36. Aqua Module - hsc-chemistry.nethsc-chemistry.net/hsc9_pdfs/j14021_AQU.pdfNon-ideal aqueous...

49
HSC 8 - Aqua November 19, 2014 Research Center, Pori / Petri Kobylin, Justin Salminen, Matias Hultgren 14021-ORC-J 1 (49) Copyright © Outotec Oyj 2014 36. Aqua Module 36.1. Introduction............................................................................................................................. 3 36.2. Aqua module interface in HSC 8............................................................................................. 4 36.3. Input sheets............................................................................................................................ 5 36.3.1. Binary system sheet........................................................................................................ 7 36.4. Output sheets ......................................................................................................................... 8 36.5. Multi-component examples ..................................................................................................... 9 36.6. Aqueous Equilibria................................................................................................................ 11 36.7. General calculation principles for water systems .................................................................. 12 36.8. Excess enthalpy and heat capacities .................................................................................... 13 36.9. Summary of the equations used in HSC Aqua ...................................................................... 14 36.10. Conclusions .......................................................................................................................... 20

Transcript of 36. Aqua Module - hsc-chemistry.nethsc-chemistry.net/hsc9_pdfs/j14021_AQU.pdfNon-ideal aqueous...

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 1 (49)

    Copyright © Outotec Oyj 2014

    36. Aqua Module

    36.1. Introduction ............................................................................................................................. 336.2. Aqua module interface in HSC 8 ............................................................................................. 436.3. Input sheets ............................................................................................................................ 5

    36.3.1. Binary system sheet........................................................................................................ 736.4. Output sheets ......................................................................................................................... 836.5. Multi-component examples ..................................................................................................... 936.6. Aqueous Equilibria ................................................................................................................ 1136.7. General calculation principles for water systems .................................................................. 1236.8. Excess enthalpy and heat capacities .................................................................................... 1336.9. Summary of the equations used in HSC Aqua ...................................................................... 1436.10. Conclusions .......................................................................................................................... 20

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 2 (49)

    Copyright © Outotec Oyj 2014

    Abstract

    Non-ideal aqueous electrolyte models have been added to the HSC software in the newlydeveloped ‘’HSC Aqua module’’. HSC Chemistry software has up to this point not includednon-ideal models for aqueous electrolyte solutions. However, HSC includes an impressivenumber of standard state data for neutral components and ionic species. For calculation ofthe excess Gibbs energy of the individual species and mixtures activity coefficient modelsneed to be included in the HSC data bank. Electrolytes have so far been treated as idealsolutions where the activity coefficients of the individual solution species are set to one.

    Predictive and semi-empirical models for ionic activities mean that the activity coefficientand osmotic coefficient have been introduced. In addition, an estimation of solutionenthalpies and heat capacities is included. These working equations were derived fromactivity coefficient models. The activity coefficient models available are the Davies model(extended Debye-Hückel), the semi-empirical Pitzer model (with binary interactions only),and Harvie’s modification of the Pitzer model (binary and ternary parameters). The Pitzerparameter database can be used for binary electrolyte systems as well as for multi-component solutions1-6.

    An extensive database has been collected, including temperature-dependent Pitzer binaryand ternary ion interaction parameters. The total number of Pitzer parameters in the HSCAqua database is currently 1031. This includes 425 cation-anion pairs, 114 cation-cationand anion-anion pairs, 199 ternary coefficients, and 293 ion-neutral pairs.

    Many of these parameters are tabulated as temperature-dependent functions, thus allowingthe derivation of thermodynamic relations for enthalpies and heat capacities. For thosespecies that have good temperature-dependent data, calculations are in agreement with theliterature. For systems that do not have temperature-dependent data, enthalpy and heatcapacity estimates are consequently less accurate.

    A Pitzer activity calculator tool has been tested against literature data. These include binarysystems: NaOH, KOH, NaCl, KCl, HCl, LiCl, CaCl2, ZnCl2, Na2SO2, CaSO4 CuSO4, CoSO4,NiSO4, MgSO4, MnSO4, ZnSO4, and AgNO3, for example.

