3_Lines_Travelling_waves_VERA_2.pdf

download 3_Lines_Travelling_waves_VERA_2.pdf

of 16

Transcript of 3_Lines_Travelling_waves_VERA_2.pdf

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    1/16

    Travelling waves on transmissionlines and line modeling in

    EMTP/ATP

    Oct 15, 2012 - Bp

    11/6/20122 / 64

    Electromagnetic wave propagation along ahorizontal, lossless overhead line

    t

    IxLV

    =

    V(x+x,t)I(x,t)V(x,t)

    x x+x

    V

    I

    t

    UxCI

    =

    I(x+x,t)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    2/16

    11/6/20123 / 64

    Wave eq. (telegraph equations)

    IxLV= ILV

    =

    t

    VxCI

    =t

    VC

    I

    =

    2

    22

    2

    2

    2

    t

    VC

    tx

    I

    txIL

    xV

    =

    =

    2

    2

    2

    2

    2

    2

    2

    2

    ILC

    It

    VLC

    x

    V

    =

    =

    11/6/20124 / 64

    Solution of wave equations

    C

    LZ

    LCv

    where

    vtxfZvtxfZtxV

    vtxfvtxftxI

    ==

    +=

    ++=

    0,1

    )()(),(

    )()(),(

    2010

    21

    x

    +vf1(x,t) -v f2(x,t)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    3/16

    11/6/20125 / 64

    Example

    1 p.u.

    SRC V1 V3 V5 V7 V9 ENDV V V V V VV

    10km 10km 10km 10km 10km 10km 10km 10km 10km 10km

    Line parameters, L=1.6mH/km, C=10nF/km makes Zo=400 ohm, v=250m/us

    (file AC2_Tr_waves.pl4; x-var t) v:SRC v:V1 v:V3 v:V5 v:V7 v:V9 v:END

    0.0 0.4 0.8 1.2 1.6 2.0[ms]-0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    [V]

    11/6/20126 / 64

    Example (cont.)

    1 p.u.

    SRCV

    V1 V3 V5 V7 V9 ENDV V V V V V

    Single phase distr. parameter line, Zo=400 ohm, v=250m/us

    (file AC2_Tr_waves.pl4; x-var t) v:SRC v:V1 v:V3 v:V5 v:V7 v:V9 v:END

    0.0 0.4 0.8 1.2 1.6 2.0[ms]-0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    [V]

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    4/16

    11/6/20127 / 64

    Reflection and refraction of waves

    V1

    ZA ZB

    V3V2

    V2=(ZB-ZA)/(ZA+ZB) V1 = V1

    V3=(2ZB)/(ZA+ZB) V1 = V1

    ZB=infinite (open circuit) =2, =1ZB=zero (short circuit) =0, = -1

    11/6/20128 / 64

    Simulation time step selectionz Small enough to meet sampling requirements for signal

    reconstruction (dT < 1 / 2 x fmax)

    z Much smaller than smallest time constant or natural oscillation

    period in circuit

    (file AC2_Surge_DT_selection.pl4; x-var t) v:SRC

    0 2 4 6 8 10[us]0

    10

    20

    30

    40

    50

    60

    70[V]

    t=3st=10ns

    (file AC2_Surge_DT_selection.pl4; x-var t) v:SRC

    0 2 4 6 8 10[us]0

    20

    40

    60

    80

    100

    [V]

    H

    SRCV

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    5/16

    11/6/20129 / 64

    Simulation time step selection (II)Vcap

    V

    10 nF

    1 mH10 ohm

    (file AC2_Surge_DT_selection.pl4; x-var t) v:VCAP0.00 0.02 0.04 0.06 0.08 0.10[ms]

    0

    40

    80

    120

    160

    200

    [V]

    t=0.1sfsample=10MHz

    (file AC2_Surge_DT_selection.pl4; x-var t) v:VCAP0.00 0.02 0.04 0.06 0.08 0.10[ms]

    0

    20

    40

    60

    80

    100

    120

    140

    160[V]

    t=10sfsample=100kHz

    fmax=50 kHz

    Recommended dT (time step)

    PhenomenaBeing S tudied

    TypicalStudyDurations

    TypicalTimeStep

    Lightningsurges

    100-200 s .1 -1 s

    TransmissionLine S witchingSurges

    .2 - 1 ms 1-20 s

    Capacitorswitching

    1 - 100 ms 10-100 s

    Short circuits 0.1 - 1 s 10-200 s

    Machine

    dynamics

    0.5 - 5 s 100-1000 s

    (About 5 - 10 samples within a period of the highest frequency of interest)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    6/16

    11/6/201211 / 64

    Overhead line models (single phase)

    Zo,v Zo,v

    length/2 length/2

    Rl/4 Rl/2 Rl/4

    Line Models in ATP-EMTP

    z Nominal- model Frequency independent

    Lumped-parameter model

    Skin effect and earth return corrections

    Multi-phase lines can be represented

    No time step limit (often misleading!)

    Not suitable for transient studies!

