6 Dyed Csawg

download 6 Dyed Csawg

of 34

Transcript of 6 Dyed Csawg

  • 8/2/2019 6 Dyed Csawg

    1/34

    Satellite Link Impairment due toRain and Other Climatic Factors

    Syed Idris Syed Hassan

    Sch of Electrical & Electronic Engineering

    Engineering CampusUniversiti Sains Malaysia

    Seri Ampangan, Nibong Tebal

    14300 Penang, Malaysia

  • 8/2/2019 6 Dyed Csawg

    2/34

    Introduction

    Rain attenuation is a major constraint in

    microwave radio link design above 10 GHz.

    Several empirical and non-empirical rainattenuation prediction models that have been

    developed are based on the measured data

    obtained from temperate regions . Most of these existing rain attenuation

    prediction models do not appear to perform

    well in high rainfall regions.

  • 8/2/2019 6 Dyed Csawg

    3/34

    Introduction (continuation)

    The ITU-R [4] model is currently being widely used by

    many researchers.

    Cumulative distribution empirical evidence shows thatthe ITU-R model underestimates the measured rain

    attenuation cumulative distribution when applied to

    tropical regions, leading to a poor prediction.

    Other impairments are due to gaseous absorption,

    cloud, tropospheric refractive effects, scintillation, wet

    antenna etc.

  • 8/2/2019 6 Dyed Csawg

    4/34

    Measurement of bit error rateduring cloudy and clear sky

  • 8/2/2019 6 Dyed Csawg

    5/34

    Teleconference between USM andNIME via Superbird C

  • 8/2/2019 6 Dyed Csawg

    6/34

    Theoretical

    Rain attenuation

    ScintillationCloud attenuation

    Gaseous attenuation

  • 8/2/2019 6 Dyed Csawg

    7/34

    Rain attenuation model

    ITU

    Lognormal

    Moupfouma SAM

    Yamada

    Lin

    DAH

    Assis

    Flavin CETUC

    Crane

    Etc..

  • 8/2/2019 6 Dyed Csawg

    8/34

    ITU model

    The specific attenuation, is a function of therainfall rate, R0.01 exceeded at 0.01% of time is

    given by:

    = k(R0.01

    ) dB/km

    where kand are frequency and polarization

    parameters, given by ITU-R recommendation

  • 8/2/2019 6 Dyed Csawg

    9/34

    ITU rain attenuation prediction modelat 0.01% of time exceeding

    Specific Rain Attenuation

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 10 20 30 40 50 60 70 80 90 100

    Frequency (GHz)

    Spec.Atten.

    dB/km

    horizontal polization

    vertical polization

    Ka-bandKu-band

    Spec. attenuation

    For Ku-band

    4-7dB/kmFor Ka-band

    12-25dB/km

  • 8/2/2019 6 Dyed Csawg

    10/34

    Models and measurement

  • 8/2/2019 6 Dyed Csawg

    11/34

    Rain Rate Models(compared with measurement)

    Rain rate at 0.01%

    Mea =112.6 mm/h

    ITU =120 mm/h

    Crane/Gamma=148mm/h

    Log =100mm/h

    R-H=135mm/h

    Bod=55mm/h

    DD= 28mm/h

    7.3501.0 =A

    0

    50

    100

    150

    200

    250

    300

    0.001 0.01 0.1 1

    percentage,%

    rainrate,mm/h

    ITU

    Crane

    DDMoupfouma

    Bodtman&Ruthroff

    Rice-Holmberg

    Log-normal

    Gamma

    USM(3 years avg)

  • 8/2/2019 6 Dyed Csawg

    12/34

    Worth month Vs Annual rain rate probability

    Pa = 0.509(Pw)x1.2

    r2 = 0.9731

    Pa = 0.2965(Pw)1.1623

    00.05

    0.1

    0.15

    0.20.25

    0.3

    0.35

    0.4

    0 0.5 1

    worst month average rain rate

    exceedence,Pw( %)

    annualaverage

    rainrate

    exceedence,

    Pa(%)

    Measured

    ITU

    Power (Measured)

    Power (ITU)

    Measurement:

