheorganism.

�.� KinematiCs

8.5.1 terreStrIAlfeedIng

�.�.�.� ingestion

Twomodesof foodprehensionhavebeenreportedfor terrestrial turtles: lingualprehensionandjawprehension(Figure8.1&Figure8.3).AcleardifferenceiningestioncycleshasbeenreportedforTerrapenesp.feedingoninsectsandGeochelonesp.feedingonplantmaterial.T. carolinaandT. ornataneveruselingualprehensionbutonlyjawprehensionwhencatchinginsects(e.g.,Belsetal.,1997).Geochelonesp.andTestudosp.alwaysuselingualprehensionforfeedingonplantmaterial.Formobileprey (mealworms, asused inTerrapene studies),Kinixys alsouses lingualprehension.However,noquantitativecomparativeanalysesofthemodulatoryeffectsoffooditems

figure�.� TwotypicalfeedingsequencesofMalaclemysattackingadefendingcrab.Thesesequencesshowthecomplexinteractionbetweentheturtleandthelivingprey.However,imagesshowthestereotypedpatternofneckextension,gapecycle,andthroatdepressionforbothattemptstoingestpartsofthecrab.Thearrowshowsthejumpingbehaviorofthecrabattackingtheturtlethatdefendsbybiting(correspondingtoingestioncycle).

3339.indb 192 11/26/07 12:09:21 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

onkinematicandmotorvariableshaveyetbeenreportedintheserepresentativetortoisesofTes-tudinidae.Incasesoflivingprey(e.g.,insects),onlyoneingestioncycleisusedtocatchthefoodanddrivethefooditemintothefrontofthebuccalcavity.InTerrapenesp.studiedwiththisfooditem,thejawmovesquicklyaroundthepreyandthetongueisneverusedforprehensionofinsects(Belsetal.,1997).Forplantmaterial,theingestion(capture)cycleismorecomplexanddependsonthesizeofthefooditembecausethefeedingboutisacontinuousprocessthatdoesnotterminateatoneparticularphase.Twoexamplesdemonstratethiscomplexity.Forrelativelylargefooditemssuchasgrapes,G. radiatacontactsthefoodwiththetongueandretractsthefooditemwithinthebuccalcavitywhilethejawsaremovingaroundthefood.Theturtleusuallyusesonetothreeinges-tioncyclestobringthefoodmaterialsuccessfullyintoitsbuccalcavity.SimilarbehaviorhasbeenreportedfortheherbivorouslizardUromastixfedonendive(Herreletal.,2002).TheG. radiatahead is thenplaced in an approximatelyhorizontal positionduring the immediately subsequentcycles,allowingtransportandintrabuccalmanipulation;for“long”fooditemssuchaslettuceleavesthataredrawnintothemouthbyrhythmicjawcycles,thefooditemsarecaughtbythetongueandthejawsmovethepieceoffoodaroundseveraltimesbeforethefoodpartlyorcompletelyentersthebuccalcavity.Itisratherdifficulttoseparatefoodingestionandtransportbecauseateachtonguecycle(Figure8.1andFigure8.3),thefoodwithinthebuccalcavityismovedbythemidandposte-riorportionsofthetonguewhiletheforetonguemovestoadheretothepartsofthefooditemthatarestilloutsideofthebuccalcavity.Whenapieceoffoodiscutoff,theturtlecanstoptoingesttherestofthefooditem,whichcontinuestobeactedupononlybytransportcycles.Suchacontinuous

figure�.� SeriesofframesdepictingthesuccessiveeventsofatypicalfeedingsequenceinKinixys bel-lianaeatingapieceoflettuce:(A)ingestioncycleand(B)transportcycle.Foodprehensiondoesnotinvolvecontactbythetongueoutsidethebuccalcavity.Foodtransportinvolvesrhythmiccyclicjawandtonguemove-ment.Contactbetweentongueandfoodoccurswithinthebuccalcavity.Intransport,theforwardmovementofthetonguethatplaysthekeyroleismodulatedbythepositionofthefoodinthebuccalcavity.Thetimingofeachframeisprovidedinms(lastthreenumbersrecordedontheframes).

3339.indb 193 11/26/07 12:09:23 PM

��� BiologyofTurtles

processofingestion-transportisstronglyinfluencedbythesizeofthefoodmaterial.Whenashortpieceoflettuceisprovidedtoturtles,onlyoneortwoingestioncyclesareusedtodealwiththefood.Theeffectofthesizeofthefooditemonthecontinuousprocessinvolvingtheforetonguetocatchthefooditemandthemid-andhindtongueportionsfortransportingthefoodhasbeenclearlydem-onstratedinallherbivorousmammalsfeedingonlongpiecesofhay(Bels,2006),sothisprocessisnotunusualinvertebrates.AssoonasthefoodiswithinthebuccalcavityofG. radiata,aseriesofintegratedhead(neck),jaw,andhyolingualcyclestermedtransport-intrabuccalmanipulationmovethefoodposteriorlytowardthepharynx.Attheendofacompletesequence,cyclesdeterminingtheswallowingphasetypicallyshowadifferentgapeprofileashasbeennotedinherbivorouslizards(Herrel&DeVree,1999).

Inbothmodesoffoodprehension,turtlesalwaysusecombinedmovementofthejaws,thehead,andtheneckthatmayormaynotbeassociatedwithdisplacementsofthehyolingualapparatus.Allingestioncyclesinallterrestrialturtlesareaccompaniedbyneckextension,movingtheopeningjawstowardthefooditem(Figure8.4).Duringthenextextension,theheadispositionedrelativetothefooditemdependingonthepropertiesofthefoodanditsproximalcues(i.e.,size,volume,texture,mobility),showingacomplexsensory-motormechanismcontrollingtheinitiationofthisfeedingphase.Ateachingestioncycle,theturtlerotatestheheadinvariouspositionstobeabletotakeholdoftheplantmaterial.Thesensory-motormechanismsunderlyingsuchfunctionalplastic-ityduringingestionremainunderstudied.Interrestrialturtles,thequestionofpositioningtheheadtogetherwithaneckextensionremainsanopenquestion.Probablydifferencesinthespeedofheadmovementstowardthefoodarekeyparametersthatpermitthesereptilestomodulateheadrotationduringfoodingestion.Thisdifferencecanbeseenasafunctionalconsequenceofdietselectioninterrestrialturtles.

Twomaintypesofingestioncycleshavebeenreported:jawprehensionandlingualprehension.Inbothmodesoffoodprehension,turtlesalwaysusecombinedmovementsofthejaws,thehead,andtheneck,associatedornotwithdisplacementsofthehyolingualapparatus.Inallprehension,themouthisopenedinslow(SO)andfast(FO)stages(Figure8.4).However,thedurationofSOstageisvariable.InT. carolinaandT. ornata,acleardistinctionbetweenSOandFOstagewasnotalwayseasytodeterminebecausethegapeincreasesratherregularly,andoftenthemeandurationofFOstageislongerthanthatofthefastclosing(FC)stage.ThetonguealwaysmovesforwardwithinthebuccalcavityduringgapeincreasesandretractsduringthebeginningoftheFOstage.Uponprotrusion,thetonguebulgesandthetonguetipcurvesventrally,sothattheforetonguemakescontactwiththefooditem.DuringtheSOphase,thetongueisprotrudedfromthemouthandcon-tactsthefood.Next,thetonguecontinuestobeextendedandpushedagainstthefooditem.Thefoodisthenmaintainedincontactwiththetonguebecauseofstrongmucousadhesionbetweenthetonguesurfaceandthefood.Oncethetonguehasbeenretractedwithinthejawmargins,thejawsareclosedquickly,andtheslowclosing/powerstrokephasestarted.ThemeandurationoftheFOstageislongerthanthatoftheFCstage.Duringthedecreaseingapesize,thelowerjawarrivesunderthebeakformedbytheupperjawsasintransportcycles.Thetonguemovesforwardwhilethegapeincreasesandcontactsthefoodbeforemaximalgapeisachieved.RetractionofthetongueoccursduringthebeginningoftheFOstage.Afterclosingthejawsontheprey,theheadretractsand rotates in reverse.TimingofkinematiceventsofG. elephantopus (lingualprehension)andT. carolina(jawprehension)issimilarinthesedifferentspecies(Figure8.4).Forexample,peakhyoidretractionoccurs justafterpeakgapeangleandmaximumthroatdepressionoccurs30 to100msaftermaximumgapeangle.Thesuccessivesixeventsinbothturtlescanbesummarizedasfollows:

NeckextensiontodrivetheheadtowardthefoodOpeningofthemouth(SOandFOstages)RetractionofthetongueduringthebeginningoftheFOstageDepressionofthethroatimmediatelyfollowingthetongueretraction

••••

3339.indb 194 11/26/07 12:09:23 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

ClosingofthemouthonthefoodRetractionoftheheadtowardthecarapace.

