4104-Assomadi-M 7 Model Dispersi Gauss

52
MODEL DISPERSI PENCEMAR UDARA Abdu F. Assomadi

Transcript of 4104-Assomadi-M 7 Model Dispersi Gauss

  • MODEL DISPERSI

    PENCEMAR

    UDARA

    Abdu F. Assomadi

  • 2

    Main concepts in air quality modeling

  • Parameter-parameter dalam Model Sumber (Karakteristik emisi)

    laju emisi (massa/waktu)lokasi sumber (koordinat)temperatur gas emisi (K)tinggi plume rise (m)

    MeteorologyTemperatur AtmosferStabilitas Atmosfer (diperlukan untuk menentukan koefisien

    dispersi) Kecepatan dan arah angin, turbulensi

    Sifat Kimia AtmosferReaksi-reaksi kimia di atmosferDeposisi (basah / kering)

    Parameter permukaangeometri permukaan, kekasaran/terrain, lautan, daerah kota atau

    desa

  • 4

    Beberapa Model Kualitas Udara Model point source

    Model at urban and large scale

    Model Fotokimia

    Model-model lain:

    Model secara meteorologi

    Model plume rise dan Model Dispersi

    Model Statistik - Model Penerima/receptor di ambien

    Model deposisi

    Model bau/odor

    Model partikulat

  • Model Point Source

    Model pertama yang dikembangkan untuk

    kualitas udara (contoh, Sutton, 1932,

    Bosanquet, 1936) menjelaskan sifat dispersi

    plume yang diemisikan dari cerobong industri.

    Dalam sejarahnya dinilai sukses, dari sini

    dikembangkan model dispersi sederhana

    Model Plume Gaussian.

    Model ini telah diaplikasikan untuk menghitung

    impact plume pada MGL (max ground level)

    dan jarak maksimum dari sumber.

  • Plume Boundary

    H

    X

    Y

    Z

    u

    Q

  • 7

    The simplest dispersion modeling Gaussian approximation for

    the plume spread

    Not applicable to regional scales complex

    terrain, convective conditions, and ground-level sources.

  • Gambaran Model Gaussian

  • Asumsi-asumsi pada Model

    Dispersi Gauss

    Plume disebar mengikuti sebaran gauss normal baik dalam bidang horisontal maupun vertikal,dengan deviasi standar konsentrasi plume padaarah horisontal dan vertikal y, and z;

    Laju emisi polutan seragam, Q;

    Kondisi plume pada ground (z=0) dianggap secara total direfleksikan oleh permukaan; dan

    Plume bergerak downstream (horisontal padaarah x) dengan rata-rata kecepatan angin, u,

  • 10

    Limitations of Gaussian-plume models Causality effects

    Gaussian-plume models assume pollutant material is transported in a straight line instantly (like a beam of light) to receptors that may be several hours or more in transport time away from the source.

    Low wind speeds

    Gaussian-plume models 'break down' during low wind speed or calm conditions due to the inverse wind speed dependence of the steady-state plume equation, and this limits their application.

    Straight-line trajectories

    In moderate terrain areas, these models will typically overestimate terrain impingement effects during stable conditions because they do not account for turning or rising wind caused by the terrain itself. CTDM and SCREEN are designed to address this issue.

    Spatially uniform meteorological conditions

    Gaussian steady-state models have to assume that the atmosphere is uniform across the entire modelling domain, and that transport and dispersion conditions exist unchanged long enough for the material to reach the receptor.

    Convective conditions are one example of a non-uniform meteorological state that Gaussian-plume models cannot emulate.

    No memory of previous hour's emissions

    In calculating each hour's ground-level concentration the plume model has no memory of the contaminants released during the previous hour(s).

  • Wark & Warner, Air Pollution: Its Origin & Control

  • Mixed layer

    TRAPPED BY MIXED LAYER

  • Sistem Koordinat Model Dispersi

    Gauss

    Short term model, steady-state Gaussian plume equation untuk sumber kontinyu dan punya elevasi tertentu.

    Koordinat asal (0,0) ditempatkan pada ground surface tepat di dasar stack.

    Sumbu X positif pada arah angin (downwind direction), sumbu y tegak lurus arah angin (crosswind searah sumbu X) dan sumbu Z merupakan arah vertikal.