    Pa= 0.509(Pw)1.2

    ITU :

    Pa =0.2965(Pw)1.1623

  • 8/2/2019 6 Dyed Csawg

    13/34

    Attenuation model at 0.01%

    Mea=30dB

    ITU= 15.34dB

    Moupfo=31dB

    DAH= 27dB

    Crane=23dB

    Flavin=19dB

    SAM=20dB

    VIHT=16dB

    Gracia=10dB

    0

    10

    20

    30

    40

    50

    60

    0.001 0.01 0.1 0.3 1

    percentage, %

    attenuation,d

    B

    USM(3 years avg)

    DAH

    VIHT

    Crane

    ITU

    SAM

    Moupfouma

    Gracia-Lopez

    Flavin

  • 8/2/2019 6 Dyed Csawg

    14/34

    Current Experimental SetupMeasurement Site USM KMITL ITB

    Earth Station Location 5.170N

    100.40E

    13.70N

    100.80E

    6.50S

    107.40E

    Beacon Frequency,

    (GHz) 12.255 12.74 12.247

    Antenna Elevation (deg)40.1 54.8 64.7

    Altitude (m) 57 40 700

    Antenna

    Diameter (m)2.4 2.4 1.8

  • 8/2/2019 6 Dyed Csawg

    15/34

    Developing a new Rain attenuation modelfor Ku-band

    Modify ITU-R model to retain the concept of an

    equivalent rain cell.

    The horizontal projection of the slant path, LG

    was

    modified based on the rain height, elevation angle,

    reduction factor, and the rainfall rate at the

    measurement sites.

    The model was revised, so that it can be used attropical countries with the antenna elevation angle

    varying from 400 to 700 .

  • 8/2/2019 6 Dyed Csawg

    16/34

    Comparison ITU model with measured dataand proposed model at USM at Ku-band

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0.001 0.01 0.1 1

    Percentage of time %

    Rainfalla

    ttenuationd

    B

    USM

    ITU

    95% UL

    95%LLproposed model

    UL = Upper Limit ;

    LL = Lower limit

    (confidence interval)

  • 8/2/2019 6 Dyed Csawg

    17/34

    Comparing ITU model with measured dataand proposed model at KMITL at Ku-band

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0.001 0.01 0.1 1

    Percentage of time %

    Rainfalla

    ttenuation

    dB

    KMITL

    ITU

    95% UL

    95%LL

    proposed model

  • 8/2/2019 6 Dyed Csawg

    18/34

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0.001 0.01 0.1 1

    Percentage of time %

    Ra

    infalla

    ttenuation

    dB

    ITB

    ITU

    95% UL

    95%LL

    proposed model

    Comparing ITU model with measured dataand proposed model at ITB at Ku-band

    Comparing the errors between ITU and

  • 8/2/2019 6 Dyed Csawg

    19/34

    Comparing the errors between ITU and

    proposed model

    %rms

    % error

    KMITL

    P% 0.001 0.003 0.01 0.03 0.1 0.3 1

    % error

    USM

    ITU -27.9 -18.1 -6.4 0.4 6 9.1 -26.4 16.2

    Proposed -5.1 -2.4 0.05 1.1 4.32 4.17 8.19 2.9

    ITU -40.3 -33.4 -23 -18.1 -12 -15.1 -41.3 28.4

    Proposed -6.09 -3.63 -0.49 -1.46 5.78 1.94 5.81 4.11

    % error

    ITB

    ITU -35.5 -29 -23.3 -17.9 -22 -18.3 -48.1 29.9

    Proposed 9 6.19 -0.11 -4.92 -5.4 -1.56 6.79 6.14

  • 8/2/2019 6 Dyed Csawg

    20/34

    Specific Attenuation contour mapping

    for 12 GHz (horizontal polarization)

  • 8/2/2019 6 Dyed Csawg

    21/34

    Specific Attenuation contour mappingfor 12 GHz (vertical polarization)

  • 8/2/2019 6 Dyed Csawg

    22/34

    Scintillation at slant path of 41O

    Scintillation ofabout 0.2-0.4 dB

    occurred at

    frequency 12GHzaccording to months

    and seasons

  • 8/2/2019 6 Dyed Csawg

    23/34

    Comparison of the measured scintillation

    spectrum with the theoretical pattern (straightline).