�.�.�.� intra-oraltransportCycle

Assoonasthefood(e.g.,livingprey,plantmaterial)entersthebuccalcavity,transportofthefoodtowardthepharynxbegins.Forexample,afteringestionofamealworm,thepreyisnotcompletelyheldwithin thebuccalcavityand is reduced(i.e.,partiallycrushed)by the jawmarginsateachtransportcycle(Figure8.3andFigure8.5).Becausethemealwormentersthebuccalcavitypro-gressively,successiveportionsofthemealwormarereducedattheclosingstageofeachtransportcycle.

TheslowopeningofthemouthduringtransportiscomposedoftheSOI(opening)andoftenSOII(stationarystage)stages.TheFOstagecorrespondstoarapidincreaseintheverticaldisplace-mentofthejaws(Figure8.5).TheFOstagebeginsafteraslightdecreaseingapeangleattheend

••

50A

B

SO FO

–1 1 2 3Time (s)TTOR

Maximal Gape

TBNE

TMNE

TTOR

TBTD

TMTD

–1.0 –0.5 0.0 0.5 1.0Time (s)

G. elephantopus C. carolinaTime (s)

–1.0 –0.5 0.0 0.5 1.0

Maximal Gape

0–2

FC SC

25

0

Mea

n G

ape A

ngle

(d

egre

es)

figure�.� (A)Meangapeprofile (±standarddeviation) from10 lateral ingestioncycles inonespeci-menofGeocheloneelephantopus.Thearrowindicatesthemeantimeoftongueretraction.(B)ComparisonbetweentimingeventsinG.elephantopusandT. carolina(datafromBelsetal.,1997).Timingswerecalcu-latedfromthetimetopeakgapeangle(time0).Gapeisdividedintoslowopening(SO),fastopening(FO),fastclosing(FC),andslowclosing(SC).TBNE:timetobeginningoftheneckextension,TMNE:timetomaximalneckextensionduringingestioncycle,TTOR:timetotongueretraction,TBTD:timetobeginningofthroatdepression,TMTD:timetomaximumthroatdepression.

3339.indb 195 11/26/07 12:09:25 PM

��� BiologyofTurtles

ofSOstage.Theclosureofthemouthisdividedintofastclosing(FC)andslowclosing(SC)stages.TheFCstagecorrespondstoarapiddecreaseintheverticaldisplacementofthejaws.TheSCstagecorrespondstotheelevationofthelowerjawunderthebeakoftheupperjaw.Thehorizontaldis-tancebetweenthetipoftheupperjawandlowerjawdecreasesduringtheFCstagebecauseverticaldisplacementofthelowerjawproducesanarc,andtheupperjawmoveslittle.TheSCstageisnotreflectedinrecordablegapeangleandgapeverticaldistancechangesbecausethelowerjawmovesundertheedgesoftheupperjaw.However,duringthisstagethehorizontaldistancebetweenthetipoftheupperjawandthemostanteriorpointofthelowerjawincreasesjustafterFCstageinthegapecycle,indicatingthatthelowerjawcontinuestocloseagainsttheupperjaw.WhengapeincreasesduringtheSOstageofthenextcycle,thishorizontaldistancedecreasesagain.

Inthetransportcycle,duringtheSOstagethetongueisprotractedasillustratedbyadecreaseofthehorizontaldistancebetweenthetipsofthetongueandthelowerjaw(Figure8.3BandFig-ure8.5).Atthesametime,thetongueisslightlyelevated.Inthetransportcycle,theforwarddis-placementofthetongueintothebuccalcavityisstronglycorrelatedwiththeverticaldisplacementofthelowerjawduringtheSOstage.Whenthetonguemovesforward, thelowerjawdepresses

10

5

Gap

e Dist

ance

(cm

)

Jaw

Vert

ical

Mov

emen

ts(c

m)

Thro

atVe

rtic

alM

ovem

ent

(cm

)

Hea

dM

ovem

ent T

owar

dth

e Foo

d (c

m)

0

TH

LJ

UJGA

EY

Upper jaw

Lower jaw

10

5

0

5

0

00 1 2 3 4 5 6

Time (s)7 8 9 10 11 12

20

10

figure�.� KinematicprofilesoftwosuccessiveintraoralfoodtransportcyclesinG. elephantopus.Throatverticalmovement(TH)associatedwithtongueretractionshowsthecyclicdepressionandelevationofthethroat.Headmovementtowardthefoodwasmeasuredbythehorizontaldisplacementoftheeye(EY).Thismovementshowsthecyclicdisplacementofthejawstowardthefoodassociatedwithgapeangle(GA)pro-ducedbycombinationofverticalmovementoftheupper(UJ)andlower(LJ)jaws.Thearrowsindicatethefirstframeoftongueretractionwiththefoodadheringtothetonguesurfaceandthelineindicatespeakgapeangleforeachofthegapecycles.

3339.indb 196 11/26/07 12:09:26 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

(SOI),andwhenthetongueisstationarypriortomovingbackwardduringtheFOstage,thelowerjawdoesnotmoveandthegapeangleremainsstationary(SOII).TheheadextendsduringtheFOstageandthebeginningoftheFCstage,anddepressesduringtheSO,FO,andthebeginningofFCstages.DuringhalfofthedurationoftheSOstage,theheadrotatesdownwardasshowedbytheverticaldisplacementofthehead.Preliminaryanalysisoffoodtransportbyusingx-rayvideo(250Hz)inatypicalplantfeedingturtle,K. belliana,showsthatthefoodisaccumulatedwithinthepharynxandtherearpartof thebuccalcavity(Figure8.6).Subsequently,swallowingofthealimentarybolusbegins.

�.�.�.� swallowing

AccordingtoSchwenk(2000),wecandivideswallowinginterrestrialturtlesintopharyngealpack-ing(openingofmouth)andpharyngealcompression(nogapecycle).Figure8.3andFigure8.6showtypicalswallowingcycle in twoT. carolina (Figure8.3)andK. belliana (Figure8.6)feedingondifferentfooditems(mealwormsinT. carolinaandlettuceleavesinK. belliana).Probablybasedonthesensory-motorfeedbacksfrompropertiesofthealimentarybolus(i.e.,volume,size,tough-ness),theturtleeitherentersintoanewfeedingsequencethatdrivesmorefoodintothepharynx,

figure�.� (A)TypicalingestioncycleofapieceoflettuceinK. bellianafilmedbyx-rayvideofluoroscopy(100Hz),showingthetonguecontactingthefoodwhereasthejawsmovedtosurroundthefoodmaterial(leafoflettuce).Thecontactbetweenthetongueandthefoodoccurswithinthebuccalcavityattime0.(B)Typicalswallowingcyclefilmedbyx-rayfluoroscopy(200Hz)involvingmouthopeningtoshowthecombinedmove-mentofthefoodassociatedwiththeswallowingcycle,demonstratingthekeyroleofthetongueandthroatintheposteriordisplacementofthefoodtowardtheesophagus.Peristalticactivityoftheesophagushelpingmovementofthefoodwithintheesophagusisalsoshown.Thedisplacementofthefoodalongpharyngealpackingisshownbythearrowoneachframe.Time0correspondsforthiscycletothefirstframeofmouthopening.f:markers(thelettucewascoveredwithathinfilmofwaterchargedwithbariumpowder).

3339.indb 197 11/26/07 12:09:27 PM

��� BiologyofTurtles

ormovesthebolusintotheesophagus,whichstructuredrivesthebolusdirectlytothestomachbyperistalticmovement.Foremptyingthepharynx,theturtlesproduceeitherjawcyclesorpharyngealcompression(Figure8.6).

8.5.2 AquAtIcfeedIng

Feeding in aquatic turtles has received more attention than that of terrestrial turtles, althoughrelativelyfewspecieshavebeenstudied.However,robustexperimentalconditionswithmore-or-lesssimilarenvironmentalconstraintshavebeenemployed.SincethefirstquantitativeanalysisoffeedingmechanisminChelydra(Lauder&Prendergast,1992),turtleshavebeenusedfortestinghypothesesandgeneralizationsregardingmorphologicalandfunctionalpatternsassociatedwithaquaticfeedinginlowervertebrates.