    Lokasi penerima dikonversi dari sistem koordinat sumber, untuk perhitungan konsentrasi jangka waktu tertentu (sesuai arah angin dominan)

  • Sistem Koordinat Distribusi Gauss Arah

    Horizontal dan Vertikal

  • Persamaan Model Dispersi Gauss

    Model Gauss distribusi konsentrasi

    Rumus menghitung C gas atau aerosol (

  • Model Gaussian

    Diformulasikan dengan penentuan sebaran plume scr horisontal / vertikal dan distribusi konsentrasiplume dengan deviasi standar plume mengikutisebaran normal

    Distribusi/sebaran polutan dihitung sebagai fungsistabilitas atmosfer dan jarak dari sumber searahangin

    Stabilitas Atmosfer parameter karakteristikturbulensi atmosfer (Range F A; menyatakansanga stabil sangat tidak stabil; D netral)

  • Pengaruh Stabilitas Atmosfer pada

    Plume

    Typical Velocity, and Plume Shapes

  • The lateral dispersion coefficient function and, the vertical dispersioncoefficient functions depend on the downwind distance and the atmosphericstability class. These coefficients in meters can be obtained using Pasquill-Gifford-Turner estimates shown in the equations below

    Gaussian Parameters

    where ,

    s = an integer [1-6] representing the atmospheric stability shown in Table 1

    kx,x = empirical constants, values for each of the stability class can be obtained from Green et al. (1960)

  • Surface wind

    speed at 10 m

    (m/s)

    Day Night

    Incoming Solar radiation Cloud Cover

    Strong Moderate Slight Thinly Overcast Mostly Cloudy

    < 2 A (s = 1) A-B B (s = 2)

    2-3 A-B B C (s = 3) E (s = 5) F (s = 6)

    3-5 B B-C C D E

    5-6 C C-D D (s = 4) D D

    >6 C D D D D

    Table 1. Constants a,b,c,d depend on Pasquill Stability categories defined by Turner (1995)

  • Horizontal Dispersion Coefficient as a Function of Downwind Distance from Source

  • Vertical Dispersion Coefficient as a Function of Downwind Distance from Source

  • 11/20/2014 22

    Gaussian Dispersion Equation

    If the emission source is at ground level with no

    effective plume rise then

    2

    2

    2

    2

    2

    1exp,,

    zyzy

    zy

    u

    QzyxC

    H is the sum of the physical stack height and

    plume rise.

    Plume Rise

    stackactualriseplume hhH

  • 11/20/2014 23

    Plume Rise

    For neutral and unstable atmospheric

    conditions, buoyant rise can be calculated by

    )/ 55F( 425.21 34

    75.0

    smu

    Fh riseplume

    )/ 55F( 71.38 34

    6.0

    smu

    Fhplume rise

    Sass TTTdgVF 4/)(2

    where buoyancy flux isVs: Stack exit velocity, m/s

    d: top inside stack diameter, m

    Ts: stack gas temperature, K

    Ta: ambient temperature, K

    g: gravity, 9.8 m/s2

    Buoyant plume: Initial buoyancy >> initial momentum

    Forced plume: Initial buoyancy ~ initial momentum

    Jet: Initial buoyancy

  • 11/20/2014 24

    Carson and Moses: vertical momentum & thermal

    buoyancy, based on 615 observations involving 26 stacks.

    (stable) 24.204.1

    (neutral) 64.235.0

    (unstable) 15.547.3

    u

    Q

    u

    dVh

    u

    Q

    u

    dVh

    u

    Q

    u

    dVh

    hsriseplume

    hsriseplume

    hsriseplume

    asph TTCmQ

    MWRT

    PV

    dm

    s

    s4

    2

    (heat emission rate, kJ/s)

    (stack gas mass flow rate. kg/s)

    When pollutants are dispersed to the ground level,

    how should we handle the situation?

  • 11/20/2014 25

    Wark & Warner, Air Pollution: Its Origin & Control

    2

    2

    2

    2

    2

    2

    2exp

    2exp

    2exp

    2,,

    zzyzy

    HzHzy

    u

    QzyxC

    What if the surface is absorbing?

    How should the concentration profile look like w/ reflection?

