4_SHANTZ

37
Caltrans Guidelines on Foundation Loading Due to Liquefaction Induced Lateral Spreading Tom Shantz, Caltrans January 28, 2011 NACGEA Workshop

Transcript of 4_SHANTZ

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 1/37

Caltrans Guidelines on Foundation Loading Due

to Liquefaction Induced Lateral Spreading

Tom Shantz, Caltrans

January 28, 2011 NACGEA Workshop

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 2/37

PEER

GuidelinesScott Ashford (OSU)

Ross Boulanger (UCD)Scott Brandenberg (UCLA)

PEER TEAM

CALTRANS TEAMTom Shantz

Internal Review Team

Caltrans

Guidelines

Project

Participantsand

Organization

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 3/37

Showa Bridge, Niigata (1964)

Lessons from history….

Source: ce.washington.edu

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 4/37

Nishinomiya-ko bridge,

Kobe (1995)

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 5/37

Puente Tubul, Chile (2010)Photo by Yashinsky

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 6/37

Shukugawa Bridge, Kobe (1995)

Better performance…

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 7/37

Heisei Bridge, Sabaichi River, Niigata (2007)

Better performance…

Photos by Yashinsky

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 8/37

Kaiun Bridge, Sabaichi River, Niigata (2007)

Better performance…

Photos by Yashinsky

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 9/37

Rinko Yasaka Bridge, Ugawa River, Niigata (2007)

Better performance…

Photos by Yashinsky

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 10/37

Caltrans’ current practice per Memo to Designer 20-15.

0.67 PULT

Liquefied

Dense

Crust

• liquefied soil modeled as factored p-y curves (0.10 p-multiplier)

• 67% of the ultimate passive crust load is applied to the cap

• no inertial loads are considered

• performance criteria: piles remain elastic

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 11/37

Liquefiable Soil

Fill

Dense Soil

Issues the Guidelines Team sought to address…

Crust load–deformation behavior. How much deformation to reachultimate passive pressure? Adjustments for non-plane strain behavior.

• Prediction of crust displacement.

• Potential restraining effect of the foundation.

• Potential restraining effect of the superstructure.

• Contribution of inertial loads to the foundation displacement demand.

•More specific performance criteria.

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 12/37

Static vs. dynamic loadingEstimation of crust

displacement

Residual strength

Kinematic and inertial

load combination

Crust – pile cap

interaction

Pile pinning effect

The team must confront challenging issues…

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 13/37

NIED Shake Table: Elgamal (2003)

Strategy: Where possible, rely on test results.

UC Davis centrifuge: Boulanger, Chang, Brandenberg, Armstrong,

and Kutter (2006)

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 14/37

Port of Takachi Tests by Ashford (2002)

Field testing…

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 15/37

Extend test results with numerical modeling…

Fill in gaps with judgment…

+ +

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 16/37

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 17/37

Liquefiable Soil

Fill

Dense Soil

Two design cases considered…

Unrestrained ground displacement

Foundation restrained

ground displacement

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 18/37

Equivalent Nonlinear Static Analysis Approach

LPILE 5 is limited to a single pile analysis

Crust loads applied through

imposed soil displacement profile

Caltrans Guidelines

Unrestrained ground displacement case:

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 19/37

1

00 3(Zc –D)/T

1

00 14WT/T

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 20/37

Adjustment for wedge effect

by Ovensen (1964). Kw ~ 1.3

Crust

Liquefied

Sand

Rankine

Passive

Crust

Liquefied

Sand

Log-spiral

Passive

Case A Case B

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 21/37

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 22/37

Equivalent Nonlinear Static Analysis Approach

LPILE 5 is limited to a single pile analysis

Crust loads applied through

imposed soil displacement profile

Caltrans Guidelines

Unrestrained ground displacement case:

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 23/37

φaφy

Mmax (φa,Ma)

Ma = 1.1 Mmax

φa

= 12 φy

Curvature

   M

   o   m   e   n   t

Moment

   S   t   i    f    f   n   e   s   s    (   E   I    )

Pile stiffnessLinear case:

EIgroup =(EIsingle)(Npiles)Nonlinear case:

(See plot…)

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 24/37

Equivalent Nonlinear Static Analysis Approach

LPILE 5 is limited to a single pile analysis

Crust loads applied through

imposed soil displacement profile

Caltrans Guidelines

Unrestrained ground displacement case:

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 25/37

Kax, ni

xi

K  M  144K ax ni xi2 

Class 100 pile: Kax = 0.75 (400 kips) / 0.25 in = 1200 kips/in

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 26/37

orH

VM

o

Vi =(1 or 2) x Mo

H

Inertial Loads

Mi =Mo (LPILE 5: Mi

Abutment Case: assume inertial loads are zero

Fcapi=0.65 PGA mcap

0 )

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 27/37

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 28/37

Combination of kinematic and inertial loading

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 29/37

Cap Displacement Pile Moment Pile Shear

Well confined 

 pilings

H/20 MaSDC 3.6

Well confined 

abutment pilings

12 inches MaSDC 3.6

Poorly confined 

 pilings

2 inches - -

*H = column

height

Performance Criteria

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 30/37

Two methods of estimating ground displacement…

Strain potential approach Newmark approach

Caltrans Guidelines

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 31/37

Strain potential approach - hybrid of Faris (2004) and Zhang (2004)

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 32/37

Adjustment for near-flat conditions

S = ground slope

L

HH’ max  = Hmax . F amp F amp = 6 (L/H)-0.8  for 4 < L/H < 9

2  for L/H < 4

1  for 9 < L/H

Adjustment for open face conditions

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 33/37

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 34/37

Foundation restrained ground displacement design case:

Liquefiable Soil

Fill

Dense Soil

Failure Surface

R

F s

Ky R (k/ft) D (in)

0.087 0 7.8

0.1 7 6.1

0.13 21 3.7

0.16 36 2.4

0.19 52 1.7

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 35/37

H

4H (max)

Displacement

   R   e   s   i   s   t   a   n   c   e    (   R    )

(1)

(2)

(3)

Disp (in)

Shear

(kips)

0 0

1 338

2 6594 1220

6 1540

8 1680

10 1750

Disp (in)

Shear

(kips)

Avg

(kips)

0 0 0

1 338 169

2 659 3324 1220 554

6 1540 751

8 1680 906

10 1750 1027

Equivalent constant shear

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 36/37

Cap Displacement Pile Moment Pile Shear

Well confined 

 pilings

H/20 MaSDC 3.6

Well confined 

abutment pilings

12 inches MaSDC 3.6

Poorly confined 

 pilings

2 inches - -

*H = column

height

Performance Criteria

Caltrans Guidelines

7/31/2019 4_SHANTZ

http://slidepdf.com/reader/full/4shantz 37/37

The new guidelines are available on ARS Online website Technical

References Link (http://dap3.dot.ca.gov/shake_stable/)

Any questions or concerns, or you can’t find the guidelines, contact me

at [email protected]

Caltrans Guidelines

Guideline availability: