6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

61
6. Carbon nanostructures: fullerenes and carbon nanotubes 1
  • date post

    23-Jan-2016
  • Category

    Documents

  • view

    239
  • download

    0

Transcript of 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Page 1: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

6. Carbon nanostructures: fullerenes and carbon nanotubes

1

Page 2: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

C is unique in its versatility

Diamond (sp3 Carbon):-hardest material-perfect insulator or semiconductor when doped

Graphene (sp2 Carbon):-soft material-highly anisotropic

Acetylene (sp1 Carbon):

Fullerenes (C60):Diameter = 0.71 nmSMALLEY 1985

Nanotubes:Metallic or SemiconductingDiameter: 0.5 - 50 nmLength: < 50 µmIIJIMA 1991

2

Page 3: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Carbon materials

•19th century: 1st fibre by T. A. Edison(from bamboo filaments)•1950s introduction of carbon reinforced materials(composites)•PAN (polyacrylonitrile) fibres•C-whiskers•vapor phase grown (CVD)•1985 discovery of fullerenesand conjecture of Smalley of the possible existence of1d fullerenes•discovery by Iijima with TEM breakthrough

3

Page 4: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Graphene

4

Page 5: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Single perfect sheet of graphite (so called graphene)

5

Page 6: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

6

Page 7: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

7

Page 8: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

8

Page 9: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

9

Page 10: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

“”

LCAO bandstructure of graphene

10

Page 11: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Reciprocal lattive of graphene and the -point

11

Page 12: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Fullerenes

12

Page 13: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

C20+2n

⇒12 pentagonal ringsn hexagonal rings

Coordination number =3, ∼sp2

hybridization

C60

C70 C

78

C78

13

Page 14: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

- 12 pentagons and 20 hexagons

- Icosahedral (Ih) point group symmetry (5-fold rotation axis)

- σ and π bonds, two bond lengths 1.40 Å and 1.45 Å

- Found first in astronomic spectra, then obtained in carbon-arc shoot (end of 80´s)

C60

14

Page 15: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

C60 , buckminsterfullerene

•Solid C60

, FCC close packing

3 Å

10 Å

15

Page 16: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Solid C60

•Van der Waals bonds between molecules

•FCC lattice

• low T: oriented C60

-molecules

•High T: rotation of C60

-molecules

molecular bonding

16

Page 17: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

17

C60 solids

Para ver esta película, debedisponer de QuickTime™ y de

un descompresor TIFF (sin comprimir).Para ver esta película, debedisponer de QuickTime™ y de

un descompresor TIFF (sin comprimir).

C60

doped solid

M3C60 , M=alcaline metal

metal ortype II superconductor, as the lattice parameter is changed

fcc, semiconductor 0.5 eVC60

Page 18: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Molecule

Solid

HOMO

εFsemiconductor

metal

semiconductor

LUMO

band-gap

18

Page 19: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

M3C

60 compounds are superconducting (Type II)

- Relatively high Tc (45 K for pure (Tl2Rb)C

60),

higher than other intermetallic as Nb3Ge

- a↑ ⇒ g(εF) ↑ ⇒ Tc↑

(BCS) 19

Page 20: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Para ver esta película, debedisponer de QuickTime™ y de

un descompresor TIFF (sin comprimir).

Atoms encapsulated in C60

20

Page 21: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Carbon nanotubes

21

Page 22: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Produced in DC-arc struck between two carbon electrodes (Iijima, NEC,

Tsukuba 1991)

Single-walled nanotube(usually concentric

multi-walled nanotubes)

22

Page 23: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

23

Page 24: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

24

Page 25: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

25

Page 26: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

26

Page 27: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

The first experimental electron microscope images published, S. Iijima , Nature (1991), reporting the discovery of carbon nanotubes.

First electron microscope image and diffraction pattern from single-walled carbon nanotubes [S. Iijima & T. Ichihashi Nature 363, 603 (1993).]

