3D Scaffolds for Cancer Engineering

30
ThreeDimensional Cell Culture: 3D Insert for Cancer Engineering Add Extra Dimension to Your Innovation™ © 3D BIOTEK, LLC

description

3D polymer scaffolds offer great advantages for development of robust cell-based models. Here is a brief introduction to 3D Biotek's scaffold (3D Insert) and applications to recreate breast cancer and blood cancer in vitro models.

Transcript of 3D Scaffolds for Cancer Engineering

Page 1: 3D Scaffolds for Cancer Engineering

Three-­‐Dimensional  Cell  Culture:    3D  Insert  for  Cancer  Engineering          

Add Extra Dimension to Your Innovation™ ©  3D  BIOTEK,  LLC  

Page 2: 3D Scaffolds for Cancer Engineering

Cell  Culture  Evolu@on    

©  3D  BIOTEK,  LLC  

1838,  Schleiden  &  Schwann    

“cell  theory”  

1885,  Wilhelm  Roux    

Cells  can  live  outside  the  body  

1907,  Harrison  

Inventor  of  Gssue  culture  

1952,  Gey  

HeLa  cells  

1955,  Eagle  defined  medium  

1965,  Ham  

Colonial  growth  of  mammalian  cells  

1981,  MarGn  &  Evans  

Mouse  ES  cells  

1998,  Thomson  &  Gearheart  Human

 ES  cells  

3D  

Page 3: 3D Scaffolds for Cancer Engineering

3D  Cell  Culture:  Gels  and  Scaffolds      

©  3D  BIOTEK,  LLC  

1960’s  1900’s   2000’s  

Glass-­‐Based  Tissue  Culture  

Polystyrene-­‐Based  Tissue  Culture  

Gel-­‐Based  Technology  Matrigel  

DissociaGon/Maintenance  of  Cells/Vaccine  ProducGon  

2D  EvoluGon  of  Polymer-­‐Based  Scaffolds  

2D  

2D  

3D  

3D  

MulGcellular  Spheroids    

Page 4: 3D Scaffolds for Cancer Engineering

Why  3D  Cell  Culture  

©  3D  BIOTEK,  LLC  

Page 5: 3D Scaffolds for Cancer Engineering

2D  Does  not  Mimic  in  vivo  Geometry  

≠  

Brain    

Bone,  CarGlage    

Lung,  Breast    

Brain    

Bone,  Car+lage    

Lung,  Breast    

Liver    Liver    

Petri  Dish  

©  3D  BIOTEK,  LLC  

Page 6: 3D Scaffolds for Cancer Engineering

Limita@ons  of  2D  Cell  Culture    

©  3D  Biotek,  LLC  

   Limited  cell-­‐cell  interacGon       Disrupted  cellular  organizaGon  and  polarity     Inaccurate  representaGon  of  the  cellular  environment            experienced  by  cells  in  vivo     Disconnect  between  cellular  behavior  in  vitro  and  in  vivo    

Debnath  J,  et  al.  2003  

Polarity  

Fishbach  C,  et  al.  2007  

Disconnect  to  in  vivo  

Page 7: 3D Scaffolds for Cancer Engineering

Superior  In  Vivo  Relevance  of  3D    

©  KIYATEC  Inc  

Human  3D  Cell  Culture  Mouse  2D  Cell  culture  

Pearson  Correla@on  Coefficient  

Human  –  Human  =  0.45  3D  –Human  =  0.34  Mouse  –  Human  =  0.28  2D  –  Human  =  0.0  

Most  Relevant  to  Primary  Tumor    

Least  Relevant    

Ridki  TW,  et  al.,  Invasive  three-­‐dimensional  organoGpic  neoplasia  from  mulGple  normal  human  epithelia.    Nature  Medicine  16(12):1450-­‐55,  2010  

Page 8: 3D Scaffolds for Cancer Engineering

Increasing  Funding  (US)    

©  KIYATEC  Inc  

 DARPA    BAA-­‐11-­‐73,  “Microphysiological  Systems”  • “Three-­‐dimensional   constructs   of   one   or  more   cell   types      are  able  to  reproduce  relaGvely  authenGc  human  Gssue  and  organ  physiology  in  an  in  vitro  environment”...  

•    “DARPA   seeks   in   vitro   placorms   comprised   of   human  Gssue  constructs  that  will  accurately  assess  efficacy,  toxicity,  

and  pharmacokineGcs  in  a  way  that  is  relevant  to  humans”  

Page 9: 3D Scaffolds for Cancer Engineering

Pharmaceu@cal    Industry  Challenges    

©  KIYATEC  Inc  

•  Frequent  failures  in  Clinical  Trials:            Phase  I,  II,  and  III  •  Waste  of  money  and  resources  

New  Strategies:    •  Beher  Early  Screening,  e.g.  in  vitro  models.      •  Fail  early,  save  money  and  Gme.    