    The Aqua module can be used for the estimation of ion activities, mean activity coefficients,the osmotic coefficient of water, enthalpies, and heat capacities of homogenous (singlephase) aqueous electrolyte solutions. In addition, the water vapor pressures of electrolytesolutions, boiling point elevation, freezing point depression, relative humidity and osmoticpressure can be estimated. The Aqua module can be combined with the HSC EquilibriumModule just by checking a box, i.e. multiphase (gas-aqueous-solid) calculations where ionactivities and speciation can be taken into account in the water phase.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 3 (49)

    Copyright © Outotec Oyj 2014

    36.1. Introduction

    Electrolyte solutions play an important role in a wide spectrum of industrial applications.These include the solubility phenomena of salts and gases in aqueous systems,precipitation, crystallization, desalination, distillation, and extraction. Wastewater, potablewater, mine waters, and natural waters are all different types of electrolyte solutions.

    Reliable thermodynamic data for ionic species is needed in order to estimate theirproperties correctly. Ionic systems deviate from ideality even in very dilute solutions. This isdue to the long-range electrostatic forces between ions that are significant even in verydilute solutions. Thus electrolyte solutions are non-ideal even at low solute concentrations.

    Adequate thermodynamic models are necessary for the determination of the properties ofaqueous electrolyte systems. A simulation model should be reliable at a wide range oftemperatures and solute concentrations. Despite the decades of effort put into finding atruly predictive fundamental theory for concentrated electrolyte solutions, a perfect theoryhas not yet been found. For practical applications, it is still necessary to rely on semi-empirical models. One of the most widely used semi-empirical models was developed byKenneth Pitzer in 1973 and later modified by Harvie in the 1980s1,2.

    The Pitzer equations form a quite solid and theoretically realistic foundation for thecalculation of aqueous system thermodynamics. The model is widely recognized and hasbeen tested frequently for different electrolyte solutions.

    Other benefits of the Pitzer formalism include the largest amount of reliable ion interactionparameters that can be extended to evaluate multi-component solutions. However, thePitzer model is usually valid up to 6 mol/kg.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 4 (49)

    Copyright © Outotec Oyj 2014

    36.2. Aqua Module Interface in HSC 8

    The first step in the implementation of the Pitzer model into the HSC Chemistry softwarewas the creation of the HSC Aqua module. With this module, the user can estimate theactivity coefficients, enthalpies and heat capacities of homogenous (single-phase) aqueouselectrolyte solutions. The development of the module consisted of two main tasks: thecollection of Pitzer parameter data and the development of the calculation routine. Theprograms used for these tasks were Microsoft Visual Basic, the Formula One chart tool,and Microsoft Excel.

    Fig. 1. The main screen of HSC 8.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 5 (49)

    Copyright © Outotec Oyj 2014

    36.3. Input Sheets

    The input sheets for the current HSC Aqua module are opened from the main menu. Theinput solution of the aqueous electrolyte calculation procedure can be specified on twoseparate sheets. From the top menu bar of the input sheets, example cases of a calculatedelectrolyte solution can be opened and saved through the “File” command. The examplecases can be saved as *.aqu8.

    Fig. 2. Appearance of the Aqua module Water Phase.

    The “Water Phase” sheet is used to calculate the activity coefficients, enthalpies and heatcapacities for an aqueous solution with a selected composition and temperature. The userspecifies the system by inserting the ionic or molecular formulas of the solute species in the“Water Species Data” column.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 6 (49)

    Copyright © Outotec Oyj 2014

    Fig. 3. The left-hand part of the ”Water Phase” sheet of the HSC Aqua aqueous electrolyte module.

    Fig. 4. The right-hand part of the ”Water Phase” sheet of the HSC Aqua aqueous electrolytemodule.

    The water species “H2O” is pre-inserted into the system in each calculation case, becauseit is compulsory for the calculations. All the neutral and ionic solutes have to be expressedwith the suffix (a). For example, the CO32- ion is inserted as CO3(-2a) and CO2 is insertedas CO2(a). The suffix defines that the species are contained within the aqueous phase.After the specification of the electrolyte, the listed components are provided withtemperature values in degrees Celsius. In addition, the user must specify the amounts of

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 7 (49)

    Copyright © Outotec Oyj 2014

    each species and the solvent (water) in kmol units. Currently, the Aqua module does notcontain any options for changing the units of the system properties, so the values must beinserted in the units reported in the column headers.

