4L_Choulot_1_

46
Multipurpose Schemes Multipurpose Schemes MHyLab MHyLab Mini Mini - - Hydraulics Laboratory Hydraulics Laboratory CH CH - - 1354 1354 Montcherand Montcherand Aline Choulot Lausanne, 30 June 2005

description

http://www.esha.be/fileadmin/esha_files/documents/workshops/Lausanne/4L_Choulot_1_.pdf

Transcript of 4L_Choulot_1_

103/08/2005

Multipurpose SchemesMultipurpose Schemes

MHyLabMHyLabMiniMini--Hydraulics LaboratoryHydraulics Laboratory

CHCH--13541354 MontcherandMontcherand

Aline ChoulotLausanne, 30 June 2005

203/08/2005

Table of contentsTable of contents

I. Drinking-water SHP (Small Hydropower Plant)

II. Wastewater SHPIII. How to succeed a SHP project on water

networks?IV. Looking for potentials

303/08/2005

Different types of SHPDifferent types of SHP

On water streamsOn water networks:

Drinking waterRunoff waterwastewater (row and treated)Irrigation water

Excess pressure of adduction water networks can be used to generate energy

403/08/2005

Advantages of theAdvantages of the turbiningturbining on water on water networksnetworks

Existing infrastructures (pipes, water chamber, head water basin…)No supplementary negative impacts on environmentLimited investment for a SHP settingSimpler administrative procedures

503/08/2005

I. DrinkingI. Drinking--water SHPwater SHP

603/08/2005

Drinking waterDrinking water turbiningturbining

To replace pressure-breakersWithout any impacts on water quality:

Turbine stations similar to pumping onesPrecautions:

Stainless steelNo contact between water / grease (no oil-control device, centrifugal seal on the shaft, …)

703/08/2005

Pumping station Turbining station

Inlet valve yes yes

Discharge regulation device no yes

Runner linked to a rotating shaft yes yes

Shaft joints yes yes

Casing and runner in contact with water yes yes

Roller bearings greased for life yes yes

Electrical machine yes (engine) yes (generator)

Electrical boxes yes yes

Medium voltage / high voltage transformer

Yes, if electrical power is higher than a few tens

of kW

Yes, if electrical power is higher than a few tens

of kW

Usual building materials of the hydraulic machine

Cast, black steel, stainless steel, bronze

Cast, black steel, stainless steel, bronze

Automatic by pass no yes

Water access Disassembly necessary Disassembly necessary

803/08/2005

La Rasse SHP (1)La Rasse SHP (1)(St(St--Maurice & Evionnaz, Valais, CH)Maurice & Evionnaz, Valais, CH)

Drinking-water SHP:1 Pelton, vertical axis2 nozzlesFirst starting up: 1997Gross head: 510 mMax. discharge: 180 l/sMax. electrical output: 755 kWAnnual production: 2.1 GWh/yearTechnical design: MHyLabConstructor: GASA SA (CH)

903/08/2005

La Rasse SHP (2)La Rasse SHP (2)EconomicsEconomics

Annual production: 2.1 GWh

Total investment: CHF 1'380'000.-(~ euros 920'000.-)

Interest rate: 4%

Pay back period:

civil engineering: 40 years

electro mechanics: 25 years

Cost price: 0.04 CHF /kWh(~ 0.027 euro /kWh)

Hydraulic bucket's profile

designed by MHyLab

1003/08/2005

La Rasse SHP (3)La Rasse SHP (3)A contribution to air protectionA contribution to air protection

Production: 2.1 GWh /year

Reduction of 25 tonnes of CO2

emissions considering the Swiss grid production (12 tonnes /GWh)

Reduction of 1'010 tonnes of CO2

emissions considering the European grid production (480 tonnes /GWh)

1103/08/2005

La Zour SHP (La Zour SHP (SavièseSavièse, Valais, CH), Valais, CH)

Drinking-water SHP:1 Pelton, vertical axis,3 nozzlesFirst starting up: 2004Gross head: 217 mMax. discharge: 300 l/sMax. electrical output: 465 kWAnnual production: 1.8 GWh/yearTechnical design: MHyLabConstructor: GASA SA (CH)

1203/08/2005

II. Wastewater SHPII. Wastewater SHP

1303/08/2005

Wastewater turbiningbefore the treatment

stationWastewater

turbining after the treatment station

Turbining station

Turbining stationWastewater treatment station

Wastewater treatment station

Screenig & decanting station

WWTP

WWTP

1403/08/2005

SHPs before and after the WWTP:SHPs before and after the WWTP:Amman city, As Samra WWTP (Jordan) (1)Amman city, As Samra WWTP (Jordan) (1)

