519 - Optoelectronics and Photonicsphotonics.usask.ca/flies_2E/Index_2E.pdfFour photon mixing, 157...

10
519 INDEX A Absorption, 43 coefficient, 44, 372 graph vs. wavelength, 373 indirect, 374 lattice, 145 Acceptance angle, fibers, 117 Acceptors in semiconductors, 189 Acousto-optic effect, 476 figure of merit and table, 481 Acousto-optic modulator, 477, 481 Bragg regime and diffraction, 479, 495 Raman–Nath regime, 477 Active Matrix Array, 417–418 Active pixel sensor, 418 Air mass, 426 Airy disk, 62 angular radius, 62 Airy, George, 58, 91 Airy rings, 58, 59, 61 Alloys, semiconductors III-V alloys, 237, 257 III-V bandgap diagram, 155 III-V ternary alloys, 237 Amorphous structure broadening, 305 Amplified spontaneous emission (ASE), 285, 287 Amplifier, see Optical amplifier Anisotropy, optical, 11, 446, 447 refractive index, 11, 445 table of crystals, 446 Antireflection coating (AR), 39–40, 365, 421 Argon-ion laser, 359 Attenuation, 43 coefficient, 43, 143 optical fibers and dB, 143–151 table for fibers, 147 vs. bend radius, 150 Avalanche, 387 breakdown voltage, 388 multiplication factor, 388 noise, 414 Avalanche photodiode (APD), 386 absorption region in APD, 393 guard ring, 388 internal gain, 388 noise, 414 photogeneration, 393 primary photocurrent, 388, 390 principle, 401 responsivity of InGaAs, 390 separate absorption and multiplication (SAM), 393–395 grading and multiplication (SAGM), 393 Si reach-through, 386 silicon, 390 superlattice, 395 B Bandgap, energy gap, 182 III-V bandgap diagram, 257 Bandwidth, 130 optical, electrical, 134–135 Bandwidth theorem, 49 Bardeen, John, 178 Bayer color image sensor, 417 Beam circular cross-section, 176 diameter, 7 displacement, see Lateral displacement of light divergence, 8 Gaussian, 62–63, 289, 292 light, 6 self-focused, 496 splitter cube, 35 Becker, P. C., 276, 463 Bending losses, 148 Bennett, William Jr., 290 Biaxial crystals, 446 Birefringence, 445 calcite, 450 circular, 456 induced, 464 quartz, 453 Birefringent circularly, media, 458 crystal, 445 optical devices, 452 prisms, 456 retarding plates, 452 Bit rate, 130, 135 capacity, 130 intersymbol interference, 131 nonreturn-to-zero (NRZ), 135 return-to-zero (RZ), 131 Black body radiation law, 271 Bloch wave in a crystal, 78, 195 Boundary conditions, electromagnetism, 26, 27 Bragg angle, 479 Bragg diffraction condition, 67, 260, 285, 495 Bragg fibers, 159–160 gratings and sensors, 163–167 Bragg reflector, 41 Bragg wavelength, 163, 339 Bragg, William Lawrence, 65, 67 Brewster angle, 29, 30 reflection and transmission, 37–38 Brewster, David, 29 Brewster window, 289, 303 Broadening amorphous structure, 305 collision, 304 homogeneous, 304 inhomogeneous, 305 lifetime, 304

Transcript of 519 - Optoelectronics and Photonicsphotonics.usask.ca/flies_2E/Index_2E.pdfFour photon mixing, 157...

519

Index

AAbsorption, 43

coefficient, 44, 372graph vs. wavelength, 373

indirect, 374lattice, 145

Acceptance angle, fibers, 117Acceptors in semiconductors, 189Acousto-optic effect, 476

figure of merit and table, 481Acousto-optic modulator, 477, 481

Bragg regime and diffraction, 479, 495Raman–Nath regime, 477

Active Matrix Array, 417–418Active pixel sensor, 418Air mass, 426Airy disk, 62

angular radius, 62Airy, George, 58, 91Airy rings, 58, 59, 61Alloys, semiconductors

