6002_notes_07_L16

download 6002_notes_07_L16

of 27

Transcript of 6002_notes_07_L16

  • 7/24/2019 6002_notes_07_L16

    1/27

    Eng. 6002 Ship Structures 1

    Matrix Analysis UsingMATLAB

    Example

  • 7/24/2019 6002_notes_07_L16

    2/27

    Introduction Last class we divided the FEM into five

    steps:1. construction of the element stiffness matrix in

    local coordinates,

    2. transformation of the element stiffness matrixinto global coorindinates,

    . assembl! to the global stiffness matrix usingtransformed element stiffness matrices,

    ". application of the constraints to reduce theglobal stiffness matrix,

    #. determination of un$nown nodaldisplacements.

  • 7/24/2019 6002_notes_07_L16

    3/27

    The Method %he stiffness matrix for each element is

  • 7/24/2019 6002_notes_07_L16

    4/27

    The Method this matrix describes the stiffness of an

    elastic element that relates the load vectorto the displacement vector

  • 7/24/2019 6002_notes_07_L16

    5/27

    The Method the element stiffness matrix transformed to

    global coordinates is defined as:

    { } [ ]{ }uf k= [ ] [ ] [ ][ ] kk T=

  • 7/24/2019 6002_notes_07_L16

    6/27

    The Method %he transformation matrix is given b!:

    { } [ ]{ } { } [ ]{ }uuff == and

  • 7/24/2019 6002_notes_07_L16

    7/27

    Example cont. &n order to easil! combine the element stiffness

    matrices, each element stiffness matrix is storedin a matrix the si'e of the global stiffness matrix,with the extra spaces filled with 'eros.

    &n this example, the element stiffness matrix forelement 1 is stored in the portion of the globalstiffness matrix that involves nodes 1 and 2, i.e., the upper ( x ( portion of the matrix. %hus, the

    expanded stiffness matrix that describes element 1 isgiven b!:

  • 7/24/2019 6002_notes_07_L16

    8/27

    Example cont.

  • 7/24/2019 6002_notes_07_L16

    9/27

    Example cont. %he element stiffness matrix for element 2 is

    stored in the portion of the global stiffness matrixthat involves nodes 2 and , i.e., the lower ( x (portion of the matrix. %he expanded stiffness

    matrix that describes element 2 is given b!:

  • 7/24/2019 6002_notes_07_L16

    10/27

    Example cont. %he expanded individual stiffness matrices can

    now be added together so that the globalstiffness matrix for the two)element structure isgiven as:

  • 7/24/2019 6002_notes_07_L16

    11/27

    Next ClassExample 1: two beam elements * simple structure made of two beams has the following

    parameters L1 + 12 in, L2 + 1 in, and E + - x 1-(psi. %he cross)

    section of the beams are -.# in x -.# in and + "#/. &f

    a downward vertical force of 1--- lb is applied at node2, find the displacement at node 2.

  • 7/24/2019 6002_notes_07_L16

    12/27

    Step 1 %he first step in the solution procedure is to

    discreti'e the domain, i.e. select the number ofelements. *s a first approximation, the problem ismodeled with two beam elements. %he elementstiffness matrix for each of the beam elements isof the form:

  • 7/24/2019 6002_notes_07_L16

    13/27

    Step 1 (code m + 20 number of elements b + -.# -.#30 width 4in5 h + -.# -.#30 height 4in5 a + b.6h0 cross)sectional area & + b.6h.7.8120 moment of inertia l + 12 130 length of each element 4in5 e + -61-7( -61-7(30 modulus of elasticit! 4psi5 theta + - )"#6pi81-30 orientation angle f + )1---0 force 4lbs5 9tep 1: onstruct element stiffness matrices $ + 'eros4(,(,m50 for n + 1:m

    $11 + a4n56e4n58l4n50 $22 + 126e4n56&4n58l4n570 $2 + (6e4n56&4n58l4n5720 $+ "6e4n56&4n58l4n50 $( + 26e4n56&4n58l4n50 $4:,:,n5 + $11 - - )$11 - -0- $22 $2 - )$22 $20- $2 $ - )$2 $(0)$11 - -

    $11 - -0- )$22 )$2 - $22 )$20 - $2 $( - )$2 $30 end

  • 7/24/2019 6002_notes_07_L16

    14/27

    Step 1 ;ote: we are building < matrices 4i.e. a

    series of 2< matrices = with si'e+m5

    9ee $ in code

  • 7/24/2019 6002_notes_07_L16

    15/27

    Step 2 %he second step is to transform each element

    stiffness matrix in local coordinates to the globalcoordinate s!stem.