    At this point, the user can also define the model to be used in the calculations.This is done with the help of the ‘’Davies’’, ‘’Pitzer’’, and “Harvie” checkboxes, which definethe model used for estimating the activity coefficients of ions, the mean activity coefficient ofbinary system, osmotic coefficient of water, excess enthalpies, and heat capacities. Bychecking “Harvie,” the calculation routine uses all the binary and ternary parameters in thedatabank and Harvie’s modification is used. By selecting “Pitzer,” the calculation routineomits all Pitzer (including Harvie’s) ternary interaction parameters and calculations arecarried out using Pitzer binary parameters only. By selecting the “Davies” option, in turn, allthe Pitzer ion interaction parameters are disregarded and the system properties arecalculated using Equation (15).

    All activity coefficient equations included in the Aqua module should show limiting behaviori.e. activity coefficients i should approach the numerical value 1 as the solution becomesmore dilute. This is the Debye-Hückel limiting law. In very dilute solutions (with respect toions), solution properties, enthalpies and heat capacities should also approach thenumerical values of pure water.

    The possibility of using different models to calculate system properties greatly adds to thedepth of the simulation module, as the user can choose between a simple model and amore rigorous one depending on the case. The simplifications performed by the differentmodel selections are explained to the user when the checkboxes are selected.

    If the desired aqueous electrolyte contains species other than water and the cation andanion of the solute salt, HSC Aqua announces that the user has specified the systemincorrectly and performs the calculation using only the “Water Phase” sheet. HSC Aquaassumes complete dissociation of the salt into the water phase.

    36.3.1. Binary System Sheet

    Binary system sheet is not working yet in this HSC 8.0 version. Activity coefficients forbinary systems ions can be calculated using Gibbs module with solution model Aqua. Itshould be noted that those are molar activity coefficients, see Equation (37). Osmoticcoefficients can also be easily calculated using Equation (23) and activity of water andmolalities of ions from the Gibbs module.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 8 (49)

    Copyright © Outotec Oyj 2014

    36.4. Output Sheets

    The output of the HSC Aqua module is included in the input sheets. The calculation routinedetermines the molalities, molecular weights, amounts in grams, ionic activity coefficients,enthalpies, and heat capacities of the different species and displays them to the user in thedifferent columns of the calculation sheets. The element matrix of the solutes and solvent isalso displayed. In addition, the heat capacities and enthalpies are displayed both on a massand mole basis. The properties of the entire electrolyte solution are displayed in the first rowof the “Water Phase” sheet.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 9 (49)

    Copyright © Outotec Oyj 2014

    36.5. Multi-Component Examples

    The testing of the HSC Aqua module with multi-component electrolytes was much morecomplicated than with binary systems, because there was not as much data available in theliterature about these kinds of solutions. Especially when considering enthalpies and heatcapacities, the number of multi-component electrolyte systems was really small.Nevertheless, the HSC Aqua model was tested for the activity coefficients for someexperimental systems. Examples of seawater simulation results are shown in Table 1 andFig. 5.

    Table 1. Ionic properties of solutes in seawater, Millero's seawater recipe, salinity 35 at 298.15K,Harvie’s model (Clegg and Whitfield, 413).12

    Activitycoefficient H / cal/mol CP /cal/Kmol

    Water Phase Temp / °C Amount / mol Exp. Calc. Ideal Calc. Stand. Calc. Molality

    5.667E-02 -68.071 -68.070 17.359 17.420

    H2O 25 5.551E-02 1.001 1.002 -68.315 -68.315 17.980 17.940 55.50844

    Br(-a) 25 8.700E-07 0.716 0.719 -29.040 -28.865 -30.174 -24.554 0.00087

    Ca(+2a) 25 1.064E-05 0.194 0.184 -129.800 -129.282 -7.402 5.937 0.01064

    Cl(-a) 25 5.658E-04 0.692 0.693 -39.933 -39.931 -29.217 -24.134 0.56579F(-a) 25 6.000E-08 0.281 0.299 -80.150 -80.038 -26.952 -15.884 0.00006

    HCO3(-a) 25 2.410E-06 0.605 0.590 -164.898 -164.727 -8.284 -4.947 0.00241

    K(+a) 25 1.058E-05 0.589 0.605 -60.270 -60.299 2.040 7.828 0.01058

    Mg(+2a) 25 5.519E-05 0.205 0.247 -111.616 -110.839 -5.119 -3.037 0.05519

    Na(+a) 25 4.853E-04 0.638 0.650 -57.433 -57.440 9.168 14.706 0.48525

    SO4(-2a) 25 2.927E-05 0.100 0.125 -217.400 -217.120 -63.323 -72.444 0.02927

    Sr(+2a) 25 9.000E-08 0.175 0.223 -131.670 -131.092 -9.871 2.494 0.00009

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 10 (49)