III-V alloys, 237, 257III-V bandgap diagram, 155III-V ternary alloys, 237

Amorphous structure broadening, 305Amplified spontaneous emission (ASE),

285, 287Amplifier, see Optical amplifierAnisotropy, optical, 11, 446, 447

refractive index, 11, 445table of crystals, 446

Antireflection coating (AR), 39–40, 365, 421

Argon-ion laser, 359Attenuation, 43

coefficient, 43, 143optical fibers and dB, 143–151table for fibers, 147vs. bend radius, 150

Avalanche, 387breakdown voltage, 388multiplication factor, 388noise, 414

Avalanche photodiode (APD), 386absorption region in APD, 393guard ring, 388internal gain, 388noise, 414photogeneration, 393primary photocurrent, 388, 390principle, 401responsivity of InGaAs, 390separate absorption

and multiplication (SAM), 393–395grading and multiplication (SAGM), 393

Si reach-through, 386silicon, 390superlattice, 395

BBandgap, energy gap, 182

III-V bandgap diagram, 257Bandwidth, 130

optical, electrical, 134–135Bandwidth theorem, 49Bardeen, John, 178Bayer color image sensor, 417Beam

circular cross-section, 176diameter, 7displacement, see Lateral displacement

of lightdivergence, 8Gaussian, 62–63, 289, 292light, 6self-focused, 496splitter cube, 35

Becker, P. C., 276, 463Bending losses, 148Bennett, William Jr., 290Biaxial crystals, 446Birefringence, 445

calcite, 450circular, 456induced, 464quartz, 453

Birefringentcircularly, media, 458crystal, 445optical devices, 452prisms, 456retarding plates, 452

Bit rate, 130, 135capacity, 130intersymbol interference, 131nonreturn-to-zero (NRZ), 135return-to-zero (RZ), 131

Black body radiation law, 271Bloch wave in a crystal, 78, 195Boundary conditions, electromagnetism, 26, 27Bragg angle, 479Bragg diffraction condition, 67, 260, 285, 495Bragg fibers, 159–160

gratings and sensors, 163–167Bragg reflector, 41Bragg wavelength, 163, 339Bragg, William Lawrence, 65, 67Brewster angle, 29, 30

reflection and transmission, 37–38Brewster, David, 29Brewster window, 289, 303Broadening

amorphous structure, 305collision, 304homogeneous, 304inhomogeneous, 305lifetime, 304

Z06_KASA1498_02_SE_IDX.indd 519 9/20/12 8:56 PM

520 Index

Broadening (continued)optical gain curve, 303pressure, 304

Burrus device, 247

CCalcite, 446, 450

principal section, 450rhomb, 450specific rotary power, 457

Carrier confinement, 315Cauchy equation and diamond, 14Cavity lifetime, 300–301, 337Centrosymmetric crystals, 463Charge-coupled device (CCD), 419–421

Frame architecture, 420–421full frame architecture, 420–421Interline transfer architecture, 420–421sensor, 416

Chirp, chirping, 158, 496Chromatic dispersion, 125–126Cladding, 95

attenuation, 102layers, 247

Coefficient of index grading, 137Coherence

length, 48mutual temporal, 50perfect, 47spatial, 47, 50temporal, 47time, 48

Collision broadening, 304Compensation doping, 190Complementary metal oxide semiconductor (CMOS)

sensor, 416, 417Complex propagation constant, 44Complex refractive index, 45

of InP, 46–47Complex relative permittivity, 44Conduction band (CB), 182, 196

electron concentration, 188Conductivity, semiconductors, 188Confining layers, 238, 247Conjugate image, 356Constructive interference, 52Coupled waveguides, 473Coupling coefficient, 165Cross-phase modulation, 158Crystal momentum, 196Current-Voltage Convention, 369–370

dDegenerate semiconductor, 191Dense wavelength division multiplexing (DWDM), 156

nonlinear effects, 157–159Density of states (DOS), 180

effective, 185Depletion region (layer), 199, 365

capacitance, 211, 380Depth of focus, 8

Destructive interference, 52Desurvire E., 276Detectivity, 411Dichroism, 451Dielectric mirrors, 40, 42, 344Diffraction, 58