Thelargenumberofspeciesandforagingstrategiesinaquatic-feedingturtlesprobablyreflectsaratheruniquegroupofvertebratesthathasevolvedaquaticfeedingconvergentlywithanamniotefeedingsystemsandwithamniotesthathavereturnedsecondarilytoaquaticenvironmentsuchasseveralmammals.Manyfoodresourcescanbeexploitedinaquatichabitats.Plantmaterialconsti-tutesafirstsourceoffood.Thismaterialcanbefirmlyattachedtothesubstrateandmustbebittenandextractedorpulledoutbeforebeingtransportedandswallowed.Otherplantmaterialcanbefloatingandmustbebittenandcaughtfrombeneath(Davenportetal.,1992).Livingpreycanbeexploitedbyrapidstrikesiftheyhaveelusiveabilities(e.g.,fishes)ormustbeapproachedslowlytoavoidtheirmovementawayofthebuccalcavity(e.g.,jellyfish).Sincetheearliestanalysesoffeed-ingmechanismsinwater,thequestionofimportanceofsuctionhasremainedparamount(Aertsetal.,2001;Figure8.7).

�.�.�.� ingestionCycle

Aquaticturtlesallshowmuchthesamepatternofhead,jaws,andhyobranchiummovements.Toourknowledge,thetongueisnotusedforcapturingaquaticprey.Typicalcapturecyclesforsomeaquaticturtles(C. longicollis,C. fimbriatus,C. serpentina)involveasuddenforwardthrustoftheheadbyneckextension(seeChapter7).Incontrast,otherspeciesstrikelessrapidly(meandurationbetween250and300msinM. terrapin,Belsetal.,1998;400msinT. carolina,Summersetal.,1998;andupto800msinD. coriacea,thischapter),openingthemoutheitherbyusingSOandFOstagesorregularlywithouttheSOstage.Allkinematicprofilesavailableintheliteratureprovideclassicalexamplesofneckextensionproducingasuddenthrustoftheopeningmouthassociatedwithlargedepressionofthehyobranchium.Depressionofthehyobranchiumoccurs30to50msaftermaximumgape(Lauder&Prendergast,1992;Bels&Renous,1992;VanDamme&Aerts,1997;Belsetal.,1998;Summersetal.,1998;Lemelletal.,2002).

Theproblemofapproaching the food inaquaticenvironmentalwaysremains thesame:anyflow of water produced by the turtle must be compensated for in efficient capture. Lauder andPrendergast (1992)werethefirst tostress thehydrodynamicconstraintsonaquaticpreycaptureresultinginkinematicsimilaritiesamongpredatorssuchasfish,amphibians,andturtles.Theirfind-ingsweresupportedbyotheranalysesofingestioninturtlesfromfreshwaterandmarinehabitats.Alloftheaquaticturtlescangenerateabackwardwaterflowrelativetothebuccalcavity(calledsuction)toacquirethefood(VanDamme&Aerts,1997).VanDammeandAerts(1997)discussedindepththequestionofcompensatoryandinertialsuctioninpreycapturebyaquaticturtles.Theterm“compensatorysuction”indicatessuctionusedtomaintainfoodimmobileduringthestrike,andpermitsengulfingofthefoodasthejawapparatussurroundsit.Theterm“inertialsuction”isusedtodescribesuctioninwhichfoodandwatermovetowardthebuccalcavitywhereastheheadofthepredatorremainsessentiallyimmobile(VanDamme&Aerts,1997;Aertsetal.,2001).Aertsetal.(2001)statethatprobablyfoodcaptureinvariousaquaticturtlesisrelatedtoacombinationof both modes of suction, as demonstrated by displacements of various food items recorded indifferentaquaticturtles.Forexample,inertialsuctionplaysamajorroleinChelodina longicollis

3339.indb 198 11/26/07 12:09:27 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

butcompensatorysuctionisdominantinC. serpentina(VanDamme&Aerts,1997).VanDammeandAerts(1997)andSummersetal.(1998)donotagreewiththeuseoftheram/suctionindex(RSI)proposedbyNortonandBrainerd (1993) todescribe the feedingmechanismsoffishes. In theirrecentstudy,Lemelletal.(2002)appliedthisindextocaptureofbyC. fimbriatus.TheequationforRSIis

CBI

10–4 m2

10–2 m

10–2 m

6

A B

C

D

Frame 692

Frame 726

Frame 742

Frame 750

Frame 756

Frame 766

Frame 792

Frame 822

4

2

0

2

1

1

2

0

0

0 50 100Milliseconds

756

750 766 792 922692 742726

150

–1

Are

a of C

ross

-sec

tion

Disp

lace

men

tD

ispla

cem

ent

CBII

Gape

Head

Carapace

PREYebfr

PREYtbfr

Neck

??

figure�.� (A) Drawings of lateral and ventral views of the strike used for illustrating the kinematicprofiles.(B–D)KinematicprofilesofonerepresentativestrikeinChelodina longicollistoshow(B)themodi-ficationofareasofcrosssectionsthroughthreesuccessivelevelsontheheadoftheturtle(VanDamme&Aerts,1997):themouth(gape)andatthelevelofceratobranchialI(CBI)andII(CBII),thedisplacement,oftheprey,thehead,andthecarapaceoftheturtleintheearthboundframeofreference(ebfr=fixedframeofreference).Timescaleisgiveninmsandnumbersoftheuppertimescalecorrespondtothenumberofthesequencespresentedattheleftofthefigure.(ModifiedfromVanDamme&Aerts,1997.)

3339.indb 199 11/26/07 12:09:31 PM

�00 BiologyofTurtles

RS I =

D - D

D + Dpredator prey

predator prey

where Dpredator and Dprey are the net distances moved by the predator and the prey between themomentthemouthfirstbeginstoopenandthemomentthepreydisappearsorisseizedbythejaws).RSIrangesfrom+1,indicatingapureramstrikeinwhichonlythepredatormoves,to−1,indicatingapuresuctionstrikeinwhichonlythepreymoves.ThecalculatedRSIduringprey(fish)captureinP. castaneusvariesbetween0.36and0.55,andinC. fimbriatuswasalwayspositive(mean=0.36±0.23,range=0.071to0.664;prey=fish;N=20).However,theseauthorsthinkthattheequationusedforRSItendstooverestimatetheramcomponent.

Whatever the terms used for describing food capture (e.g., suction, RSI), and whatever thehydrodynamic calculationsor other considerations involved, all aquatic turtlesmust expand theoropharyngealcavityforsuccessfulfoodcapture.Summersetal.(1998)demonstrateclearlythatpreycaptureinwaterinvolvesgreaterhyoiddepressioninT. carolinafeedinginwatercomparedwithfeedingonland.TheseauthorsandBelsetal.(1998)showthathyoiddepressionismodulatednotonlyfromlandtowaterbutalsoinwaterfeedinginrelationtofoodtypeandbehavior(e.g.,crabscapableofdefensivebehavior).Itisevidentthatthisexpansionplaysakeyroleinthesuc-cessfulcaptureofelusivepreybyanymodeofpreydisplacementtowardthebuccalcavity(inertialsuction)orofmaintainingthepreyimmobileinthewatercolumn(compensatorysuction).Aertsetal.(2001)suggestthatfunctionaldemandsrelatedtofeedinginwateralwaysrelatetoexpansionoftheareaposteriortothejawapparatusthatopenstoallowpreyandwatertoenterpartlyorcom-pletelyintotheoropharyngealcavity.However,theroleofthisexpansionbecomeslessimportantinturtlesfeedinguponplantmaterialfloatingatthesurface,pullingmaterialoutofthesubstratum,orattackingavigorouslydefendingprey.Inthelattercase,bitingperformancebythejawsprobablyplaysthekeyrolebecauseitallowstheturtletoobtainfoodandalsodefendagainsttheattackoftheself-protectingpotentialprey(Herreletal.,2002).Despitelargestructuralvariations,theexpansionoftheoropharyngealcavityismainlyproducedbymovementofthehyobranchiumasnicelydem-onstratedbyx-rayfilms(Aertsetal.,2001;Lemelletal.,2002).ForillustratingthemotorcontrolofthroatexpansioninChelonida,fewdataareavailable.Aertsetal.(2001)providedthefirstdescrip-tionofmotorsequencesthatshowdepressionandretractionofthehyoidbody(Figure8.8).Lemelletal.(2002)reportthattheesophagusisfilledwiththelargeamountofwatersuckedinduringthegapecycleuntilthemouthisclosed.Theseauthorsprovideacompletex-rayanalysisofpreymove-mentwithinthebucco-pharyngealcavity(Figure8.9).Inallturtles,thepreyiseithersuckedinward(inertialsuction)orbittenbyclosingjaws(compensatorysuction).Inthemeantime,thethroatislaterallyexpandedbyrotationof lateralelements (ceratobranchials I)of thehyobranchium.Thedisplacementof theelementsof thehyoidapparatushasalwaysbeenassumedtoproducethroatexpansioninallstudiedaquaticturtles(Lemell&Weisgram,1997;VanDamme&Aerts,1997;Lemelletal.,2002),andnowthereisclearconfirmatoryevidence.Theposteriorpartofthethroatisexpandedbyrotationoftheposteriorlateralelementsofthehyobranchium(cetarobranchialsII;VanDamme&Aerts,1997;Lemelletal.,2002).Themouthisthenagainopenedslightlytoexpeltheexcesswaterbyreturningthehyoidapparatustoitsstartingposition,andthepreyisretainedonthefloorofthebuccalcavity.