  • 8/2/2019 6 Dyed Csawg

    24/34

    Cloud attenuation

    Gunn and East model

    Liebe model

    Staelin model

    Slobin model-derived from Staelin model

    Altshuler model

  • 8/2/2019 6 Dyed Csawg

    25/34

    Gunn and East model

    Cloud attenuation is given by

    ( )kmdBd /21

    Im

    6

    4343.0 1

    +

    =

    where

    = complex relative dielectric constant of water=wavelength (cm)d=density of water (g/cm3) (~0.99)

    1=liquid water content of the cloud (g/m3

    )Im=imaginary part

    Li b d l

  • 8/2/2019 6 Dyed Csawg

    26/34

    Liebe model

    The cloud attenuation is given by( )kmdBffN /)("182.0=

    ( ) ( ) ( )[ ] 121 1"29"

    += yfN

    ( )( )

    ( )

    ( )( )

    ( )2

    21

    2

    1

    11

    "s

    s

    p

    po

    ff

    ff

    ff

    fff

    +

    +

    +

    =

    ( ) "2' +=ywhere

    f= frequency in GHz

    15.273

    300

    += T

    ( ) ( ) ( ) 2221

    2

    1

    11'

    ++

    ++

    =

    sp

    o

    fffff

    ( )11500590 = sf

    ( ) ( )2129414.14209.20 += pf

    ( ) ( )13.10366.77 += To

    51.32 =

    48.51 =

    T in Centigrade

  • 8/2/2019 6 Dyed Csawg

    27/34

    Staelin model

    The cloud attenuation is given by

    ( ) ( )kmdBT

    /16.110343.42

    2910122.01

    1

    =

    where 1= the liquid water density of the cloud (g/m3)

    T=temperature (K)

    =wavelenght (cm)

  • 8/2/2019 6 Dyed Csawg

    28/34

    Slobin model

    Make use of Stelin model and divide the

    cloud into 12 different categories such as

    lightest cloud, light cloud, medium cloud,

    heavy cloud and heavier cloud.

  • 8/2/2019 6 Dyed Csawg

    29/34

    Altshuler model

    Cloud attenuation at 10oC is given by

    ( ) ( )kmdB /3.11403.000075.00242.0 115.1 +

    ++=

    = wavelength in mm

    1=surface absolute humidity(g/m3)

    Total attenuation is obtained by multiplying the distance below

    where

    ( ) ( ) csc=DFor >8o

    ( ) ( ) ( )[ ] ( ) sincos2/1222

    eeee aahaD +=For< 8o

    =elevation angle

    e=effective radius of the earth (8497km)

    he=6.35-0.302 effective cloud height (km)=surface absolute humidity (g/m3)

    where

  • 8/2/2019 6 Dyed Csawg

    30/34

    Gaseous attenuation

    Water vapor AW

    Oxygen Ao

    Total Gaseous absorption (dB) is

    owg AAA +=

  • 8/2/2019 6 Dyed Csawg

    31/34

    Water vapor attenuation

    o

    www fordBhA 10sin/ >=

    ( ) oweweww fordBhRFhR

    A 10/tan

    cos

    =

    w =specific attenuation of water vapor (dB/km)R

    e

    =effective earth radius (8500km)

    = elevation anglehw= equivalent height of water vapor

  • 8/2/2019 6 Dyed Csawg

    32/34

    Oxygen attenuation

    o

    ooo fordBhA 10sin/ >=

    ( ) ooeoeoo fordBhRFhR

    A 10/tan

    cos

    =

    o =specific attenuation of oxygen layer (dB/km)R

    e

    =effective earth radius (8500km)

    = elevation angleho= equivalent height of oxygen layer

  • 8/2/2019 6 Dyed Csawg

    33/34

    Future research

    To verify the attenuation models at Ka-band

    Develop a new attenuation model for Ka-

    band USAT application in teleconference and

    telemedicine

  • 8/2/2019 6 Dyed Csawg

    34/34