Fraunhofer, 58, 59Fresnel, 58diagram, 59order, 339pattern, 58

circular aperture, 62rectangular aperture, 61single slit, 60

principles, 58Diffraction grating, 64

blazed (echelette), 67reflection, 65transmission, 65

Diffraction grating equation, 65single slit, 61

Diffusion (storage) capacitance, 214Diffusion current, 204Diffusion flux, 203Diffusion length, 203Diode equation, 208Diode ideality factor, 208Direct recombination, 215Dispersion, 125, 135

bandwidth relations, 135chromatic, 140, 162coefficients, 140diagram, 104graph of v vs. b, 106intermode, intermodal, 105, 110intramode, intramodal, 106material, 107, 119, 124, 171

coefficient, 120graph vs. wavelength, 121

modal, 104, 105polarization mode, 123profile, 123, 172profile-coefficient, 103relation, 12single mode fiber, 119table, 128total, 121, 125vs. wavelength, 121, 125, 127

Dispersive medium, 16Distributed Bragg reflector, 165, 241, 338, 344Donors in semiconductors, 190Doppler broadened linewidth, 291, 293Doppler effect, 290Doppler shift, 480Double-heterostructure (DH), 226

active layer, 315–316buried, 318contacting layer, 317device, 315

Drift mobility, 188, 381Drift velocity, 255, 381–382

graph vs. field, 382

Z06_KASA1498_02_SE_IDX.indd 520 9/20/12 8:56 PM

Index 521

eEDFA, see Erbium doped fiber amplifierEffective density of states, 185, 186Effective mass, 183Efficiency

detector, 375fiber coupling efficiency, 261He-Ne laser, 290laser diode external power, 327laser diode slope, 327optical amplifier, 279quantum efficiency, 327external, 324, 376external differential, 327internal, 261, 328

Einstein coefficients, 270, 271E vs. k diagrams, 194

direct bandgap, 196indirect bandgap, 197

Electrical bandwidth of fibers, 130, 133, 253Electromagnetic (EM) wave, see WaveElectron affinity, 182Electron ionization coefficient, 391–392Electro-optic effects, 462

Kerr, 469linear, Pockels, 463

Energy band, 179, 180Energy band diagram, 180, 192, 367, 369

field applied, 192GaAs laser, 361heterojunction, 226, 317pn junction, 220

Energy level, 179long-lived, 277

Epitaxial growth, 238Erbium doped fiber amplifier (EDFA), 276, 283

characteristics, efficiency and gain saturation, 280energy diagram, 277gain-flattened, 284–287

Excess carrier distribution, 215External photocurrent, 370–372

time spread, 372External quantum efficiency (EQE), 242Extinction coefficient, 45Extraction efficiency (EE), 243Extraordinary wave, 447Extrinsic semiconductors, see Semiconductors

FFabry, Charles, 53Fabry–Perot interferometer, 68, 69Fabry–Perot laser amplifier, 348Fabry–Perot optical resonator, 54, 292

transmitted light, 56Fall time, 253Faraday effect (rotation), 483, 495Faraday, Michael, 107Fermi–Dirac function, 179, 181, 184, 228, 313Fermi energy, 179, 187Fermi level, 185, 186Fiber, see Optical fibers

Fiber Bragg grating (FBG), 163Fill factor (FF), 424; see also Solar cellFinesse, 56First Brillouin zone, 78Flat-band voltage, see Reach-trough voltageFour-level laser system, 269–270Four photon mixing, 157Franken, Peter A., 486Franck–Condon principle, 249Fraunhofer, Joseph, 59Free carrier absorption, 255Free spectral range, 54Fresnel, Augustin Jean, 1Fresnel prism, 492Fresnel’s equations, 26, 27, 88Fresnel’s optical indicatrix, 447Full width at half maximum, see FWHMFull width at half power, see FWHPFWHM, 131

of a gas laser, 291FWHP, 131

GGabor, Dennis, 354Gain coefficient in Nd3+ doped glass fiber, 275Gain saturation, 282Gaussian beam, 21, 83, 292, 302