  • 11/20/2014 26

    Ground level concentration

    2

    2

    2

    2

    2exp

    2exp

    zyzy

    Hy

    u

    QC

  • 11/20/2014 27

    Maximum Ground Level Concentration

    Under moderately stable to near neutral conditions,

    zy k1

    The ground level concentration at the center line is

    2

    2

    2

    1 2exp0,0,

    zz

    H

    uk

    QxC

    The maximum occurs at

    2 0/

    HddC zz

    Once z is determined, x can be known and subsequently C.

    u

    Q

    u

    QxC

    zyzy

    1171.01exp0,0,

  • 11/20/2014 28

    Example

    An industrial boiler is burning at 12 tons (10.9

    mton) of 2.5% sulfur coal/hr with an emission

    rate of 151 g/s. The following exist : H = 120 m,

    u = 2 m/s, y = 0. It is one hour before sunrise,

    and the sky is clear. Determine downwind

    ground level concentration at 10 km.

    Stability class =

    y =

    z =

    C(10 km, 0, 0) =

  • 11/20/2014 29

    If emissions are from a ground level source with H = 0, u = 4 m/s, Q = 100 g/s, and the stability class = B, what is downwind concentration at 200 m?

    At 200 m:

    y =

    z =

    C(200 m, 0, 0) =

    Exercise

  • 11/20/2014 30

    Calculate H using plume rise equations for an 80 m high

    source (h) with a stack diameter = 4 m, stack velocity =

    14 m/s, stack gas temperature = 90o C (363 K), ambient

    temperature = 25 oC (298 K), u at 10 m = 4m/s, and

    stability class = B. Then determine MGLC at its location.

    F =

    h plume rise =

    H =

    z =

    y =

    Cmax =

    Example

    Residents around Florida Rock Cement Plant are complaining its emission

    being violating its allowed level. The plant has its facility within 0.5 km

    diameter. Its effective stack height is 60 m. You are a FLDEP environmental

    specialist. Where are you going to locate your air quality monitors? Why?

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (A)parameter unit case 1

    wind speed (from or to south west) m/s 2

    stack height m 45

    h m 90,602efective stack height (He) m 135,602

    parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer a

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (B)parameter unit case 1

    wind speed (from or to south west) m/s 3

    stack height m 45

    h m 60,401efective stack height (He) m 105,401

    parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer b

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (C)parameter unit case 1

    wind speed (from or to south west) m/s 5

    stack height m 45

    h m 36,241

    efective stack height (He) m 81,241parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer c

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (D)parameter unit case 1

    wind speed (from or to south west) m/s 7

    stack height m 45

    h m 25,886

    efective stack height (He) m 70,886

    parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer d

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (E)parameter unit case 1

    wind speed (from or to south west) m/s 5

    stack height m 45

    h m 36,241

    efective stack height (He) m 81,241

    parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer e

  • Pengaruh Stabilitas Atmosfer pada

    Konsentrasi Plume (F)parameter unit case 1

    wind speed (from or to south west) m/s 3

    stack height m 45

    h m 60,401

    efective stack height (He) m 105,401parameter polutan (gas) n

    Nitrogen Oxides

    beban (loading) g/s 19,834

    stabilitas atmosfer f

  • Beberapa pengembang model

    ini Hgstrom (1964), Turner (1964), Briggs (1965) Moore

    (1967), Klug (1968) Penggunaan dan aplikasi meluas danmenjadi teknik standar di berbagai negara untuk menghitungtinggi stack yang dibutuhkan untuk perijinan

    Beryland (1975) telah mem-publis standar kerja di Rusia

    Holzworth, (1967), Deardorff, (1975) pengaruh mixing height dalam memeperhitungkan konsentrasi MGL

    Yamartino, (1977) teri refleksi distribusi ditambahkan padaModel Plume Gaussian

  • MODEL-MODEL LAIN

    DALAM DISPERSI

    PENCEMAR UDARA

    Abdu F. Assomadi

  • Model pada skala urban dan luas

    Sekitar 1970 diketahui bahwa polusi udara bukan hanyafenomena lokal (tidak cocok didekati dengan model gaussian) SOx dan Nox di eropa hujan asam di wilayah luas (antar

    negara)

    Ozon urban dan industri impact

    Didekati dengan model Lagrangian dan Model Eulerian Lagrangian modeling parcel udara (atau puff) megikuti

    lintasannya dan diasumsikan tetap identitasnya selama dalamperjalanan

    Eulerian modeling area studi dibagi menjadi grid cell, dalamarah vertikal maupun horisontal

  • Lagrangian modeling

    Diarahkan pada deskripsi transport sulfur jarak jauh (long-range), dimulai dengan penelitian Rohde (1972, 1974), Eliassen (1975) dan Fisher (1975).