Allmajordataonfoodingestioninaquaticturtleshavebeencollectedinenvironmentalcondi-tions(e.g.,temperature,salinity)closetotheclassicalrelevantecologicalconditionsdeterminedforthestudiedspecies.Forexample,Belsetal.(1998)recordedfeedingbehaviorinM. terrapinat25°Cinwaterwithsalinityof33psu.Leatherbackturtleswerefilmedat26°Cinclassicalartificialsea-water(Bels&Renous,1992).However,performancesinturtles(asinallreptiles)canbemodulatedinrelationshiptotemperature.Itwouldbeexpectedinectothermicturtlesthatspeedsofjawactionwouldincreasewithhighertemperatureswithinthephysiologicalrangeofaspecies,andviceversa.

3339.indb 200 11/26/07 12:09:32 PM

FunctionalEvolutionofFeedingBehaviorinTurtles �0�

Giventhedifferentthermalconditionsoftheirnaturalranges,wecomparedgapeperformancesofthreeaquaticspecies(Figure8.10).Inthisstudy,itwasnecessarytostudyjawactionatarangeofrealistic temperatures foreachspecies.Datawereobtained forTrachemys (Emydidae)at18,24and30°C.Cuora(Emydidae)andSiebenrockiella(Bataguridae)wouldnotfeedat18°C;theywerefilmedat24,28,and30°C(threespecimensofeachspecieswereheldovernightformorethan14hoursateachstudytemperaturebeforebeingfilmed).Figure8.3andFigure8.4respectivelyshowtheeffectsoftemperatureonbitetime(i.e.,timetocontactfood)andjawopeningtime(i.e.,timetomaximumgape)foradultsofallthreespecies.ItisevidentthatthetwoemydidspecieswerebothlessaffectedbytemperaturechangesthanSiebenrockiella,whichshowedasteepdeclineinbitetimeandjawopeningtimebetween24and30°C(at24and30°C,one-wayANOVAcomparisonsamongthethreespeciesrevealedhighlysignificantdifferences,p<0.005).Trachemysshowednochangeinbitetimeandjawopeningbetween24and30°C;evenat18°Ctherewasrelativelylittleslowingofjawactionincomparisonwith30°C(bitetimeby24%,jawopeningtimeby55%).TukeyposthoctestsshowedthatTrachemyswassignificantlyfaster(shorterbite/jawopeningtimes)thanCuoraatcommontemperatures(24and30°C;p<0.05inallcases)andalsosignificantlyfaster(p<0.05)thanSiebenrockiellaat24butnotat30°C.Dataforbitetimeweremorevariablethanforjawopeningtime;thispossiblyreflectsvariationinfoodmorselsizeandthepositioningofthejawsrelativetofoodduringjawclosure.Jawopeningtimeappearstobemoreusefulforcomparisonsandissolelypresentedfortherestoftheresults.Differencesbetweenthetwoemydidspecieswereparticularlymarked,withjawopeningtimebeing227%longerinCuorathaninTrachemysat24°C,and200%longerat30°C;clearly,TrachemysbitesfarfasterthanitsAsianrelative.

These resultsprovide thefirst relevant functionaldata toexplain the roleof feedingperfor-mancesinthesuccessofinvasionofTrachymysturtlesthroughouttheaquatichabitatsoftheworld.

cm2

8 CB1 CB1

A B

CB1

Lower jaw

Hypoglossum

Hyoid

mDM

mIC

mIC

mCH

mBM

mBM

mCH

mBH

mBH

CB2 CB2

CB2 Configuration

Adducted Expanded

Gape

mDM

mBM

mBH

mCH

mIC

Onset exp.

Max. gape

Mouth closed

50 ms

4 0

figure�.� (A) Schematic representation of the head skeleton of C. longicollis in the adducted andexpandedconfigurations.(B)ResultsofelectromyographicalanalysisduringexpansionofthehyobranchiuminC. longicollis(fromAertsetal.,2001).ThegraphrepresentsthechangeofthecrosssectionalsurfaceoftheoropharyngealcavityatthelevelofthegapeandthroughthethroatatthelevelofceratobranchialsIandII.Arrowsindicatepositionandorientationof themajorexpansionmuscles.CB1:ceratobranchialI;CB2:ceratobranchialII;mBH:m.branchiohyoideus;mBM:m.branchiomandibularis;mCH:m.coracohyoideus;mDM:m.depressormandibulae;mIC:m.intercornuatus.,exp.:throatexpansion(Aertsetal.,2001).

3339.indb 201 11/26/07 12:09:33 PM

�0� BiologyofTurtles

Wedemonstrate too that the invasiveTrachemys bites faster over awide rangeof temperaturesrelativetothetwoAsianspecies(Cuora,Siebenrockiella)whosehabitatitnowshares.Thissug-geststhatitcandealmoreeffectivelywithelusiveordangerouspreyaswellasfeedingoncarrionorvegetationmorequickly.ThethermaldataalsoindicatethatTrachemysiscapableofeffectivefeedingoverawidertemperaturerangethanthetwonativespecies,allowingittocontinuefeed-ingundercoolerconditions.Theintroductionofanomnivorous,highlyeffectivecompetitortoanecosystemisclearlyundesirable,butthesituationismadeworsebytheunusualcharacteristicsof

figure�.� Successiveframesofahigh-speedx-rayfilmsequence(150frames/s)showingalateralviewofC. fimbriatusduringfoodcapture.Thetime(s:ms)isprovidedforeachframe.Thepreyitemappearsdarkbecauseofthex-raycontrastmedium.Leadmarkerswerealsopositionedontheskulloftheturtle.(FromLemelletal.,2002.)

3339.indb 202 11/26/07 12:09:34 PM

FunctionalEvolutionofFeedingBehaviorinTurtles �0�

Trachemysintroductions.Mostinvasivespeciesdonotbecomeestablishedinnewhabitatsbecausetheyfailtoreproduce,ordonothaveimmunitytopathogenspresentintheirnewhabitat.WhereasferalTrachemyshavebeenshowntobreedinJapan,Israel,Germany,andFrance(Ernstetal.,1994;Cadietal.,2004),thegreatbulkoftheirnumbersinAsia(aselsewhere)stemfromrepeatedandcontinuinglarge-scaleintroductions.Tosomeextent,theirabilitytobreed/notbreedisirrelevant,particularlyas theyareverylonglived,oftensurviving30+years inthewild(Kuhrt&Dewey,2002).AccordingtotheTurtleConservationFund(2002),Asiais“thegeographicregionthatwar-rantsthehighestpriorityifwearetoavoidlosing[chelonian]speciesinthenearfuture.”Theresultsofourcomparativebiomechanicalstudyprovidefurtherindicationofthenecessityfortrappingandremovingthishighlycompetitiveintroducedturtlefromnon-nativeecosystems.

0

70 Gape angle

L food

CU

A

C

B

60 Trachemys

Trachemys

Siebenrockiella

Siebenrockiella

Cuora

Cuora

SiebenrockiellaTrachemys

Cuora

50 40 30

Gap

e Ang

le (°

)

20 10

0

700

600

500

400

300

Tim

e to

Bite

Foo

d (m

s)

200

100

0 100 200 300

Time (ms) 400 500 600 15 20 25

Temperature ()

Temperature (°C)

35 30

600

500

400

300

Jaw

Ope

ning

Tim

e (m

s)

200

100

0 15 20 25 35 30

figure�.�0 (A)Examplesofgapeanglesequencesinthethreestudyspeciesat30°C.Thebodymassesofthethreespecimensfilmedwereasfollows:Trachemys(492g),Siebenrockiella(701g),andCuora(1041g).(B)Effectoftemperatureonbitetimes(timetocontactwithfood)inadultTrachemys,Cuora,andSieberocki-ella.Symbolsrepresentmeanvalues(n=3)andstandarddeviations.(C)Effectoftemperatureonjawopen-ingtimes(timetomaximumgape)inadultTrachemys,Cuora,andSieberockiella.Symbolsrepresentmeanvalues(n=3)andstandarddeviations.

