5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front...

30
5G mmWave Radio design for Mobile Kamal Sahota Vice President Engineering Qualcomm Inc.

Transcript of 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front...

Page 1: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

5G  mmWave  Radio  design  for  Mobile      

Kamal  Sahota  Vice  President  Engineering    

Qualcomm  Inc.  

Page 2: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Agenda  •  5G  RF  standard  

– 5G  mm  Wave  bands    •  WAN  Transceiver  complexity  over  the  last  5  years.    •  Process  technology  requirements    for  mm  wave    •  Smart  phone  system  architecture  (  RF  centric).  •  Antenna  Arrays  •  Phase  shiLer  architectures    •  Transceiver  architectures.  •  Large  bandwidth  challenges    •  Measured  results    •  Conclusion    

Page 3: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

5G  NR    standard    •  Release  15  accelerated  to  finish  5G  standard  by  Q4  17  – Non  stand  alone  and  Stand  alone  5G  – Non  stand  alone  uses  a  4G  anchor  cell  to  help  extend  coverage  for  5G  enabled  mobile  devices.  

– Stand  Alone  5G  enabled  later  in  2018      

�  

•  5G  separated  into  sub  6  GHz  and  mmWave  bands  for  iniZal  deployment  based  on  geographical  region  spectrum  availability  

Page 4: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

24  –  40  GHz  

ConfidenZal  and  Proprietary  –  Qualcomm  Technologies,  Inc.  

Page 5: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver
Page 6: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

RFIC  4G    to  5G  evoluZon    

TRX5CA RX

2TX

DigitalbasebandLTE

CAT14

TRXmore RX

2TX

DigitalbasebandRel 15

TRXmore RX

2TX

DigitalbasebandRel 16

mmWaveArrays

mmwave IC

2017  4x4  MIMO  on  2  CA+  2x2  MIMO  on  1  CA  Ø  1GBps  data  rates      

2018  4x4  MIMO  on  more  CA+  Ø  1.5GBps  data  rates  Ø  256  QAM    Ø  60MHz  UL  BW      

2019  4x4  MIMO  on  more  CA+  Sub  6  5G  mm  Wave  5G  100MHz  component  carrier  200MHz  RF  bw  for  sub  6  800MHz  RF  bw  for  mm  Wave    

Page 7: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Future  5G    Transceiver  implicaZons      •  MulZ  mode    5G/4G  

–  2017  LTE  5    RX  Carriers  aggregated    •  >  44    bands  •  >  more  than  1000  DL  (Down  Link)  CA  combinaZons  •  >  UL  (  Uplink)    CA  concurrent  with  DL  CA  

–  2G/3G  also  supported  •  5G  adds  further  complexity  

–  More  bands  both  sub-­‐6  and  mm  Wave.  –  Wider  bandwidths  

•  100MHz  component  carrier,  up  to  8  component  carriers  –  Higher  carrier  frequencies    24  to  71  GHz      –  Higher  order  modulaZon-­‐  1024  QAM  for  sub  6GHz  –  Concurrent  with  4G  to  enable  >    5  GBps  data  rates    –  Low  latency  control  paths  

•  AGC  switching  Zmes  •  PLL  seiling    

–  More  antennas  and  addiZonal  PCB  components    adding  PCB  area.    

   

Page 8: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

RF CMOS device figures of merit • High Frequency Figures of Merit for RF circuits

Maximizing RF performance :� fT

is given for a technology node, and scales favorably in nanometer CMOS

�NFmin & fmaxare negatively impacted by the gate resistance and extrinsic layout access resistances which should be minimized

Patrick Yue, Mark Rodwell, UCSBIEEE CSIC Short Course, RF and High Speed CMOS, Nov. 12, 2006, San Antonio, Texas

� fTRelates to current gain. Ù how fast transistors can charge (loading) capacitorsfT is more relevant for high-speed circuits.

� fmaxRelates to power gain Ù maximum gain reachable for an amplifierfmax is more relevant for RF and mmW circuits.