Page 10: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  

3D  Cell  Culture:  What  Flavor  Please?    

h>p://blog.wan+st.com  

Gels  Nano   Polymers   Animal  ECM  Spheroids    

Page 11: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  

3D  Cell  Culture:  The  Ideal  Scaffold    

3D  Collagen  Scaffold  

3D  OPLA  Scaffold  

3D  Calcium  Phosphate  Scaffold  

AlgiMatrix  Matrigel  /  PuraMatrix  /  Coa@ngs  

Alvatex®  

Ready to use

100% interconnected

pores

High surface to

volume ratio

Variable configurations (customizable)

Easy cell recovery

Plate reader compatible

Transparency (direct observation with light microscope)

3D Insert™

Gel Matrices

PLA foam

CaP foam

Alginate Foam

Alvetex®

Compa@ble  

Not  Compa@ble  

Page 12: 3D Scaffolds for Cancer Engineering

Polymer  Deposi@on:  Wider  Biological  Range  

©  3D  BIOTEK,  LLC  

3D  Insert™  

Enhanced  Cell  Growth  

Enhanced  Cell  DifferenGaGon  

Biological  Range  

3D  Insert™  

Page 13: 3D Scaffolds for Cancer Engineering

Core  Technology:  3D  Insert™  Pladorm    

©  3D  BIOTEK,  LLC  

Page 14: 3D Scaffolds for Cancer Engineering

3D  Insert™  Pladorm    

©  3D  BIOTEK,  LLC  

Fiber  Diameter     Fiber-­‐to-­‐Fiber  Spacing       Scaffold  Layering        

Pore  Size   Scaffold  Volume  

3D  Geometry  

Page 15: 3D Scaffolds for Cancer Engineering

3D  Insert™  Series      

©  3D  BIOTEK,  LLC  

3D  Insert™-­‐Polystyrene  

3D  Insert™-­‐Poly-­‐ε-­‐Caprolactone  

Poly-­‐ε-­‐Caprolactone  (PCL)  is  a  biodegradable  polymer  used  in    FDA  approved  medical  devices  

Polystyrene  (PS)  is  a  transparent  polymer  used  in  tradiGonal  cell  culture.  

Page 16: 3D Scaffolds for Cancer Engineering

3D  Insert™  Series      

©  3D  BIOTEK,  LLC  

3D  Insert™-­‐Polystyrene  

3D  Insert™-­‐Poly-­‐ε-­‐Caprolactone  

   ConfiguraGons:  PS(1520)  and  PS(3040)   PS(1520)  =  150-­‐um  Fiber/200-­‐um  Spacing     PS(3040)  =  300-­‐um  Fiber/400-­‐um  Spacing   Total  number  of  layers:  4  

   ConfiguraGons:  PCL(3030)  and  PS(3050)   PCL(3030)  =  300-­‐um  Fiber/300-­‐um  Spacing     PCL(3050)  =  300-­‐um  Fiber/500-­‐um  Spacing   Total  number  of  layers:  6  

Page 17: 3D Scaffolds for Cancer Engineering

3D  Insert™  PS:  Microscopy  Advantage        

©  3D  BIOTEK,  LLC  

   4  layer  configuraGon  for  real  Gme  imaging     Adaptable  for  Light  and  confocal    Microscopy     Self-­‐similar  Structure    

Page 18: 3D Scaffolds for Cancer Engineering

3D  Insert™  Advantages  in  Cell  Culture        

©  3D  BIOTEK,  LLC  

   Well-­‐defined  pore  size  and  porous  structure     100%  Pore  InterconnecGvity       Solvent-­‐Free  and  Non-­‐Toxic     CompaGble  with  Current  2D  Assays     Batch-­‐to-­‐Batch  Reproducibility         Free  of  Animal-­‐derived  Material       Custom  Designed  FabricaGon    

3D  Insert™-­‐PS   3D  Insert™-­‐PCL  

Page 19: 3D Scaffolds for Cancer Engineering

3D  Insert™:  Applica@ons      

©  3D  BIOTEK,  LLC  

Page 20: 3D Scaffolds for Cancer Engineering

3D  Insert™:  Biological  Relevance    

©  3D  BIOTEK,  LLC  

Sta+c  Cell  Culture  Models    

Perfusion  Models    

Sta+c  Co-­‐culture  Models    

Perfusion  Co-­‐culture  Models    

Biological  Relevance  

Current  Needs  Cancer  and  Tissue  Engineering     +  

Standard    3D  Scaffold     =   Biological  

Relevance  

Page 21: 3D Scaffolds for Cancer Engineering

3D  Insert™  Sta@c  Seeding  Protocol        

©  3D  BIOTEK,  LLC  

Immediately  amer  seeding:    Cell  droplet  will  cover    ~80-­‐90%  of  scaffold  