3339.indb 203 11/26/07 12:09:36 PM

�0� BiologyofTurtles

�.�.�.� manipulationandtransportCycle

Although poorly analyzed, transport of thefood is more complex because it involves twomaintypesofuseofbothelementsofthehyo-branchium: the tongue and the hyoid appara-tus.InM. terrapin,thetongueplaysakeyrolein manipulating food in association with thedepression of the hyobranchium (Figure8.11).For transporting the food, the tongue is alsoclearly associated with classical depression ofthe hyobranchium in helping backward dis-placementofthefoodwithintheoropharyngealcavity.Inotherspecies,thefoodcanbesuckedinwithout any actionof the tongue.Basedondifferences in movement of the hyobranchiuminC. fimbriatus,Lemelletal.(2002)describedtwo modes of transport cycles involving slowsuction effects on the prey within the buccalcavity(Figure8.12).Inthefirstmode,thehyoidis depressed slightly and the mouth is openenoughtofacilitatethereleaseofthepreyfromthejaws,withthefishbeingheldattheendoftheceratobranchials.Inthesecondmode,hyoiddepressionisofthesameextentasduringpreycapture.Thevolumeoftheanteriorpartoftheesophagusincreasesslowlyandthepreyisheldbetweentheceratobranchials.Theturtleexpelsthewater very slowly and theprey remains attheendofthehyoidapparatus.

8.5.3 feedIngInDermochelys coriacea:AtypIcAlexAmpleofAmArIneturtlewIthAhIghlySpecIAlIzeddIet

�.�.�.� materialsandmethods

Fouryoungleatherbackturtles(80to500g)havebeenfilmedat200to300Hzusing16mmfilms.TheturtlesfromFrenchGuianawereincubatedat30.5°Candkeptinanaquariumof2.3to5.0m3at25°Cinseawater(pH=8.0to8.1;salinity=32g/l).Theanimalswerefilmedunder500Wwhenfedwithcrudemussels(Belsetal.,1988).Thefoodwaspresentedgentlyinfrontoftheturtles.Onlytruelateralsequenceswerekeptfortheanalysisusingthetypicalmethoddetailedpreviously(Belsetal.,1998)andpointsweredigitizedtocomparemovementsofthejaws,thehyobranchium,andthelimbsduringthesuccessivephasesofthefeedingbehavior(Figure8.12andFigure8.13).

8.5.3.2reSultS

FeedingboutsinD. coriaceaconsistofsuccessivejawandhyolingualcyclesfrompreycapturetoitstransportintotheesophagus.Duringthefeedingbouts,theturtlesstabilizethebodybyslowdisplacementsoftheforelimbsthatarenotrelatedtothesuccessivegapeopenings.Twotypesofjawcycleswereobserved: ingestion (includingbitingof the smoothmaterial that is cut at eachcycle)andtransportcycles.Wedidnotrecordanyspecificswallowingcycleswiththetypeofsoft

figure�.�� Typical stages of food (entire mus-sel)manipulationinM. terrapin.Thetongueplaysamajorroleinmovingfoodfromonesideofthejawsto the other. The food is partially crushed at eachclosingofthejaws.Timebetweenframes:0.08s.

3339.indb 204 11/26/07 12:09:37 PM

FunctionalEvolutionofFeedingBehaviorinTurtles �0�

foodusedinthisstudy(piecesofmusselflesh).Insuccessiveingestioncycles,thefoodentersthe

buccalcavityandisreducedbetweentheclosingjaws.However,insomeoftheseingestioncycles,

transportalsooccurswhenthefoodismaintainedinfrontoftheturtles.Intruetransportcycles

(Schwenk,2000),thefoodistakencompletelyintothebuccalcavityandthenmovesposteriorlyto

theesophaguswithoutanyreductionbetweenthejaws.However,thefoodmaybereducedbetween

thehardpalateand the tongue.Suchreductionandbitingcyclesproducesmallparticulatemat-

terthatisejectedfromthemouthduringtheslowopeningofthenextjawcycle.Throatelevation

duringthetimebetweenthetwoFOstagesofsuccessivecyclesproducedmovementofwater(and

particulatematter)outofthebuccalcavity(Figure8.13).

figure�.�� Successiveframesofahigh-speedx-rayfilmsequence(150frames/s)showingalateralviewofC. fimbriatusduringfoodtransport.Thetime(s:ms)isprovidedforeachframe.Thepreyitemappearsdarkbecauseofthex-raycontrastmedium.Leadmarkerswerealsopositionedontheskulloftheturtle(figurefromLemelletal.,2002).

3339.indb 205 11/26/07 12:09:38 PM

�0� BiologyofTurtles

Kinematically,eachgapecycleofthebitingandtransportphasesinvolvesaslowopening(SO),fastopening(FO),andclosingstage(C).TheSOstageofbothcycle types ishighlyvariable indurationandamplitude.Insomecycles,itinvolvesa“stationarystage”(SOII)priortothesuddenincreaseoftheFOstage;inothers,itdoesnot.TheSOstagemaybealsocompletelyabsentinsomecycles.Fromhigh-speedcinematographicfilms, itwasnotpossible to recordclear relationshipsbetween thepresenceanddurationof thisSOstage,with thecycle functionor the tongue-foodposition.ThemeandurationofSOstageinbitingcyclewassignificantlylongerthanofSOstageinthetransportcycle(Kruskall-WallisANOVA,T=4.7;df=18;P<0.05),whereasFOandCstageswerenotsignificantlydifferent.

Themouthisopenedbyacombinationofventraldepressionofthelowerjawanddorsaleleva-tionoftheupperjaw.Typically,thehyoid-tonguedisplacementsarenotdifferentiningestionandtransportcycles.DuringtheSOstageandthefirsthalfoftheFOstage,thehyoid-tonguecomplex

A

PPTO

FO

SO 2/22B

SO 1/16

9/22

GAGA

FC

7/16

4/16

TO

FO

11/22

C20/22

12/16

figure�.�� Successiveframesshowing(A)ingestionand(B)transportcyclesinD. coriacea(high-speed16-mmfilmsat100Hz).Thegapeisdividedinslowopening(SO),fastopening(FO),andclosing(C)stages—thedivisioninfastclosing(FC)andslowclosing(SC)stageswasnotalwaysclearduringtheingestioncycle.Inertialsuctionplaysakeyroleinbothfeedingphases.Thedurationoftheingestioncycleis0.22s(22frames)andthedurationofthetransportcycleis0.16s(16frames).Thenumbersindicatedateachdrawingcorrespondtothenumberofframesrelativetothetotalnumberofthecycle.TimetopeakgapeisindicatedbyGA.Con-tactbetweenthefoodandthetonguewasalwaysobservedandtongueretractswiththefoodasthethroatisdepressed.TO:tongue.

3339.indb 206 11/26/07 12:09:43 PM

FunctionalEvolutionofFeedingBehaviorinTurtles �0�

iselevatedandprotractedasillustratedbydecreasingofthethroatangle.ThedistancebetweenthemandibleandthehyoidbodyvisiblethroughthethroatskindecreasesstronglyduringSOstageandis0.07±0.01spriortomaximalgapeamplitude(endofFOstage).Thethroatexpansionthenoccursduring0.14±0.05sattheendofFOandFCstages.IncasesofastationarystagepriortoaSOstageorveryslowopeningstage, thehyoid-tonguedistancedoesnotchangegreatlypriordecreasing.Therewasnosignificantdifferencebetweendisplacementsofthehyoidpointonthethroatduringbitingandtransportcycles(Figure8.14).

100Ingestion

Upper jaw

Lower jaw

Transport-swallowing

50

80

40

0

5

0

5

0

5

00 1 2

Time (s)3

ca neFood

4

Gap

e (de

gree

s)

Jaw

Ver

tical

Mov

emen

ts(c

m)

Thro

at d

istan

ce I

(cm

)Th

roat

Dist

ance

II(c

m)

Nec

k H

oriz

onta

lM

ovem

ent

(cm

)

0

figure�.�� KinematicprofilesofingestionandtransportcyclesinD. coriaceafeedingonsoftmaterial(piecesofmussels)withpropertiesclose to thematerialcaught in thenaturalenvironment (jellyfish).Wecategorizeingestioncyclesasallcyclesusedformovingfoodintothebuccalcavity,andtransportcyclesasallcyclesthattakeplacewithfoodinsidethebuccalcavity.Gapecyclesinbothphasesaredividedintoslowopening(SO),fastopening(FO),andfastclosing(FC).Divisionbetweenclosinginfastclosing(FC)andslowclosing(SC)isnotyetclear.However,attheendoftheclosingstagetheangularaccelerationofthegapeangledecreasesslightly.Thekinematicprofilesillustratingthethroatdisplacementfollowasimilarpatternduringbitingandtransportcycles.ThethroatdistancesIandIIwerecalculatedasthedistancecorrespondingtothelinetracedfromonepointonthethroattothehorizontallinepassingthroughtheedgeofthemandibleateachframeatanangleof90°.ThethroatdistanceIcorrespondstothehyoidbodyandthethroatdistanceIItotheregionoftheceratobranchialsI.DuringtheSOandfirsthalfoftheFOstagesofeachcycle,thethroatdis-tanceIiselevated0.01sbeforethethroatdistanceII(posterior).Retractionofthehyoid-tonguesystembeginsduringtheFOstageandoccursduringtheclosingstage.Peakhyoidretractionbeginswithorjustbefore(0.01s)fastclosing.Thehyoidapparatusismaximallyretracteduntilthefastclosing(FC)isachieved.TheneckdistancewascalculatedasthedistancebetweenpointNE(endoftheskull)andCA(carapace).