Process  /Device  requirements        •  Fmax*Bvds  >    500  GHz*V  

– High  gain  per  stage  –   high  breakdown  voltage  for  PA’s.  – Nfmin  

•  Digital  Logic  density    for  codebook  updates  and  dynamic  beam  switching.  

•  Low  cost    •  Low  resisZvity  metal  for  coils  and  Vdd/gnd  rouZng    

•  Low  loss  transmission  lines            

Page 9: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

System  Architecture    

4G and Sub 6 5GWiFi and BTRF front end

mmWave RFFront end

4 to 8 Antennas N Antenna,

M antenna Arrays

4GTransceiver

WiFIBT SOC 5G

Transceiver

4G baseband 5G baseband

Application Processor

Page 10: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Number  of  Antennas  for  mmWave  

•  For  a  given  EIRP,  doubling  the  Antennas  results  in  :  +  Reduces  Element  TX  power  by  4  +  Reduces  DC  power  dissipaZon  by  2  –  Increases  PCB  area  by  2  +Allows  for  narrower  beams,  improved  spaZal  filtering.  -­‐  More  complexity  and  transceiver  cost    

Page 11: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Antenna  Arrays  compensate  for  addiZonal  propagaZon  losses  at  mmWave  frequencies  Parameter     5GHz   28GHz  

Antenna  gain  (dB)   -­‐4.5      5    

Antenna  efficiency     35%   80%  

Beam  forming  gain  (dB)(  8elements)  

0  dB   9  dB  

TRP(dBm)   23   20  (  12.5  mW  per  element)  

Free  space  Path  loss  difference    between  5  and  28GHz  

0   21  

EIRP   18.5  dBm   34  dBm  

Mmwave  link  penalty  relaZve  to  5GHz  

=EIRP_28GHz-­‐EIRP_5GHz-­‐path  loss=  -­‐5.5  dB  

19

Friis Transmission Equation

Basic Principles

𝑃𝑟 = 𝑃𝑡 ∗ 𝐺𝑡 ∗ 𝐺𝑟 ∗ 𝜆4𝜋𝑅

2= 𝑃𝑡 ∗ 𝐴𝑒,𝑡∗𝐴𝑒,𝑟

𝜆2 ∗ 1𝑅2

• Pt and Pr are transmit and receive powers respectively• Gt and Gr are transmit and receive antenna gains respectively• 𝜆 is wavelength• R is the distance at which the measurement is made• Ae,t & Ae,r are antenna apertures at transmit and receive ends respectively

For a given Tx and Rx antenna aperture, the received power actually increases at smaller wavelengths.In other words, for a given antenna dimension, gain & directivity are better for higher frequencies.

Think high receive antenna gain as well.

Beamforming Gain

EIRP (dBm) = P_out (dBm/element) + 10*log10(N_elem)+Individual_element_gain (dB) + 10*log10(N_elem)

Antenna Gain

Page 12: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Antenna  ConfiguraZons  

•  1x8  dipole    –  High  feedline  loss  –  Single  polarizaZon  –  Aperture  area  (without  ground):  ~1.6x43.2mm  

•  Two  1x4  dipoles  at  corner,  top  and  side  edge  –  Single  polarizaZon  in  majority  of  direcZons  –  Aperture  area  (without  ground):  ~1.6x43.2mm  

•  2x5  dual-­‐pol  patch    –  Allows  for  dual-­‐pol  MIMO  –  Poor  Coverage  –  Aperture  area:  ~10.8x27mm  

•  2x2  dual-­‐pol  patch  and  two  1x2  dipoles    –  Aperture  area:  ~12.4x12.4  

•  2x4  dual-­‐pol  patch  and  1x2  &  1x4  dipoles    –  Aperture  area:  ~12.4x23.2  

Page 13: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

1x8  Dipole  at  One  Edge  

y

x

Distribution of gain over all angles Envelop of all phase scanned beams

Page 14: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Two  1x4  Dipoles  at  Corner  (2  Subarrays)  

y

x

Distribution of gain over all angles Best of all phase scanned beams between two subarrays