    %his transformation is accomplished b! .

    %he transformation angle for element 1 is + -,

    and, thus, the transformation matrix is simpl! theidentit! matrix. >ecause the rotation angle ismeasured countercloc$wise, the transformationangle for element 2 is + )"#/.

    { } [ ]{ }uf k= [ ] [ ] [ ][ ] kk T=

  • 7/24/2019 6002_notes_07_L16

    16/27

    Step 2 for n + 1:m

    c + cos4theta4n550 s + sin4theta4n550

    lamda + c s - - - -0 )s c - - - -0 - - 1 - - -0

    - - - c s -0 - - - )s c -0 - - - - - 130 $bar 4:,:,n5 + lamda?6$4:,:,n56lamda0

  • 7/24/2019 6002_notes_07_L16

    17/27

    Step ! %he third step is to assemble the global

    stiffness matrix that describes the entirestructure b! properl! combining the

    individual element stiffness matrices. Elements stiffness matrices are stored in

    the proper portion of the matrix, i.e. eachmatrix is shifted b! three rows and three

    columns.

  • 7/24/2019 6002_notes_07_L16

    18/27

    Step ! 9tep : ombine element stiffness

    matrices to form global stiffness matrix

    for i + 1:( for @ + 1:( Ae4iBshift,@Bshift,n5 + $bar4i,@,n50 end end shift + shift B 0

  • 7/24/2019 6002_notes_07_L16

    19/27

    Step ! Ce then add the matrices together to form

    the global stiffness matrix

    A + sum4Ae,5

  • 7/24/2019 6002_notes_07_L16

    20/27

    Step " %he fourth step is to appl! the constraints and reduce the

    global stiffness matrix so that the specific problem ofinterest can be solved. For this problem, the displacementsat node 1 and node are $nown, i.e. U1 + U2 + U + UD+ U + U + -, and the loads are applied to node 2 are

    specified, i.e. F" + -, F# + )1--- lb, and F( + -. %hus, thes!stem of euations can be written as:

  • 7/24/2019 6002_notes_07_L16

    21/27

    Step " %his problem has three un$nowns, U", U#,

    and U(, and, thus, reuires threeindependent euations.

    Matrix algebra allows three independenteuations to be constructed b! theremoval of the rows and columns thatcorrespond to the $nown displacements,

    i.e. the global stiffness matrix reduces to:

  • 7/24/2019 6002_notes_07_L16

    22/27

    Step "

    the stiffness matrix reduces to:

  • 7/24/2019 6002_notes_07_L16

    23/27

    Step " 9tep ": Geduce global stiffness matrix

    with constraints

    Ar + A0 Ar4:,5 + 30 Ar4,:5 + 30 Ar4:,5 + 30

    Ar4,:5 + 30 Ar4:,D5 + 30 Ar4D,:5 + 30 Ar4:,5 + 30 Ar4,:5 + 30 Ar4:,25 + 30

    Ar42,:5 + 30 Ar4:,15 + 30 Ar41,:5 + 3

  • 7/24/2019 6002_notes_07_L16

    24/27

    Step " %he numerical values from the code

  • 7/24/2019 6002_notes_07_L16

    25/27

    Step # %he final step is simpl! to solve the reduced

    s!stem of euations for the un$nowndisplacements. Fr + -0 f0 -30

    Hr + ArIFr

    %he numerical solution from the M*%L*> code is U" + )-.--1( in,

    U# + )-.--(" in, and

    U( + )-.--- radians.

  • 7/24/2019 6002_notes_07_L16

    26/27

    $iscussion %his problem is staticall! indeterminate,

    and the solution is not trivial. *dditional information can be found with

    the addition of nodes. For example, thedeflection at the midpoint of each elementcan be found if two additional nodes areadded.

    Jf course, then a x s!stem ofeuations must be solved. ;ote that theaddition of nodes at the midpoints doesnot change the solution at node 2.

  • 7/24/2019 6002_notes_07_L16

    27/27

    %ssignment Hsing the approach outlined in this lecture,

    develop a matlab routine to find the deflection atthe midpoint of each element shown.

    L1 + 12 in, L2 + 1 in, and E + - x 1-(psi. %hecross)section of the beams are -.# in x -.# in and + "#/. &f a downward vertical force of 1--- lb isapplied at node 2