3339.indb 207 11/26/07 12:09:44 PM

�0� BiologyofTurtles

DuringSOandFOstages,watermovesintothebuccalcavitysimultaneouslyasthepreythatmoveseithertothebuccalcavity(biting)orposteriorlyintothebuccalcavity(transport).Anaddi-tionalinertialsuctionmechanismhelpsdisplacepreytowardthepharyngealcavity;thisismainlyproducedbytongueretractioninbitingandtransportcycles.Strongcontactsbetweenpreysurfaceandtonguedorsalsurfacewereobservedinbothcycles.

�.� evolutionoffeedingBehaviorinturtles

Discussionofevolutionoffeedingbehaviorinturtlesremainscontroversial.BasedontheirstudyofpreycaptureinT. carolina,Summersetal.(1998)statethat“thecurrentlyacceptedhypothesisisthattheancestortorecentturtleswasterrestrial(Gaffneyetal.,1987),butthatanaquaticlifestyleevolvedearlyinthehistoryofthecladeandisprobablyprimitiveforallextantturtles(Gaffneyetal.,1987,1991;Carroll,1988).”Theseauthorsconcludedthatterrestrialfeedinginturtlesisaderivedbehavior(Belsetal.,1997;Summersetal.,1998).Hereweprovidesomediscussionthathighlightstheneedforfuturequantitativekinematicandmotoranalysesinterrestrialandaquaticturtles.

8.6.1 IngeStIon

Terrestrialfeedingmodesincludelingualandjawprehension.Bothmodesareusedforvariousfooditems.ExceptinTerrapene(Belsetal.,1997;Summersetal.,1998;Bels,2003),lingualprehensionisthemainmodeforallstudiedturtlesoftheTestudinidae.Thefoodadherestothetongueeitherin(e.g.,Kinixys)orout(e.g.,Geochelone)ofthebuccalcavity.Summersetal.(1998)suggestthatT. carolinausesaterrestrialfeedingmodeinwaterbecausethevelocitiesofallskullelementsduringfoodcapturebygeneralistsareslowerthanthoseofspecialists.Fromavailabledata,threehypoth-esescanbesuggested.First,theingestioncyclehasbeenderivedinthe“true”terrestrialcheloni-ans(i.e.,Testudinidae)showingatongue-basedintraoralfeedingbehaviorfromfoodtransportandreductiontoswallowing.Ingestioncanbeviewedasanevolutionarytransformationofatongue-basedfeedingmechanismforefficientprocurementoffood.Thecoordinationofthetonguemove-menthasnotchangedgreatly,withthetonguemovingslightlytowardthefoodduringjawopeningandretractingthefoodaftercontact;alternatively,thejawapparatuscansimplysurroundthefooditemandthetonguemakescontactwiththefoodwithinthebuccalcavitypriortobeingretracted.Second,bothmodesofprehension(lingualandjawprehensions)werepresentinancestorsofturtlesandcanbeusedinvariouswaysdeterminedbythepropertiesofthefood.Suchmodulationinfoodprehensionhasbeenreportedforsquamates(Schwenk,2000).Third,terrestrialturtlesderivedfromaquaticancestorshave“reinvented”thekeyroleofthetongueforimprovingefficiencyoffoodpro-curementtogetherwiththeirconquestofterrestrialhabitats.Inthiscase,wemustadmitthatlingualprehensionisaderivedpatternconstrainedbythepropertiesofthefoodresourcesbecomingavail-ableduringtheevolutionofterrestrialturtles.InTerrapene,whichbelongstoaprimitivelyaquaticclade,terrestrialfeedingisasecondarilyderivedmodeinwhichthejawprehensionthatplaysakeyroleinaquaticfeedinghasbeenconserved.Summersetal.(1998)suggestthatT. carolinawouldusetongueprehensiononpreythatislargerthanmealworms.WehavenotyetconfirmedthissuggestionbyexaminingprehensionofvarioustypesoffoodinTerrapene(Bels,personalobservation).

8.6.2 trAnSport(AndotherfeedIngphASeS)

Theevolutionoffeedingbehaviorandmotorcontrolofturtlesstillremainsdifficulttofullyunder-stand.First,theoriginofturtlescontinuestobelargelyproblematic.Second,onlyafewspecieshavebeenextensivelystudied,mainlyintermsoffeedingmechanismsandnotfromanevolution-aryperspective.However,availabledatacanprovidesomeinsight,particularlywithrespecttothelikelihoodofsomepossiblehypothesesconcerningtheevolutionoffeedingbehaviorinchelonians.

3339.indb 208 11/26/07 12:09:45 PM

FunctionalEvolutionofFeedingBehaviorinTurtles �0�

Acomparativeanalysisofallfeedingphases—exceptfoodcapture—appearsinteresting.LauderandGillis(1997)comparedtransportkinematicsandmechanismsoftrulyaquaticvertebrates(e.g.,fishesandamphibians),firstwiththoseofamphibiansthatfeedinbothterrestrialandaquatichabi-tats,andsecondwiththoseoftrulyterrestrialAmniota(e.g.,squamates).Theysuggestthatseveraltraitsrecordedforsquamatesarenovelfeaturesofthefeedingmechanismthatappearedwiththeconquest of terrestrial habitats and can therefore be considered as plesiomorphic for tetrapods.Thesetraits includediversityofintraoralprocessing,thepresenceofaSOstagepriortosuddengapeincrease(FOstage),andhyoidandtongueprotractionduringSOproducedbyauniquepatternofhyoidmusclecontraction(Lauder&Gillis,1997).Thesesuggestionsagreewiththeevolution-aryapproach to feedingbehaviorproposedbyReillyandLauder (1990),whoadvocatea singlegeneralizedmodeloffoodtransportintetrapods.Morerecently,McBrayerandReilly(2002)donotsupportallthefeaturesofBrambleandWake’s(1985)generalmodel(i.e.,presenceofSOIandSOIIinslowopening).Thesetwomodelshavebeenproposedtodescribethegeneralizedgapepatternandtonguemovementduringfoodtransportinterrestrialvertebrates.Basedonavailabledatain1985,BrambleandWake(1985)presentedahypotheticalgeneralizedmodelforancestraltetrapodswithgapebeingdividedintoslowopening(SO),fastopening(FO),fastclosing(FC),andslowclos-ing(SC-PS)stages.BeforeFO,thegapeincreaseisdividedintoslowopeningI(SOI)involving“acomparativelylowgapeangle”(Bramble&Wake,1985)whilethetongueslidesbeneaththefoodandaslowopeningII(SOII),that“isrecognizedbyadistinctdeclineintherateofchangeofgape”(Bramble&Wake,1985).Thislatterstageisrepresentedinthemodelbyaplateauinthegapecycle.ThenduringFO,thefoodismovedposteriorlybyactionofthetongue.AfterFO,themouthclosesrapidly(FC)andthenmoreslowlyasthejawscontactthepreyduringSC-PSstages.

Reilly and Lauder (1990) proposed another generalized model for amniotes. These authorsdividetheincreasingstageofthegapecycle(openingofthemouth)onlyintoslowopening(SO)andfastopening(FO),withnoSOIIstage.Thisdifferenceingapeincreaseishighlysignificantbecauseitemphasizesadifferenceintonguemovementduringtransportingofthefood—seeMcBrayer&Reilly(2002)foradiscussionbasedonquantitativedatainalargesetofsquamates.AccordingtoLee(1997),thedevelopmentoftheshellandratherflattenedbodyofturtlescouldbelinkedtoanancestralherbivorousdiet.Itmaybeassumedthatancestralformswereterrestrialandfedonplantmaterial(andperhapssmall,slowlymovingpreyorcarrion),asisthecaseforalargenumberofextantspeciesstudiedtodate(e.g.,Geochelonesp.,Kinixyssp.).Basedonthishypothesis,wemayconcludethatavailabledatasupporttheconclusionthatthecharacteristicsoftransportcyclesareplesiomorphicforterrestrialfeedinginturtles,althoughthereisalargevarietyindietandspecial-izationofthehyobranchium,yieldingthepresenceofaSOstagebeforeFOofthemouth,amove-mentofthetongueunderthefoodduringtheSO,andretractionofthefoodbythetongueatSO-FOtransitionoratthebeginningofSOstage.