Page 15: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

2x5  Dual-­‐Pol  Patch  Array  (Best  of  2  Subarrays)  

y

x

Page 16: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Comparison  of  Total  Power  Paierns    

•  Patch  designs  yield  higher  peak  gain  (and  allow  for  dual-­‐pol  MIMO)  

•  ConfiguraZons  with  mulZple  arrays  have  beier  angular  coverage  

•  Two  1x4  dipoles  performs  well  for  50%ile  angular  coverage:  –  Not  considering  feedline  

losses!  –  No  dual-­‐pol  MIMO  

•  Single  array  configuraZons  have  relaZvely  poor  angular  coverage  (1x8  dipole  and  2x5  patch,  ~1dBi  at  10%)  

Page 17: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Comparison  for  Each  PolarizaZon    

Page 18: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Comparison  of  1x8  Dipole  Array  with    0.5λ,  0.4λ,  0.3λ  Element  Spacing  at  28GHz  

43.2mm  

34.4mm  

25.6mm  

Total  Aperture  Area  Maiers  not  number  of  elements  for  Gain  

Page 19: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Comparison  of  1x8  Dipole  Array  Gain  and  Paierns  with    0.5λ,  0.4λ,  0.3λ  Element  Spacing  at  28GHz  

Combined with equal amplitude and equal phase

Y   Z  

X  

43.2mm  

34.4mm  

25.6mm  

Page 20: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Placement  of  Antenna  Arrays  in  Smart  phones  

Front

Rear

AntennaArray

•  Placement  of  Antenna  Arrays  constrained  by  Industrial  Design  

•  Extra  losses  due  to  plasZc  /  nearby  metal  need  to  be  accounted  for  in  the  design  

•  Switched  Antenna  Diversity  to  miZgate  hand  /body  blockage.    

•  SpaZal  and  polarizaZon  MIMO  within  each  array.  

Page 21: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Hybrid  beam  forming  •  Hybrid  beam  forming  architectures  

–  Antenna  combining  done  at  RF,  IF  into  1  or  more  layers.  – MIMO  processing  at  baseband    –  Full  digital  combining  prohibiZve  at  the  moment  for  mobile  devices.  

•  Different  types  of  phase  shiLer  architectures  –  Lo  path  phase  shiLer  –  RF  phase  shiLer  –  IF/BB  phase  shiLer    

•  Tradeoffs  in  power  performance  for  all  3.  –  For  Number  of  elements  <=  4  all  have  similar  power  dissipaZon.  

–  For  large  N  RF  path  phase  shiLer  best  for  power.  –  Lo  phase  shiLer  has  higher  accuracy  and  resoluZon.  

Page 22: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Super  Het  RF  phase  shiLing  Architecture    splitter/

combiner

splitter/combiner

splitter/combiner

splitter/combiner

splitter/combiner

splitter/combiner

X

X

RX/TX layer 1

X

X

RX/TX layer 2

PLL 1

X

XTX IQ

BB filter

RX IQBB filter

DAC

ADC

X

XTX IQ

BB filter

RX IQBB filter

DAC

ADC

PLL 2

LO

Page 23: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

RF  phase  shiLing  ZIF  architecture  splitter/

combiner

splitter/combiner

splitter/combiner

splitter/combiner

splitter/combiner

splitter/combiner

RX/TX layer 2

X

XTX IQ

BB filter

RX IQBB filter

DAC

ADC

X

XTX IQ

BB filter

RX IQBB filter

DAC

ADC

PLL 1

LO

RX/TX layer 1

Page 24: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

TX  Beam  forming  architectures  

DSP

PAø

DAC

LO

PAø

PAø

PAø

(a) RF Phase Shifting

DSP

PA

ø

DAC

LO

PA

ø

PA

ø

PA

ø

(b) LO Phase Shifting

DSP

PAø

DAC

PAø

PAø

PAø

LO

(c) Analog Baseband Phase Shifting

DSP

PAøDAC

PAø

PAø

PAø

LO

DAC

DAC

DAC

(d) Digital Baseband Phase Shifting

Figure 4.6: Phased array architecutres (Transmitter)

59

Figures  from  UC  Berkeley  PHD  Thesis    by  Jiashu  Chen  “Advanced  Architectures  for  efficient      mmWave    transmiiers  “    Fall  2013.      