    Eliassen (1975) mulai dengan model well-known EMEP-trajectory digunakan beberapa tahun untuk menghitungpolusi udara trans-boundary spesies penyebab keasaman , dan kemudian foto-oksidan

    Lagrangian modeling digunakan mencakup periode waktuyang lebih panjang bahkan sampai skala tahun

    Secara umum dipakai di Eropa, fokus utama pada SO2 yang terdistribusi jauh dan waktu yang lama

    Prinsip Perubahan Konsentrasi dideskripsikan relatifterhadap pergerakan fluida

  • Eulerian modeling

    Dimulai dengan studi Reynolds (1973) untuk ozondi area urban; Shir and Shieh (1974) untuk SO2 diarea urban, Egan (1976) dan Carmichael (1979) untuk sulfur skala regional.

    Reynolds (1973) Los Angeles, simulasifotokimia well-known Urban Airshed Model-UAM.

    Pemodelan Eulerian grid secara luas diaplikasikandi US, meliputi area urban dengan fokus utamapada O3.

  • Prinsip Eulerian Model

    Sifat/perubahan spesies dideskripsikan relatifterhadap sistem koordinat yang tetap (fixed)

    Ada dua model yang dikembangkan:Single Box Model

    Focus: Kimia Atmosfer Lack physical realism - horizontal and vertical transport,

    etc

    Multi-dimensional grid-based air quality model Potentially the most powerful Involving the least-restrictive assumption

  • Beberapa Pengembang Model

    Lagrangian dan Eulerian Sklarew et al., (1971) pendekatan hybrid, seperti metode

    particle-in-cell.

    Paper mengenai pemodelan Eulerian and Lagrangianmodeling Friedlander and Seinfeld (1969), Eschenroeder -Martinez (1970) dan Liu and Seinfeld (1974).

    A comprehensive overview of long-range transport modeling in the seventies Johnson (1980).

    Selanjutnya, global modeling of earths troposphere. Model Global 2-D troposfer global dimodelkan dalam rata-rata

    arah longitudinal (Isaksen, 1978).

    model global 3-D dikembangkan Peters (1979) (dan jugaZimmermann, 1988).

    Sekitar tahun 1980, konsep dasar modeling danperangkatnya sudah avalaible.

    Pengembangan setelah 1980 difokuskan pada fine-tuningdari konsep dasar tersebut

  • Model Fotokimia

    AQM dengan pendekatan Fotokimia dibuatsecara luas dan rutin digunakan sebagai alatanalisis regulasi dan menguji efektifitas strategipengendalian

    Model fotokimiamodel kualitas udara skalabesar yang mensimulasikan perubahankonsentrasi polutan di atmosfer menggunakansederet persamaan matematik, karakteristik kimiadan proses fisika di atmosfer.

    Model ini diaplikasikan pada skala multiple spatial mulai lokal, regional, nasional, dan global

  • Beberapa Model Foto kimia CMAQ Tujuan utama Models-3/Community Multiscale Air Quality

    (CMAQ) untuk mengimprove 1) kemampuan environmental

    management community untuk evaluasi impact pengelolaan kualitas

    udara multi polutan pada multi skala, dan 2) kemempuan peneliti

    untuk memahami dan mensimulasi lebih baik interaksi polutan

    secara kimia-fisika di atmosfer

    CAMX model kualitas udara komperehensif a publicly

    available open-source computer modeling system untuk assesment

    terintegrasi (pencemar udara gas-gas dan partikel)

    Simulate air quality over many geographic scales

    Treat a wide variety of inert and chemically active pollutants:

    Ozone

    Inorganic and organic PM2.5/PM10

    Mercury and toxics

    Provide source-receptor, sensitivity, and process analyses

    Be computationally efficient and easy to use

  • Beberapa Model Foto kimia

    UAM The Urban Airshed Model (UAM) mulai dikembangkan oleh ystems Applications International (SAI) sejak sekitar tahun 1970paling luas digunakan dalam photochemical air quality model saat ini