3  h  incuba+on  37º  C,  5%  CO2  

Cell  droplet  will  penetrate  enGre  scaffold  

Pipehe  the  appropriate  volume  of  cell  suspension    

Carefully  place  suspension    droplet  onto  the  center  of    

the  scaffold  surface  

Gently  add  remaining  media  along  well’s  edge  

For    seeding  volumes,  please  visit  us  at  hfp://www.3dbiotek.com/web/3dProtocols.aspx  

3  h    

incuba+on  

37  º  C,    

5%  CO  2  

12  h    

incuba+on  

37  º  C,    

5%  CO  2  

Rota+ng  

Constant  Rota@on  

Standard  Seeding  in  Sta@c  Culture    

Op@onal  Dynamic  Seeding    for  Co-­‐culture    

Page 22: 3D Scaffolds for Cancer Engineering

3D  Insert™:  Cell  Morphology    

©  3D  BIOTEK,  LLC  

Fiber  2  

Fiber  1   H.  Astrocytes   hMSCs  

NIH  3T3     MCF-­‐7    

3D  Insert™    

Pore  Structure    

Fiber  Curvature    

Page 23: 3D Scaffolds for Cancer Engineering

3D  Cancer  Models:  Drug  Screening    

©  3D  BIOTEK,  LLC  

Advantages     RealisGc  Signaling  from  Cellular  Microenvironment     Beher  RepresentaGon  of  in  vivo  Drug  Resistance     Maintenance  of  True  Cancer  Phenotype  

Applica@ons     3D  Cellular  Growth  and  OrganizaGon           3D  Tissue-­‐Drug  InteracGon       3D  Co-­‐culture       3D  Spheroid  FormaGon    

Page 24: 3D Scaffolds for Cancer Engineering

3D  Cancer  Models:  Breast  Cancer    

©  3D  BIOTEK,  LLC  

Absorbance  (570  nm)  

MTT  assay  

Absorbance  (570/405  nm)  

Alamar  Blue  

*  *  

*  

*  

*   *   *  

MCF-­‐7   cells   imaged   using   a  light   microscope   in   real-­‐Gme.  (A-­‐B:  100X,  C:  200X)  

p≤0.05  

Page 25: 3D Scaffolds for Cancer Engineering

3D  Cancer  Models:  3D  Drug  Resistance    

©  3D  BIOTEK,  LLC  

Absorbance  (570  nm)  

con   10-­‐6  M   10-­‐5  M  

Day  

Effects   of   tamoxifen   on   MCF-­‐7   cells   grown   in   2D   and   3D.   Cell  viability  amer  tamoxifen  treatment  was  measured  by  MTT  assay.  

MTT  assay          2D          3D  

*  

*  

*  

*  *  

*   *  

*   *  *  

2D  3D  

control   +  E2   +  E2    +  FUL  

Enhanced   MCF   proliferaGon   in   3D   amer  estrogen   (E2)   sGmulaGon.   DNA   assay  was  performed   to   determine   proliferaGon  response.   Following   with   inhibiGon   using  fulvestran  (Ful)  

DNA  assay  

*  

^  

&  

Page 26: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  Caicedo-­‐Carvajal,  CE.,  et  al.,  Tissue  Eng.  ID  362326  

Stroma  Causes  Lymphoma  Aggrega+on  in  2D  and  3D    

3D  Co-­‐culture  Model:  Blood  Cancer  

Page 27: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  

3D  Stroma  Enhances  Lymphoma  Neoplas+c  Growth    

3D  Co-­‐culture  Model:  Neoplas@c  Growth  

Caicedo-­‐Carvajal,  CE.,  et  al.,  Tissue  Eng.  ID  362326  

Page 28: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  

3D  Stroma  Enhances  Efficient  Lymphoma  Prolifera+on    

3D  Co-­‐culture  Model:  Neoplas@c  Growth  

Caicedo-­‐Carvajal,  CE.,  et  al.,  Tissue  Eng.  ID  362326  

Page 29: 3D Scaffolds for Cancer Engineering

©  3D  BIOTEK,  LLC  

Effect  of  3D  Stroma  on  Lymphoma  Site  of  Origen    

3D  Co-­‐culture  Model:  Stroma  Specificity    

Caicedo-­‐Carvajal,  CE.,  et  al.,  Tissue  Eng.  ID  362326  

Page 30: 3D Scaffolds for Cancer Engineering

3D  Insert™:  Take  Home  Message        

©  3D  BIOTEK,  LCC  

• The  3D  Insert™  has  shown  opGmum  performance  under  increasing  complexity,  an  common  trend  in  cell-­‐based  models  

•   The  3D  Insert™  is  a  versaGle  3D  cell  culture  placorm  for  drug  screening  in  cancer  models  to  study  drug  resistance  and  the  effect  of  stroma  on  cancer  proliferaGon