power and irradiance, 21Gaussian broadening, 305Gaussian dispersion, 134–135Gaussian pulse, 133Glan–Focault prism, 492Glass preform, 154Goos Haenchen phase shift, 88Graded index fiber, 136–141; see also Optical fiber

dispersion and bit rate, 141properties – table, 140

Graded index (GRIN) rod lens, 135, 139, 248Group delay, 120Group index, 14

graph vs. wavelength, 15Group velocity, 15, 104, 114–115, 169

HHalf-wave plate retarder, 453

quartz, 453Half-wave voltage, 466Helical ray path, 108, 137Helium-Neon laser, 287, 299, 301

characteristics – table, 358efficiency, 290energy diagram, 288, 358modes, 291principle of operation, 288

Herriott, Donald, 290Heterojunction, 222

photodiodes, 393phototransistor, 402

Heterostructure, 225, 226device, 226, 245, 317, 321, 348

High (strong) injection, 214–216, 256

Z06_KASA1498_02_SE_IDX.indd 521 9/20/12 8:56 PM

522 Index

Hole, 183diffusion current, 203diffusion length, 203ionization coefficient, 391

Holey fiber, 160; see also Photonic crystal fiberHologram, 354Holography, 354, 356Homogeneous broadening, 304Homojunction, 224, 313Huygens, Christiaan, 440Huygens-Fresnel principle, 59–60

IImage sensors, 415–421

pixels, 415Impact-ionization, 387Index matching, 487Induced transition, see Stimulated emissionInGaAsP on InP substrate, 319Inhomogeneous broadening, 305Injection, 201

of excess minority carriers, 201pumping, 313strong, 215weak, 215

Instantaneous irradiance (intensity), 19Integrated optics, 470Intensity of light, 21, 32Interference, 51

incoherent, 73Interference fringes, 71Interferometers, 68–70Internal quantum efficiency (IQE), 242Intersymbol interference, 131Intrinsic concentration ni, 186, 189Intrinsic semiconductors, see SemiconductorsIrradiance, 18, 19

reflected light, 32Isoelectronic impurities, 237Isotropic, 11

JJavan, Ali, 290Jones matrices, 490Jones units, 411Jones vector, 490

KKao, Charles, 94Kerr coefficients – table, 469Kerr effect, 468–470Kerr effect modulator, 470Kerr, John, 462Kramers-Kronig relations, 46

LLASER, 265, 266–269; see also Laser diode

active medium, 289active region, 312, 318amplifiers, 348distributed Bragg reflection (DBR), 338–339distributed feedback (DFB), 338, 339efficiency of the He-Ne, 290

gain guided, 318gas, 287

modes, 292He-Ne, 287, 299

characteristics – table, 358efficiency, 290principle of operation, 288

modes, 292, 294, 301, 302multiple quantum well (MQW), 322Nd3+:YAG laser, 269optical cavity, 268, 287, 297oscillation conditions, 295oscillator, 298output spectrum of a gas, 290output wavelength variations, 330principles, 266ruby laser, 267semiconductor, 348single frequency solid state, 338

guiding layer, 339threshold gain, 296vertical cavity surface emitting (VCSE), 344

Laser diode (LD)active region, 318buried heterostructure, 319characteristics, 324conversion efficiency, 328direct modulation of, 351–354distributed Bragg reflector (DBR), 338distributed feedback (DFB), 339divergence of output, 325double heterostructure, 332edge emitting, 318equation, 332external cavity, 342external power efficiency, 362Fabry–Perot, 318gain guided, 318heterostructure, 315homojunction, 315index guided, 319inversion layer, 312modes, 320modulation, 351principles, 311rate equations, 332single frequency, 338single mode, 319slope efficiency, 327stripe geometry, 317transient response, 352

delay time, 353relaxation oscillation, 352

tables, 329, 340threshold current, 314, 315transparency current, 314vertical cavity, surface emitting, 344

Lasing emission, 267Lateral displacement of light, 25Lattice vibrations, 495LED, see light emitting diode, LEDLifetime broadening, 304Light absorption, 43