    Model photochemical lain telah dikembangkannamun tidak ada model sampai saat ini yang lebihreliable dan superior secara teknik

    CALGRID

  • Model-model Lain

    Model Meteorologi CALMET

    MM5

    RAMS

    Model Plume Rise dan Dispersi AERMOD termasuk PRIME sistem algoritma untuk

    mensimulasi efek plume rise, termasuk downwash ketikaplume melintas diatas/melewati gedung-gedung

    Model Statistik Model Receptor Air Quality Forecast and Alarm Systems

    Model Deposisi

    Model Bau

    Model Partikulat Kinematic Simulation Particle (KSP) Model in CALPUFF

    MONTECARLO (Zannetti and Sire, 1999)

  • Model-model yang populer dalam

    AQM Industrial Source Complex Short-Term Model (ISCST3)

    American Meteorological Society- Environmental Protection Agency Regulatory Model (AERMOD)

    Guideline on Air Quality Models (GAQM)

    Office of Air Quality Planning and Support (OAQPS)

    Support Center for Regulatory Air Models (SCRAM)

    ISC-COMPDEP model (a merger of the ISCST2 and COMPLEX I model)

    COMPLEX I, from which a new modelCOMPDEP

    Rough Terrain Diffusion Model (RTDM) RTDMDEP

    California Puff Model (CALPUFF)

    ISCST with the new downwash algorithm, ISC-PRIME

  • AERMOD dan CALPUFFRekomendasi US-EPA saat ini dua model komputasi untuk simulasi polutan

    non reaktif (misal, SO2):

    AERMOD: http://www.epa.gov/scram001/dispersion_prefrec.htm#aermod steady-state Gaussian plume model, menggunakan angin tunggal yang diturunkan dari permukaan lapisan atas, dan pengamatan meteorological onsite. AERMOD juga menggabungkan data geofisika (terrain, elevasi) untuk mendapatkan parameter boundary layer ( panjang monin-obukhov, mixing height, stabilitas, turbulrnsi , dsb) AERMOD saat ini menggantikan ISC models untuk sebagian besar regulasi di US

    CALPUFF: http://www.epa.gov/scram001/dispersion_prefrec.htm#calpuff model dispersi puff non-steady state Lagrangian Dibanding dengan Gaussian-based model CALPUFF lebih realistik mensimulasi

    transport polutan pada kondisi calm, stagnant, complex terrain, dan coastal regions with sea/land breezes.

    CALPUFF direkomendasikan untuk long-range simulations (lebih dari 50 miles) danassesment visual impact plume.

    Dengan VISTAS Version 6 model2, CALPUFF digunakan dengan data meteorological sub-hourly dan dijalankan dengan tahap waktu sub-hourly. CALPUFF versi ini juga didekati untuk kedua simulasi long-range and short-range.

    http://www.epa.gov/scram001/dispersion_prefrec.htmhttp://www.epa.gov/scram001/dispersion_prefrec.htm

  • ISCST3 modelSecara teknik mampu untuk menghitung dan evaluasi Laju dispersi gaussian vertical dan horizontal plume cross-

    section;

    Koefisien dispersi Urban dan rural;

    Efek Terrain;

    Karakteristik sumber point diskrit, area dua dimensi, volume 3-D;

    Rerata Short-term dan long-term (1jam - tahunan);

    Data meteorologi permukaan termasuk data pengamatan kecepatanangin tiap jam , arah angin, stabilitas (6 kelas), dan temperatur;

    Interpolasi Data Mixing height dihubungkan dengan data kondisipermukaan;

    Proses deposisi massa konservatif , wet /dry deposisi partikel danremoval

    Laju peluruhan ekponensial order satu tunggal

  • Sumber dan referensi

    Human Health Risk Assessment Protocol Chapter 3: Air Dispersion and Deposition Modeling, U.S. EPA Region 6 Multimedia Planning and Permitting Division Center for Combustion Science and Engineering, september 2005

    Daly, A. and P. Zannetti. 2007. Air Pollution Modeling An Overview. Chapter 2 of AMBIENT AIR POLLUTION (P. Zannetti, D. Al-Ajmi, and S. Al-Rashied, Editors). Published by The Arab School for Science and Technology (ASST) (http://www.arabschool.org.sy) and The EnviroCompInstitute (http://www.envirocomp.org/).