Project: Suez Group & Ondéon Degrémont (Fr)

Engineering: MHyLab

General view of the process area

1503/08/2005

As Samra SHPs (2)As Samra SHPs (2)Row-water SHP:2 Pelton, vertical axis5 nozzles

First starting up: 2006Gross head: 103 mMax. discharge: 2.5 m3/sMax. electrical output: 770 kWAnnual production:

12.3 GWh/year

Treated-water SHP:2 Francis, vertical axis

First starting up: 2006Gross head: 48 mInstallation discharge: 4.6 m3/sMaximal electrical output:

752 kWAnnual production:

8.6 GWh/year

1603/08/2005

Wastewater from Verbier tourist station turbined before being treated.

With a screening station before the penstock inlet.

SHP before wastewater treatment SHP before wastewater treatment plantplant-- Châble SHP (CH) (1)Châble SHP (CH) (1)

1703/08/2005

SHP before WWTP SHP before WWTP –– Le Le ChâbleChâble SHP (2)SHP (2)

Row- wastewater SHP:1 Pelton, horizontal axis,2 nozzlesFirst starting up: 1994gross head: 447 mMax. discharge: 240 l/sMax. electrical output: 665 kWAnnual production:

1.13 GWh/year

1803/08/2005

SHP on treated wastewater SHP on treated wastewater la Douve I SHP la Douve I SHP

(Leysin, Vaud, CH) (1)(Leysin, Vaud, CH) (1)

Water aeration before being thrown out in the river.

Solution to the dilution problem: the treated wastewater outflow was going in a creek with a low-discharge

1903/08/2005

La Douve I SHP (2)La Douve I SHP (2)(Leysin, Vaud, CH)(Leysin, Vaud, CH)

Treated-water SHP:1 Pelton, vertical axis,2 nozzlesFirst starting up: 1989Capacity increase: 2000Gross head: 545 mMax. discharge: 80 l/sMax. electrical output: 430 kWAnnual production: 2.15 GWh/yearTechnical design: MHyLabConstructor: GASA SA (CH)

2003/08/2005

Turbines on water networks designed with MHyLab's techniqueCumulated electrical output from 1997 to 2004 (kW)

0

500

1'000

1'500

2'000

2'500

3'000

3'500

4'000

4'500

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

years

Elec

tric

al o

utpu

t (kW

) Switzerland: 19 installations = 9'800 kW Annual production = 18'000'000 kWh

2103/08/2005

III. How to succeed a SHP project on III. How to succeed a SHP project on water networkswater networks

2203/08/2005

Conditions to project's successConditions to project's success

Good knowledge of the water networks:

Available discharges, hydrology? otherwise: daily measures on 12 monthsHeads? Existing infrastructures?

Adapted dimensioning of the penstock so as to limit head losses (penstock efficiency)

Appropriate choice of equipments thanks :

Construction simplicityHigh & guaranteed efficiencyMax. reliability

2303/08/2005

Penstock dimensioningPenstock dimensioning

Penstock in a waternetworkSmall diameter for high head losses

Pressure that has to be reducedLow costSetting of pressure-breakers

Penstock for turbining

Big diameterfor low head losses

Max. power for a high productionOptimal turbine operation (low pressure variation vs discharge)High cost, but amortized by the production gain (technical & economic study)

20 % of diameter increase = 60 % of head losses decrease

2403/08/2005

SubsidesSubsides

• Site assessment: 2'000 CHF (~ 1'340 euros) for an at-least 3'000 CHF (~ 2'000 euros) study

• Feasibility studies: 6'000 CHF (~ 4'000 euros) to 9'000 CHF (~ 6'000 euros)

• Other example of subsides to communes: in 2005, for the 9 first answers: a site assessment of their water networks for free

2503/08/2005

III. Looking for potentialsIII. Looking for potentials

2603/08/2005

MHyLab's inventory of potentials in MHyLab's inventory of potentials in Valais (CH) (2003)Valais (CH) (2003)

62 studied sites55 on drinking water5 on wastewater2 combining drinking & treated waters 7 sites considered as variants

2703/08/2005

Electrical output

< 21 kW : 3021 – 40 kW : 1441 - 80 kW : 1481 – 120 kW : 8> 121 kW : 3

Total output : 3 MWwith 2 MW with a cost lowerthan 0.12 CHF/kWh (0.08 euros/kWh)

Electrical production

< 100 MWh : 12101 – 300 MWh : 24301 - 500 MWh : 19501 – 800 MWh : 10> 801 MWh : 4

Total production : 14 GWh/anwith 10 GWh with a cost lowerthan 0.12 CHF/kWh (0.08 euros/kWh)