Intheirquantitativeanalysis,Belsetal.(1997)comparedtheirdatainterrestrialfeedingbyT.carolinawiththetwopreviouslydescribedgeneralizedmodelsfortetrapods.Availabledatadonotpermitcategoricalconclusions.However,arapidsurveyofkinematicsfacilitatesthecomparisonofaquaticandterrestrialtransportphases.Inallturtles,withalltypesoffood,thejawcycleisoftendividedintoSO,FO,andclosingstages.TheSOstageisalwayspresentinallterrestrialturtles.Thisstagehasalsobeenreportedinalargenumberofaquaticturtles(P.castaneus,Lemell&Weisgram,1997;T. carolina,Belsetal.,1997;Summersetal.,1998;M.terrapin,Belsetal.,1998;D. coria-cea,Belsetal.,1998;C. frimbriatus,Lemelletal.,2002).Wesuggestthatthereisanintra-oraltransportcyclethatissimilarforallterrestrialturtles.Itisalsoevidentthatthetongueisusedinalargenumberofaquaticturtlestotransportfooditems,justasinterrestrialturtles.ItsprotractionoccursduringtheSOstageanditretractswiththefoodattheboundarybetweenSOandFOstagesorearlyduringFOstage.Wemaycallthismechanismintra-oral aquatic lingual transport.Incon-trast,suctionplaysthedominantrolefortransportingfoodinsomespeciessuchasC. fimbriatus(Lemelletal.,2002).Wemaycallthismechanismintra-oral aquatic hyoid transport.Probably,therelativesizeofthetongueisthelimitingmorphologicalfactorindetermininguseoftongue-based

3339.indb 209 11/26/07 12:09:45 PM

��0 BiologyofTurtles

intra-oraltransportorhyoid-basedintra-oraltransport.Theslowlyopeningmouthcangeneratelowpressurewithinthemouthcavitybecauseofprotractionofthehyoidduringthisstageinbothcases.However,thisisrapidlycompensatedforbysuctionthatoccursduringthroatexpansionaftermaxi-mumgape.DuringtheFOstages,rapidmouthopeningisimmediatelyfollowedbyaposteroventralmovementofthehyoidapparatus;highnegativepressureoccurswithintheoropharyngealcavity,whichisproducedbypeakhyoiddepressionfollowingpeakgapeinallstudiedturtles.DuringtheFCphase,thehyoidapparatusremainsdepresseduntilthemouthisclosed.

aCKnoWledgments

Theauthorsthankallthosewhohelpedtogatherthedatausedinthispaper.TheyareverygratefultoS.Attereforherhelpinwritingthispaper,andtopersonsfordiscussionandhelpinvariouspartsofthiswork(G.Daghfous,S.Montuelle).Wethanktwoanonymousreviewersfortheirhelpfulcomments.

referenCes

Aerts,P.,VanDamme,J.,andHerrel,A.,Intrinsicmechanicsandcontroloffastcraniocervicalmovementsinaquaticfeedingturtles,Am. Zool.,41,1299,2001.

Beisser,C.J.,Lemell,P.,andWeisgram,J.,LightandelectronmicroscopyofthedorsallingualepitheliumofPelusioscastaneus(Pleurodira,Chelidae)withspecialrespecttoitsfeedingmechanics,Tiss. Cell,33,63,2001.

Bels,V.L.,EvaluatingthecomplexityofthetrophicsysteminReptilia, inBiomechanics and Evolution of Vertebrates,V.L.Bels,J.-P.Gasc,andA.Casinos(eds.),Oxford:BiosPublishers,2003,185.

Bels,V.L.,Feeding in Domestic Vertebrates: From Structure to Behaviour,Wallingford,CT:CabiPublish-ing,2006.

Bels,V.L.,Davenport,J.,andDelheusy,V.,KinematicanalysisofthefeedingbehaviorintheboxturtleTer-rapene carolina(L.),(Reptilia:Emydidae),J. Exp. Zool.,277,198,1997.

Bels,V.L.,Davenport,J.,andRenous,S.,FoodingestionintheestuarineturtleMalaclemys terrapin:Com-parisonwithmarineleatherbackturtleDermochelys coriacea,J. Mar. Biol. Assoc. UK,78,953,1998.

Bels,V.L.,Davenport,J.,andRenous,S.,DrinkingandwaterexpulsioninthediamondbackterrapinMalacle-mys terrapin (Latreille).J.Zool.,236:483–497,1995.

Bels,V.L.,andRenous,S.,Kinematicsoffeedingintwomarineturtles(Chelonia mydasandDermochelys coriacea),inProceedings of the Sixth Ordinary General Meeting S.E.H.,Z.KorsosandI.Kiss(eds.),Budapest:HungarianNaturalHistoryMuseumPress,1992,73.

Bels,V.L.,Rimblot-Baly,F.,andLescure,J.,CroissanceetmaintienencaptivitédelatortueLuth,Dermo-chelys coriacea(Vandelli,1761),Rev. Fr. Aquariol.,15,59,1988.

Bouchard, S.S., and Bjorndal, K.A., Nonadditive interactions between animal and plant diet items in anomnivorousfreshwaterturtleTrachemys scripta,Comp. Biochem. Phys. B,144,77,2006.

Bramble, D.M., and Wake, D.B., Feeding mechanisms of lower tetrapods, in Functional Vertebrate Mor-phology,M.Hildebrand,D.M.Bramble,K.F.Liem,andD.B.Wake(eds.),Cambridge,MA:HarvardUniversityPress,1985,230.

Cadi,A.,Delmas,V.,Prévot-Julliard,A.-C.,Joly,P.,Pieau,C.,andGirondot,M.,Successfulreproductionoftheintroducedsliderturtle(Trachemys scripta elegans)intheSouthofFrance,Aquat. Conserv.,14,237–246,2004.

Carroll,R.L.,Vertebrate Paleontology and Evolution,NewYork:W.H.Freeman&Co,1988.Cebra-Thomas,J.,Tan,F.,Sistla,S.,Estes,E.,Bender,G.,Kim,C.,Riccio,P.,andGilbert,S.F.,Howtheturtle

formsitsshell:Aparacrinehypothesisofcarapaceformation,J. Exp. Zool. B,304,558,2005.Claude,J.,Pritchard,P.,Tong,H.,Paradis,E.,andAuffray,J.-C.,Ecologicalcorrelatesandevolutionarydiver-

genceintheskullofturtles:Ageometricmorphometricassessment,Syst. Biol.,53,937,2004.Cleuren,J.,andDeVree,F.,KinematicsofthejawandhyolingualapparatusduringfeedinginCaiman croco-

dilus,J. Morphol.,212,141,1992.Davenport,J.,andClough,W.,Theuseoflimbscalesor“pseudoclaws“infoodhandlingbyyoungloggerhead

turtles,Copeia,1985,786,1985.Davenport,J.,andClough,W.,Swimminganddivinginyoungloggerheadseaturtles(Caretta carettaL.),

Copeia,1986,53,1986.

3339.indb 210 11/26/07 12:09:46 PM

FunctionalEvolutionofFeedingBehaviorinTurtles ���

Davenport,J.,andMacedo,E.,BehaviouralosmoticcontrolintheeuryhalinediamondbackterrapinMalacle-mys terrapinLatreille:Responsestolowsalinityandrainfall,J. Zool.,220,487,1990.

Davenport,J.,Spikes,M.,Thornton,S.M.,andKelly,O.B.,Crab-eatinginthediamondbackterrapinMalacle-mys terrapin:Dealingwithdangerousprey,J. Mar. Biol. Assoc. UK,72,835,1992.

Davenport,J.,Wong,T.M.,andEast,J.,FeedinganddigestionintheomnivorousestuarineturtleBatagur baska (Gray),Herpetol. J.,2,133,1992.