Z06_KASA1498_02_SE_IDX.indd 522 9/20/12 8:56 PM

Index 523

Light emitting diode, LED, 179, 224active region, 247AlGaAs, 256characteristics, 245–246cut-in voltage, 245edge emitting (ELED), 247–248, 261efficiencies and luminous flux, 242–244electronics, 251–253energy band diagram, 224external quantum efficiency (EQE), 242fiber coupling efficiency, 261for optical communications, 251heterojunction, 246high intensity, 233internal quantum efficiency (IQE), 242linewidth, 226, 229luminous efficacy, 244materials, 237–238optical fiber communications, 246–248output spectrum, 246phosphors and white, 249–251power conversion efficiency, 243principles, 224structure, 238–241superluminescent and resonant cavity, 350–351surface emitting (SLED), 247, 261turn-on voltage, 145wavelengths, 241white, 249

Lineshape function, 296Linewidth, 124Liquid crystal display (LCD), 458–462

twisted nematic field effect, 459Lithium niobate (LiNbO3)

acousto-optic, 476phase modulator, 471, 493Pockels effect, 463properties, 447

Load line, 424Longitudinal axial modes, 302Lorentzian lineshape, 304Loss coefficient, 297Luminescence, 249Luminosity function, 243Luminous

efficacy of light source, 244flux, 243

MMach–Zehnder interferometer, 69Mach–Zehnder modulator, 70, 473Macrobending loss, 148Magneto-optic effects, 483Magneto-optic isolator, 495Magneto-optic modulator, 495Maiman, Theodore Harold, 363Majority carriers, 190Malus’s law, 444Mass action law, 186Matrix emitter, 347Maximum acceptance angle, 117Maxwell’s wave equation, 6, 10Mean thermal generation time, 210

Meinel and Meinel equation, 438Metalsemiconductor-metal (MSM) structure, 400

photodiodes, 400Meridional ray, 108–109, 137Microbending loss, 148

graph vs. bend radius, 150Microlaser, 347Midwinter, John, 34Mie scattering, 76Minority carriers, 190

diffusion, 203diffusion length, 377

Modal index, 163Mode

cavity, 55, 292, 314coherently coupled, 340field diameter (MFD), 112hop in lasers, 326intensity of transmitted, 57linearly polarized, 109number, 99, 292of propagation, 99resonator, 57TE, 100, 168–169, 303TM, 100, 168–169, 303transverse, 303

Mode field diameter (MFD), 112–113Mode locking, 310–311Modulated directional coupler, 476Modulation of light, 441–497Monochromatic wave, 14MQW, see Multiple quantum well (MQW)Multimode fiber, 112Multiple interference, 61Multiple quantum well (MQW), 236, 322Multiple reflections

in plates and incoherent waves, 73–74thin films, 70

Multiplication region, 393Mutual temporal coherence, 51

nNatural broadening, 304Negative absolute temperature, 272Net round-trip optical gain, 297Noise

current, 409equivalent power (NEP), 410NEP graph, 412excess avalanche, 437excess, 387noise figure, 286in an APD, 414in photodetectors, 408of an ideal photodetector, 412photon noise, 409quantum, 409, 413shot, 409

Noncentrosymmetric crystals, 463Nondegenerate semiconductors, 191Nonlinear optics, 485Nonlinear effects, 157, 462, 486Non-thermal equilibrium, 272

Z06_KASA1498_02_SE_IDX.indd 523 9/20/12 8:56 PM

524 Index

Normalized frequency, 100, 110Normalized index difference, 108, 110Normalized propagation constant, 114Normalized thickness, 100Numerical aperture, 117, 118, 138

OOptical activity, 456, 484

dextrorotatory, 457levorotatory, 457

Optical amplifier, 267erbium doped fiber amplifiers (EDFA), 276semiconductor optical amplifier, 348table, EDFA, 286

Optical anisotropy, 445–446Optical bandwidth, 130, 134, 252Optical cavity, 272, 287

intensity, 55maximum intensity, 55modes, 54in lasers, 301resonant frequencies, 54, 314