2803/08/2005

ConclusionsConclusions

• Indigenous, renewable energy

• Efficient available techniques, still improved so as notably to reduce cost

• Isolated production• Simplified administrative

procedures• Affordable equipments• Long life• Local construction

• Positive impacts on environment

• A low grey-energy amortization

• Financial opportunity for communes

• An interesting remaining potential in the industrialised countries as in the emerging ones

2903/08/2005

AppendicesAppendices

3003/08/2005

Types Types d'exploitationd'exploitation

La collectivité est propriétaire et exploite la petite centraleLa collectivité est propriétaire de la petite centraleet confie son exploitation à un tiers.Un tiers construit et exploite la centrale et la transmet à la collectivité après un certain tempsLa collectivité accorde l'utilisation du droit d'eau à un tiers contre paiement d'une redevance

3103/08/2005

Hydraulic profileHydraulic profile

3203/08/2005

III. Bases III. Bases théoriquesthéoriques de la petite de la petite hydroélectricitéhydroélectricité et technique MHyLabet technique MHyLab

3303/08/2005

10.00

Diagonale

MHyLab - Domaine de recherche sur les mini-turbines

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 Q (m3/s)

H (m

)

Pelton

Axiale

PicoTBCh

Pico + TBCh

5.0

50.0

500.0

0.05 0.50 5.00

3403/08/2005

Pelton: turbine à Pelton: turbine à action, haute chuteaction, haute chute

10.00

Diagonale

MHyLab - Domaine de recherche sur les mini-turbines

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 Q (m3/s)

H (m

)

Pelton

Axiale

PicoTBCh

Pico + TBCh

5.0

50.0

500.0

0.05 0.50 5.00

3503/08/2005

Kaplan: turbine à Kaplan: turbine à réactionréaction, , bassebasse

chutechute

10.00

Diagonale

MHyLab - Domaine de recherche sur les mini-turbines

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 Q (m3/s)

H (m

)

Pelton

Axiale

PicoTBCh

Pico + TBCh

5.0

50.0

500.0

0.05 0.50 5.00

3603/08/2005

Kaplan: turbine à Kaplan: turbine à réactionréaction, , bassebasse

chutechute

10.00

Diagonale

MHyLab - Domaine de recherche sur les mini-turbines

1.0

10.0

100.0

1000.0

0.01 0.10 1.00 Q (m3/s)

H (m

)

Pelton

Axiale

PicoTBCh

Pico + TBCh

5.0

50.0

500.0

0.05 0.50 5.00

3703/08/2005

Stand Stand d'essaisd'essaisEssais:

De rendementD'effort sur les palesD'emballementDe cavitation

Variantes:Nombre de palesOuverture des palesOuverture de distributeurChuteDébitHauteur d'implantation(cavitation)

3803/08/2005

Vanne-batardeau(tête d'eau)

Niveau amontconstant

Niveau minimum

DZ = 2,0 m

Niveau minimum

DZ = 4,0 m

PICO-TURBINE De = 300 mmTurbine diagonale Pico turbine

ProjetsProjets de de développementdéveloppement

3903/08/2005

Puissance d'un Puissance d'un aménagementaménagement

globalηZgQρP ⋅Δ⋅⋅=Puissance électrique :

Rendement :

egénératric

turbine

conduite

ηηη

4003/08/2005

Turbine A8 Turbine A8 modèlemodèle

4103/08/2005

Turbine de StTurbine de St--Bueil Bueil

Z2; p2; v2 2Z1; p1; v1 1

Z3 - Niveau aval

GénérateurN' = 1'000 t/min

De =

580

Vanne D = 1'100

ConduiteD = 1'100

Croquis de principe sans échelle. Pour le dimensionnement géométrique, voir le dessin IA-0015-0A

H3

4203/08/2005

Turbine de StTurbine de St--Bueil Bueil

4303/08/2005

Turbines construites selon la technique MHyLabPuissances cumulées de 1997 à 2004 (kW)

0

1'000

2'000

3'000

4'000

5'000

6'000

7'000

8'000

9'000

10'000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Années

Puis

sanc

es (k

W)

Suisse + étranger : 31 installations = 9'500 kW Production annuelle = 47'500'000 kWh

4403/08/2005

Les Les différentsdifférents types de turbinestypes de turbinesTurbinesTurbines à à réactionréaction

Turbine Kaplan Turbines FrancisTurbine Bulbe

4503/08/2005

EssaiEssai de cavitationde cavitationϕ=0.380

ψ=0.614

σ=0.50

Pale originale Pale modifiée

4603/08/2005

Impacts de la cavitationImpacts de la cavitation