Ernst,C.H.,andBarbour,R.W.,Turtles of the World,Washington,DC:SmithsonianInstitutionPress,1989.Ernst,C.H.,Lovich, J.E., andBarbour,R.W.,Turtles of the United States and Canada,Washington,DC:

SmithsonianInstitutionPress,1994.Gaffney,E.S.,Aphylogenyandclassificationofthehighercategoriesofturtles,Bull. Am. Mus. Nat. Hist.,

155,387,1975.Gaffney,E.S.,Comparativecranialmorphologyofrecentandfossilturtles,Bull. Am. Mus. Natur. Hist.,164,

67,1979.Gaffney,E.S.,Hutchinson,J.H.,Jenkins,F.A.,andMeeker,L.J.,Modernturtleorigins:Theoldestknown

cryptodire,Science,237,289,1987.Gaffney,E.S.,Meylan,P.A.,andWyss,A.R.,Acomputerassistedanalysisoftherelationshipsofthehigher

categoriesofturtles,Cladistics,7,313,1991.Harless,M.,andMorlock,H.,Turtles: Perspectives and Research,NewYork:JohnWiley&Sons,1979.Herrel,A.,andDeVree,F.,KinematicsofintraoraltransportandswallowingintheherbivorouslizardUro-

mastixacanthinurus,J. Exp. Biol.,202,1127,1999.Herrel,A.,O’Reilly,J.C.,andRichmond,A.M.,Evolutionofbiteperformanceinturtles,J. Evol. Biol.,15,

1083,2002.Hill,R.V.,IntegrationofmorphologicaldatasetsforphylogeneticanalysisofAmniota:Theimportanceof

integumentarycharactersandincreasedtaxonomicsampling,Syst. Biol.,54,530,2005.Hughes,G.R.,Luschi,P.,Mencacci,R.,andPapi,F.,The7000-kmoceanicjourneyofaleatherbackturtle

trackedbysatellite,J. Exp. Mar. Biol. Ecol.,229,209,1998.Iwasaki,S.,Finestructureofthedorsalepitheliumofthetongueofthefreshwaterturtle,Geoclemys reevesii

(Chelonia,Emydinae),J. Morph.,211,125,1992.Iwasaki,S.,Evolutionofthestructureandfunctionofthevertebratetongue,J. Anat.,201,1,2002.Iwasaki,S.,Asami,T.,andWanichanon,C.,Finestructureofthedorsallingualepitheliumofthejuvenile

hawksbillturtle,Eretmochelys imbricatabissa,Anat. Rec.,244,437,1996a.Iwasaki,S.,Asami,T.,andWanichanon,C.,Ultrastructuralstudyofthedorsallingualepitheliumofthesoft-

shellturtle,Trionix cartilaginous(Chelonia,Trionychidae),Anat. Rec.,246,305,1996b.Iwasaki,S.,Wanichanon,C.,andAsami,T.,Histologicalandultrastructuralstudyofthelingualepitheliumofthe

juvenilePacificridleyturtle,Lepidochelys olivacea(Chelonia,Chelonidae),Ann. Anat.,178,243,1996c.Iwasaki,S.,Wanichanon,C.,andAsami,T.,UltrastructuralstudyofthedorsallingualepitheliumoftheAsian

snail-eatingturtle,Malayemys subtrijuga,Ann. Anat.,178,145,1996d.Joyce,W.G.,andGauthier,J.A.,PalaeoecologyofTriassicstemturtlesshedsnewlightonturtleorigins,Proc.

R.S. B.-Biol. Sci.,271,1,2004.Kear,B.P.,andLee,M.S.,AprimitiveprotostegidfromAustraliaandearlyseaturtleevolution,Biol. Lett.,

2,116,2006.Kuhrt,T.,andDewey,T.,“Trachemysscripta“,AnimalDiversityWeb,http://animaldiversity.ummz.umich.

edu/site/accounts/information/Trachemys_scripta.html,2002.Lauder,G.V.,andGillis,G.B.,Originoftheamniotefeedingmechanism:Experimentalanalysesofoutgroup

clades,inAmniote Origins: Completing the Transition to Land,S.SumidaandK.Martin(eds.),SanDiego,CA:AcademicPress,1997,152.

Lauder,G.V.,andPrendergast,T.,KinematicsofaquaticpreycaptureinthesnappingturtleChelydra serpen-tina,J. Exp.Biol.,164,55,1992.

Laurin,M.,andReisz,R.R.,Areevaluationofearlyamniotephylogeny,Zool. J. Linn. Soc.,113,165,1995.Lee,M.S.Y.,Correlatedprogressionandtheoriginofturtles,Nature,379,812,1997.Lemell,P.,Beisser,C.J.,andWeisgram,J.,FeedingpatternsofPelusios castaneus(Chelonia:Pleurodira)with

commentsonthemorphologyofitstongue,J. Morphol.,232,285,1997.LemellP.,Lemell,C.,Snelderwaard,P.,Gumpenberger,M.,Wocheslander,R.,andWeisgram,J.,Feeding

patternsofChelus fimbriatus(Pleurodira:Chelidae),J. Exp. Zool.,205,1495,2002.Lemell,P., andWeisgram, J.,The feedingpatternsofPelusios castaneus (Chelonia:Pleurodira),Neth. J.

Zool.,47,429,1997.

3339.indb 211 11/26/07 12:09:46 PM

��� BiologyofTurtles

Liem,K.F.,Aquaticversusterrestrialfeedingmodes:Possibleimpactsonthetrophicecologyofvertebrates,Am. Zool.,30,209,1990.

Lindeman,P.V.,Evolutionoftherelativewidthoftheheadandalveolarsurfacesinmapturtles(Testudines:EmydidaeGraptemys),Biol. J. Linn. Soc.,69,549,2000.

McBrayer,L.D.,andReilly,S.M.,Testingamniotemodelsofpreytransportkinematics:Aquantitativeanaly-sisofmouthopeningpatternsinlizards,Zoology,105,71,2002.

McCauley,S.J.,andBjorndal,K.A.,Responsetodietarydilutioninanomnivorousfreshwaterturtle:Implica-tionsforontogeneticdietaryshifts,Physiol. Biochem. Zool.,72,101,1999.

Nagashima,H.,Uchida,K.,Yamamoto,K.,Kuraka,S.,Usuda,R.,andKuratani,S.,Turtle-chickenchimera:Anexperimentalapproachtounderstandingevolutionaryinnovationintheturtle,Dev. Dyn.,232,149,2005.

Norton,S.F.,andBrainerd,E.L.,Convergenceinthefeedingmechanicsofecomorphologicallysimilarspe-ciesintheCentrarchidaeandCichlidae,J. Exp. Biol.,176,11,1993.

Pough,F.H.,Andrews,R.M.,Cadle,J.E.,Crump,M.L.,Savitzky,A.H.,andWells,K.D.,Herpetology,UpperSaddleRiver,NJ:Prentice-Hall,2001.

Pritchard,P.C.H.,Encyclopedia of Turtles,Neptune,NJ:T.F.H.Publications,1979.Reilly,S.M.,andLauder,G.V.,Theevolutionof tetrapodfeedingbehavior:Kinematichomologies inprey

transport,Evolution,44,1542,1990.Reina,R.D.,Jones,T.T.,andSpotila,J.R.,SaltandwaterregulationbytheleatherbackseaturtleDermochelys

coriacea,J.Exp. Biol.,205,1853,2002.Reisz,R.R.,andLaurin,M.,Owenettaandtheoriginofturtles,Nature,349,324,1991.Renous,S.,andBels,V.,EtudecinématiquedelapalettenatatoireantérieuredelatortueluthDermochelys

coriacea(Vandelli,1761)aucoursdesalocomotionterrestre,Can. J. Zool.,69,495,1989.Schwenk,K.,Feeding: Form, Function and Evolution in Tetrapod Vertebrates,SanDiego,CA:Academic

Press,2000.Shaffer,B.H.,Meylan,P.,andMcKnight,M.L.,Testsofturtlephylogeny:Molecular,morphologicalandpale-

ontologicalapproaches,Syst. Biol.,46,235,1997.Shedlock,A.M.,Botka,C.W.,Zhao,S.,Shetty,J.,Zhang,T.,Liu,J.S.,Deschavanne,P.J.,andEdwards,S.V.,

Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome, Proc. Natl. Acad. Sci. USA,104,2767,2007.

Smith,T.,Kardong,K.,andBels,V.,Preycapturebehaviorintheblue-tonguedskink,Tiliqua scincoides,J. Herpetol.,33,362,2000.

Summers,A.P.,Darouian,K.F.,Richmond,A.M.,andBrainerd,E.L.,KinematicsofaquaticandterrestrialpreycaptureinTerrapene carolina,withimplicationsfortheevolutionoffeedingincryptodireturtles,J. Exp. Zool.,281,280,1998.

VanDamme,J.,andAerts,P.,KinematicsandfunctionalmorphologyofaquaticfeedinginAustraliansideneckedturtles(Pleurodira:Chelodina),J. Morphol.,233,113,1997.

Wyneken,J.,Seaturtlelocomotion:mechanisms,behaviorandenergetics,inThe Biology of Sea Turtles,P.L.LutzandJ.A.Musick(eds.),BocaRaton,FL:CRCPress,1997,165.

3339.indb 212 11/26/07 12:09:46 PM