Page 25: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

RF  Phase  ShiL  Architecture  

IF_H

IF_V

Poly  PhaseI/Q  Gen

II-

QQ-

Gm

Gm

p

m

LNA

Poly  PhaseI/Q  Gen

II-

QQ-

Gm

Gm

p

m

LNA

Poly  PhaseI/Q  Gen

II-

QQ-

Gm

Gm

p

m

LNA

Poly  PhaseI/Q  Gen

II-

QQ-

Gm

Gm

p

m

LNA

Comb

ANT1H

ANT0H

ANT3H

ANT2H

ANT1V

ANT0V

ANT3V

ANT2V

PLL

HV

Vector  modulator  type  phase  shiLer  Quadrature  generaZon  via  poly  phase  filter  Weighing  done  by  VGA’s  Passive  or  current  mode  combiner    

Page 26: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Phase  shiLer  topology  has  implicaZons  on  architecture  choice.  

•  ZIF  architecture  would  require  large  number  of  mixers  if  phase  shiLing  architecture  is  used.  –  Larger  power  dissipaZon  due  to  many  LO  chains  running  at  RF  frequency  for  large  number  of  array  elements.  

•  Super  Het  has  less  of  a  power  penalty  with  phase  shiLing  architecture.  –  Low  side  injecZon.  

•  Architecture  choice  also  has  PCB  board  level  rouZng  constraints.  –  SuperHet  requires  only  IF  lines  vs  Analog  IQ.    

Page 27: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Large  bandwidth  Challenges  •  At  mm  Wave  frequencies,  due  to  finite  L,  the  transistor  

gain  per  stage  is  lower.  –  Many  LC  tank  loaded  stages    result  in  droop  and  cause  in  band  

signal  aienuaZon.  

•  Super  het  architectures  result  in  large  fracZonal  bw  at  IF  frequencies.    

•  More  suscepZble  to  interference  from  other  radios  and  clocks  in  the  system.  

•  Digital  pre-­‐distorZon  (DPD)  difficult  due  to    AM/PM  and  AM/AM  bandwidth  expansion.  

•  Antenna  Array  (  DPD)  challenging    –  DPD  on  each  element  vs  DPD  on  array  –  Measurement  receiver  capability  and  number  

•  Wide  band  ADC/DACs  sampling  at  GHz  frequencies    

Page 28: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Measured  results    

-80 -60 -40 -20 0 20 40 60 80-35

-30

-25

-20

-15

-10

-5

0Normalized 2x4 V-pol Patch Array Scanned Patterns

antenna  modules  

•  Element  and  Peak  Gain  agree  with  SimulaZon.  

•  Peak  scans  +/-­‐45  degrees  •  >  33  dBm  EIRP  achievable  

Page 29: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Conclusion    •  Smart  phone  RF  front  end  complexity  increased  exponenZally  over  the  last  few  years.  

•  5G  adds  addiZonal  complexity  in  terms  of  more  bands,  higher  frequency  bands,  and  wider  bandwidths.  

•  Wireless  Systems  conZnue  to  evolve  in  complexity-­‐  new  phase  is  direcZonal  communicaZons  with  phased  arrays.  

•  Phased  arrays  help  miZgate  the  effects  of  increased  path  loss  at  mm  wave  frequencies.    

•  Many  challenges  remain  to  be  solved  in  the  next  few  years.  

•  Silicon  and  packaging  technology  enabling  low  cost  phased  arrays  for  consumer  devices.    

 

Page 30: 5G mmWave#Radio#design#for# Mobile### · System#Architecture## 4G and Sub 6 5G WiFi and BT RF front end mmWave RF Front end 4 to 8 Antennas N Antenna, M antenna Arrays 4G Transceiver

Acknowledgments    

•  Thanks  to  my  colleagues  at  Qualcomm  for  providing  Antenna  Array  EM  sims  and  measurements.