Optical divergence, 7Optical confinement, 315Optical fiber, 95

all wave fiber, 146attenuation, 142, 144cutoff wavelength, 111doubly clad, 127dispersion flattened, 127dispersion shifted, 122drawing, 152–155

schematic, 152fundamental mode, 109graded index, 135–142light emitters, 246MAC number, 150manufacture, 152

laydown stage, 153multimode, 111, 118, 170nonzero dispersion shifted, 127propagation constant, 114propagation of light, 109reduced slope, 126sensor, 166single mode, 111, 112, 115, 170single mode cutoff, 111step index, 107types of, 127V-number, 109zero dispersion shifted, 126

Optical fiber amplifier, 276erbium ion doped, 276gain efficiency, 281

Optical field, 4Optical frequencies, 11Optical gain, 267, 275, 291

coefficient, 295–296lineshape, 291net round-trip, 297threshold, 297

Optical indicatrix, 448Optical isolator, 484

Optical laser amplifiers, 348Optical modulators

coupled waveguide, 473integrated, 470intensity, 467Kerr effect, 470Mach–Zehnder, 473Pockels cell, 468

Optical pumping, 267–268Optical resonator, 53Optical tunneling, 33, 34Optically isotropic, 11, 445Optic axis, 446Optimal profile index, 138Output power and photon lifetime in the cavity, 299–300Output spectrum

LED, 226gas laser, 290laser diode, 315, 326–327white LED, 249

Outside vapor deposition, 152, 153, 154schematic, 153

PPassive pixel sensor, 418Penetration depth, 31, 373Perot, Alfred, 53Phase change, 28

in TIR, 30, 34Phase condition in lasers, 301Phase matching, 487Phase matching angle, 487Phase mismatch, 475Phase modulation, 470Phase modulator, 465

LiNbO3, 468Phase of a wave, 3Phase velocity, 5Phonon, 197, 375, 495

energy and momentum, 375Phosphors, 249Photoconductive detectors, 402Photoconductive gain, 402Photoconductivity, 404Photocurrent, 366, 369, 422Photodetection Modes, 367–369Photodetector, 365

neutral region, 366quantum efficiency, 375Shockley–Ramo theorem, 372responsivity, 375

Photodiode, 365, 383circuits, 405–408materials, 373

photocurrent, 370pn junction, 365

diagram, 366responsivity, 375space charge layer (SCL), 366spectral responsivity, 375table, 373

Photoelastic effect, 159, 476Photogeneration, 366–367

Z06_KASA1498_02_SE_IDX.indd 524 9/20/12 8:56 PM

Index 525

Photon amplification, 265–266Photon cavity lifetime, 300; see also Cavity lifetimePhoton confinement, 319Photon flux, 242Photon lifetime, see Cavity lifetimePhotonic bandgap, 77, 78

guided, 162Photonic crystal fiber (PCF),

160–163Photonic crystals, 76–82Phototransistor, 401

heterojunction, 402Photovoltaic devices, see Solar cellPhotovoltaic mode of operation, 370Piezoelectric effect, 482pin photodiode, 379, 380

characteristics – table, 389junction capacitance, 381NEP of a Si, 412photocarrier diffusion, 383response time, 381responsivity, 384speed, 383steady state photocurrent, 385transient photocurrents, 432transit time, 381

Pixel image sensor, 418Planck’s radiation distribution law, 271pn junction, 198

band diagram, 318graph, 319

built-in field, 200built-in potential, 200, 201current density, 210, 132depletion region, 199diffusion (storage) capacitance, 214direct bandgap, 136dynamic (incremental) resistance, 213energy band diagram, 220forward bias, 205, 210

currents, 206diagram, 201recombination current, 206

law of the junction, 202, 204metallurgical junction, 198properties – graph, 198reverse bias, 209, 220

diagram, 209total current, 210

reverse saturation, 210space charge layer (SCL), 199, 211

Pockels cell modulator, 468longitudinal, 465transverse, 465

Pockels coefficients – table, 469Pockels effect, 462

transverse, 465Pockels, Friedrich Carl Alwin, 463Pockels phase modulator, 465Point defect, 81Polarization

angle, 29; see also Brewster angleanisotropic, 491

circular, 442right, 242

dispersion, 122dispersion effects, 122elliptical, 443induced, 486linear, 443modulation, 470modulator, 466of EM wave, 441, 444state, 441