    PI sections can be connected in cascade for transient studies

    with certain limitations:

    Produces reflections at the cascading points

    Computationally expensive

    Sections must be kept very short { 5-10 km for frequencies up to about 2kHz}

    z Frequency independent distributed parameter line model (CPDL)

    z Frequency dependent distributed parameter line model (JMarti)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    7/16

    Line Models for Transient Studiesz Constant parameter distributed line model (CPDL)

    Model assumes that per unit R, L, & C are constant

    L & C are distributed

    Losses R*l are assumed to be lumped in three places Shunt losses are ignored

    Use traveling wave solutions and valid over a wide frequencyrange

    Require transformations between phase and modal domain

    Keep track of modal waves traveling at different speeds

    z Frequency dependent transmission line model (JMarti) Represents distributed nature and freq. dependency of all line

    parameters accurately

    Transformation matrix can be real or complex, but constant Most accurate model for transient studies

    Approximations in the transformation matrix for untransposedlines

    Can be used with compromise if asymmetry gets stronger

    11/6/201214 / 64

    Frq. dependency of l ine parameters

    Zero sequence resistance vs. frequency

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    8/16

    11/6/201215 / 64

    Frq. dependency of line parameters

    Zero sequence inductance vs. frequency

    11/6/201216 / 64

    For the lossless line

    with characteristic impedance Z and travel time , the

    expression v + Zi does not change if observer travels

    forward with the wave (method of characteristics):

    or

    Equivalent

    circuit:

    )t(Zi)t(v)t(Zi)t(v 151515 =+

    )t(I)t(vZ

    )t(i += 151151

    Transient solution in a larger network

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    9/16

    11/6/201217 / 64

    Input data needed for l ine modeling

    z (x,y) coordinates of each conductor and shield wire;

    z bundle spacing, orientations;

    z sag of phase conductors and shield wires;

    z phase and circuit designation of each conductor;

    z phase rotation at transposition structures;

    z physical dimensions of each conductor;

    z DC resistance of each conductor and shield wire

    z Ground resistivity of the ground return path.

    11/6/201218 / 64

    Overhead line modeling (LCC)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    10/16

    11/6/201219 / 64

    Line/Cable modeling

    z Line/Cable Constants, Cable Parameters

    Bergeron, PI, JMarti, Semlyen, Noda(?)

    z View

    Cross section, grounding

    z Verify

    Frequency response, power frequency params.

    z Line Check

    Power freq. test of line/cable sections

    0.0 2.0 4.0 6.0

    log(freq)0.4

    1.5

    2.7

    3.9 log(| Z |)

    11/6/201220 / 64

    Cable modeling (CC & CP)z Specify

    Geometrical data

    Electrical param.

    1-21 phases

    Max 42 overhead

    cond.,16 cables

    z Automatic ATP-

    execution:

    Bergeron

    PI-equiv.

    Semlyen

    JMarti Noda

    z View and Verify

    modules

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    11/16

    11/6/201221 / 32

    Specification of data + View module

    11/6/201222 / 32

    Line Check

    z The user selects a group in the circuit

    z ATPDraw identifies the inputs and outputs (user modifiable)

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    12/16

    11/6/201223 / 32

    Line Check (cont.)

    z ATPDraw reads the LIS-file and calculates the series

    impedance and shunt admittance

    Conclusions

    z Use PI-exact model for steady state studies

    z Use FD-line models for lines of main interest in

    your study

    z Use CPDL-line models for lines of secondary

    interest

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    13/16

    Time controlled switches

    Conventional deterministic switch

    Model circuit breakers

    Model short circuits Other similar switching devices

    Modeled as ideal element:

    I = 0 when open, R = 0 when closed

    Statistics switch

    Random closing/opening switch

    Systematic switch

    11/6/201226 / 32

    Voltage controlled switch

    Simulate protective gaps

    Surge arrester gaps

    Series capacitor gaps

    Flashovers across insulators Normally open at the start of the simulation

    Closes when the voltage across the switchexceeds a user-defined flashover value

    Opening occurs at the first current zero,provided the user defined delay time haselapsed

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    14/16

    TACS controlled switches

    Type 11 - Simulates diodes and thyristors

    Type 12 - can be used to simulate triacs and spark

    gaps

    Type 13 - General TACS controlled switch

    Load Models

    Load models should satisfy two requirements The power frequency MVA load should be accurate in order to

    set up the proper initial conditions

    The low and high frequency characteristics should also match

    the physical load to properly represent its effects on harmonicsand transients

    Series RL and Parallel RL models Produce correct initial conditions

    Inaccurate at higher frequencies

    Series RL provides very little damping at high frequencies

    Parallel RL provides a constant damping at higher frequencies

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    15/16

    11/6/201229 / 32

    Nonlinear branches

    type 99 : Pseudo-nonlinear resistance

    type 98 : Pseudo-nonlinear inductance

    type 97 : Staircase time-varying resistancetype 96 : Pseudo-nonlinear hysteretic inductor

    type 94 : User-defined component via MODELS

    type 93 : True, nonlinear inductance

    type 92 : Exponential ZnO surge arrester

    Multi-phase, piece-wise linear resistance withflashover

    type 91 : Multi-phase time-varying resistance

    TACS/MODELS controlled resistance

    User supplied Fortran nonlinear element

    11/6/201230 / 32

    L

    VR IL

    VL

    A non-linear circuit

  • 7/28/2019 3_Lines_Travelling_waves_VERA_2.pdf

    16/16

    11/6/201231 / 32

    iL

    (t)

    (t -t)

    iL(t- t)

    slope

    kn

    A piece-wise linear-i characteristic

    ( ) ( )[ ] ( ) ( )tttttitik LLn =

    iL(t)

    =dt

    dvL

    ( ) ( )[ ] ( ) ( )ttttttvtv LL =+ 21

    ( ) ( )[ ] ( ) ( )tttttitik LLn =

    ( ) ( ) )( )(i t tk

    v t i t tt

    kv t tL L L L= + +

    2 2

    dtdt

    tddttv

    t

    tt

    t

    tt

    L

    =)(

    )(