The smallest CN

27

Page 28: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

28

Page 29: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

29

Page 30: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Carbon nanotubes: types and description

30

Page 31: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Nanotube geometry

31

Page 32: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Nanotube = wrapped sheet of graphite

Chiral vector

A A’

32

Page 33: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

33

Page 34: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

34

Page 35: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

(5, 5) armchair nanotube

(9, 0) zigzag nanotube

(10, 5) chiral nanotube

Armchair nanotubes n=m , chiral angle 30°. Zigzag nanotubes , either nor m are zero, chiral angle is 0°. Chiral nanotubeschiral angles intermediate between 0° and 30°

http://physicsweb.org/article/world/11/1/9#world-11-1-9-6

,diameter

35

Page 36: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Carbon nanotubes: band structure

36

Page 37: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

1D bands of CN

Bandstructure of a (10; 10) armchair carbon nanotube. The shaded region is the 1: Brillouinzone. Note, each band is doubly degenerate, except for the ones crossing E = 0 and the ones withmaximal and minimal energy. There are in total 40 bands.

37

Page 38: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

1D character

38

Page 39: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Metallic and semiconducting nanotubes

Zig-zag-tube Arm-chair-tube

metalsemimetal semiconductor

e--pockets

graphite 1. BZ

39

Page 40: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

40

1D model

Page 41: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

a)Zig-zag tube

- 1 BZ of graphite: elctron pockets at K ⇒ metallic

- Tubes: periodicity around the axis → allowed -values on lines

- If n=3p, p ∈ integer ⇒ line of allowed -points intersects K

⇒ metallic zig-zag -wire (3p,n)- If n=3p+1, 3p+2 ⇒ semiconductor

b)Arm-chair tube

- Line of allowed -points intersects K⇒ metallic⇒ transistors?

41

Page 42: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

42

Page 43: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Carbon nanotubes: properties and applications

43

Page 44: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Single-wall carbon nanotubes are also expected to be very strong and to resist fracture under extension, just as the carbon fibers commonly used in aerospace

applications

Unlike carbon fibres, however, single-wall

nanotubes are remarkably flexible.

Mechanical properties

Ultimate material in strength

44

Page 45: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Ruoff et al. Science 287, 637 (2000)

Mechanics, pulling...

45

Page 46: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

46

Page 47: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Viola Barwich & Ernst Meyer, Basel

SFM tips

47

Page 48: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

48

Page 49: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Vibrating Carbon Nanotubes

Ebbesen et al, Nature 381, 678 (1996)

49

Page 50: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Raman (radial breathing modes)

50

Page 51: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

NanoelectronicsElectronic properties

51

Page 52: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

52

Page 53: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Nanotube transistors

Gate (Si)

SiO2

Source (Au) Drain(Au)

Nanotube

FET at

room temperature

SET a 4 K

53

Page 54: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

FET (unipolar)

54

Page 55: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

5540

1D electronic properties: quantization of conductance

de Heer’s experiment

Page 56: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Optical properties

56

Page 57: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Nanotube lights (different colors).Light emission when an electric field is applied

57

Page 58: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Nanotubes for better TV screens

Aligned carbon nanotubes into different patterns

New flat screens, longer lasting, more energy efficient, thinner and flexible.

58

Page 59: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

59

Page 60: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

Fullereness (C60) encapsulated in single wall CNs

60

Page 61: 6. Carbon nanostructures: fullerenes and carbon nanotubes 1.

ReferencesScience and Application of Nanotubes, edited by D. Tomanek and R. J. Enbody,(Kluwer Academic/Plenum Publishers, 1999)

M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes andCarbon Nanotubes; Academic Press: New York, 1996.

Carbon Nanotubes, edited by M.S. Dresselhaus, G. Dresselhaus and Ph. Avouris(Springer, Berlin Heidelberg, New York 2001)

Physics Today, May 1999, p22

Physics World, Vol.13, Issue 6, June 2000

R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties ofCarbon Nanotubes; Imperial College Press: London, 1998, 1999, 2001.

61