Polarization transmission matrix, 490Population inversion, 265, 272, 312

threshold, 297Poynting vector, 18–22Preform, 152Pressure broadening, 304Prism, 25, 44

birefringent, 455Profile effects–fibers, 122Profile index, 137

optimal, 137Propagation constant, 3, 114

complex, 44Propagation vector, 5Pseudo photonic bandgap (PBG), 79Pulsed Lasers, 307–311Pumping, 267, 280

erbium doped fiber amplifier (EDFA), 280gas discharge (collision), 288injection, 313

Pyroelectric detectors, 365

QQ-Switching, 307–309Quantum efficiency, 375

detector, 375external differential, 327external, 327, 375internal, 242, 328

Quantum noise, 409Quantum well, 233

devices, 233GaAs, 323–324high intensity LEDs, 233–236laser diode, 321

Quaternary alloy, 237Quarter-wave plate retarder, 453Quartz, 446, 453

RRadiant flux, 242Radiant sensitivity, 376Raman–Nath regime, 477Ramo’s theorem, see Shockley–Ramo theoremRate equations, laser diodes, 332Rayleigh criterion, 63Rayleigh range, 8Rayleigh scattering, 75Rayleigh, John William Strutt, 75Rayleigh scattering limit, 146Reach-trough voltage, 400Real image, holography, 355, 356

Z06_KASA1498_02_SE_IDX.indd 525 9/20/12 8:56 PM

526 Index

Recombination, 183center, 197current, 208direct, 214direct capture coefficient, 215indirect, 216

Recombination lifetime, 214definition, 214excess minority carrier, 215mean, 206weak injection, 215

Reflectance, 32, 55bandwidth, 41at normal incidence, 32

Reflectionamplitude, 26at normal incidence, 30, 33coefficients, 27

graph, 31external, 30, 36

at normal incidence, 30frustrated total internal, 34, 35internal, 30, 36

graph, 29multiple reflections, 70and transmission at the Brewster

angle, 37total internal, 22, 23, 24, 30, 34

Refracted light, 22from a less dense medium, 35

Refractive index, 11complex, 45dispersion, 10field induced change, 462graph vs. wavelength, 11nonlinear, 158optical crystals, 446table, 12

Resolving powerangular limit of resolution, 63diffraction grating, 66imaging systems, 63

Response time, 381Responsivity, 376

graphs, 377, 382table, 389

Reststrahlen absorption, 46Retarding plates, 452Return-to-zero (RTZ) data

rate, 131Rise time, 253

SSaturation drift velocity, 384Scattering

anisotropic, 491light, 145, 297Rayleigh, 74, 75

Schottky barrier height, 398

Schottky-junction photodetector, 397–400

SCL, see Space charge layer, 199Second harmonic generation, 485Self-phase modulation, 158Sellmeier and Cauchy coefficients, 13Sellmeier dispersion equation, 13, 83Semiconductors, 179–197

charge neutrality, 199compensation doping, 190conductivity, 188degenerate, 191direct bandgap, 194–197, 216extrinsic, 187III-V compound, 257indirect bandgap, 194, 197intrinsic, 186non-degenerate, 185, 191n-type, 187optical amplifier, 348–349p-type, 187rate equations, 332statistics, 184

Shockley–Ramo theorem, 370, 372

Shockley equation, 204Shot noise, 409Shunt resistance, 407Side mode suppression ratio, 339Silica (SiO2)

Germenia (SiO2-GeO2), 85, 153refractive index, 16, 85, 153

Signal to noise ratio (SNR), 286, 410of a receiver, 413

Simpson, J. R., 276Single frequency lasers, 338

cleaved coupled cavity, 340distributed Bragg reflection (DBR), 338distributed feedback (DFB), 339

Single-mode fiber, 112Single quantum well (SQW), 321

energy levels, 321laser, 321

Skew ray, 108Snell’s law, 22–25Snell, Willebrord van Roijen, 22Solar cell, 421–428

antireflection coating, 39equivalent circuit, 425properties – table, 426

Solar constant, see Air-massSoleil–Babinet compensator, 454, 455Solid state photomultiplier, 396Space charge layer (SCL), 199; see also

Depletion regionwidth and voltage, 212

Specific rotatory power, 457Spectral hole burning, 307Spectral intensity, 258

Z06_KASA1498_02_SE_IDX.indd 526 9/20/12 8:56 PM

Index 527

Spectral responsivity, 376Spectral width, 56, 57

of a wave train, 48Spontaneous emission, 266Spot size, 7SQW, see Single quantum well (SQW)Step-index fibers, 107–116Stimulated Brillouin scattering

(SBS), 158Stimulated emission, 265, 266

rate, 270Stokes shift, 250Stop band, 41Strong injection, see High injectionSuperlattice, 395Superposition of waves, 51

TTandem solar cell, 427Terminal capacitance, 407Ternary alloy, 237Thermal equilibrium, 271Thermal generation, 183

in SCL, 210Thermal velocity, 186Thin films

multiple reflections, 70optics, 70, 72–73

Three-level laser system, 267Threshold concentration, 333Threshold current, 326, 237, 334Threshold wavelength, 372Total acceptance angle, 117, 118Total internal reflection, 30, 33, 34

critical angle, 24Townes, Charles D., 272Transfer distance in coupled

waveguides, 474Transit time, 381Transmission axis, 444Transmission coefficient, 26–28Transmittance, 32

at normal incidence, 33Transverse electric field (TE), 26Transverse magnetic field (TM), 26Trench fiber, 150Truncated spherical lens, 247Turbidity, 76Twisted nematic liquid

crystal cell, 459Tyndall, John, 107

UUniaxial crystals, 446

negative, 446optic axis, 446positive, 446

Unpolarized light, 29

VValence band (VB), 182

hole concentration, 186Verdet constant, 483

table, 485Vertical cavity surface emitting laser

(VCSEL), 344Virtual image holography,

354, 355Visibility function, 243V-number, 100, 102, 104V-parameter, 100

WWaist, beam, 7

radius, 7Wave

circularly polarized, 442, 453diverging, 6electromagnetic, 3elliptically polarized, 443energy density in an EM, 18evanescent, 24, 31

attenuation, 31extraordinary, 447fields in an EM, 18linearly polarized, 29, 109, 276monochromatic plane, 3ordinary, 447plane electromagnetic, 3plane-polarized, 441sinusoidal, 48spherical, 7stationary or standing EM, 54

Wave equation, 4, 6Wavefront, 3

Gaussian light beam, 8Wavefront reconstruction, 356Waveguide, 95

condition, 95–99cutoff wavelength, 100dielectric, 95–167dispersion, 104–107, 125, 171

coefficient, 121diagram, 104

modes, 101mode determination, 102multimode, 100planar, 104propagation constant, 97single mode, 100symmetric dielectric slab, 95

diagram, 96possible modes, 98propagation constant, 98transverse propagation, 97

Wavelength division multiplexing (WDM), 155

Z06_KASA1498_02_SE_IDX.indd 527 9/20/12 8:56 PM

528 Index

Wave number, 3Wave packet, 14Wave vector, 5

surface, 449Weakly guiding fiber, 109Wire grid polarizer, 491

Wollaston prism, 455, 456, 492Wood, Robert William, 66

YYoung’s two slit experiment, 52

I don’t really start until I get my proofs back from the printers. Then I can begin serious writing.

—John Maynard Keynes (1883–1946)1

1The Guardian, 8 June 1983, p. 22 as cited in A. L. Mackay, Dictionary of Scientific Quotations, Institute of Physics Publishing, Bristol, 1991, p. 140.

Z06_KASA1498_02_SE_IDX.indd 528 9/20/12 8:56 PM