    Copyright © Outotec Oyj 2014

    Fig. 5. The activity coefficients of different ionic species of seawater at different temperatures.Millero’s seawater recipe, S=35. (Clegg and Whitfield, 413).12

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 11 (49)

    Copyright © Outotec Oyj 2014

    36.6. Aqueous Equilibria

    Equilibrium calculations of aqueous solutions can be made in a similar manner aspresented above for non-electrolyte solutions. However, some points need specialattention:

    1. Always remember to add water to the aqueous phase. It must be the first species inthe Aqua module calculations. For example, 55.509 mol (= 1 kg) is a good selection ifthe amount of ions is some 0.01 - 5 moles.

    2. Add some charged species (electrons) to the system, for example, by 0.001 mol OH(-a) and the same amount of H(+a). Be sure to maintain the electronic neutrality of thesystem if you carry out the calculations with the Gibbs solver.

    3. If you are calculating, for example, the dissolution of 1 mole of CaCO3 in water andyou have stoichiometric raw material amounts, please also add a small amount ofO2(g) to the gas phase, for example, 1E-5 moles. If you have stoichiometric NaCl inthe system, please add a minor amount of Cl2(g) to the gas phase (1E-5 mol). Thesetricks help the GIBBS solver to find the equilibrium composition in cases of fullystoichiometric overall compositions.

    4. HSC converts the entropy values of aqueous components from the molality scale tothe mole fraction scale if the Mixing Entropy option is selected. Therefore, the entropyvalues in the results1 sheet are not the same as those in the HSC database, seeChapter 13 (sections 13.4. and 13.6). Identical results will be achieved if theRaoultian activity coefficients of the aqueous species are changed to 55.509/x(H2O),which converts the Raoultian activity scale to the aqueous activity scale.

    5. For some aqueous species only G values are available at 25 °C. These can be savedin the database as H values if S = 0. Please note, however, that these can only beused in the calculations at 25 °C.

    6. You can check the equilibrium results by doing simple element balance checks orcomparing the equilibrium constants. For example, you can calculate the equilibriumconstant for Equation (1) using the Reaction Equations option at 25 °C:

    -142 101.020KOH(-a),a)H(OH (1)

    You can also calculate the same equilibrium constant from the equilibrium results ofthe GIBBS program (CaCO3.gem8) using Equation (11) in Chapter 8 Introduction.You can read the necessary molal concentrations, for example, in the equilibriumresults1 sheet. This calculation should give nearly the same results as the ReactionEquation option.

    1410

    2

    10023.13299.55468

    055584.0858.20109015.4)()(OH

    aOHaHK (2)

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 12 (49)

    Copyright © Outotec Oyj 2014

    36.7. General Calculation Principles for Water Systems

    In ionic solutions, interactions between ions are so strong that an ideal assumption can bemade only in a very dilute solution (less than 0.001 mol/kg). The chemical potential of aspecies i (partial molar Gibbs energy) of a solute in a solution is related to its activity ai by:

    iii aRT ln (3)

    The activity is related to the molality by:

    mma iii (4)

    where activity coefficient i depends on the composition, molality, temperature, and to alesser degree on pressure. The m° = 1 mol/kg standard state simply cancels the units ofmolality in the equation. As the solution approaches ideality at low molalities, the activitycoefficient approaches the numerical value 1.

    01 iiii masmmaand (5)

    The chemical potential can be written in an ideal and non-ideal part as:

    )ln(lnln iiiiiii mRTRTmmRT (6)

    where °i is the standard chemical potential in J/mol.

    The chemical potential (Gm = ) of a salt M +X - that dissolves to give +M+ cations and -X-anions is:

    )ln()ln()ln( mRTGmRTmRTvvG mm (7)

    where ± is the mean activity coefficient defined as:

    )/(1 vvvv (8)

    The chemical potential of each ion can be written using a mean activity coefficient:

    mRTii ln (9)

    The mean activity coefficient is usually used in binary systems only. In multi-componentsolutions, the chemical potential of an individual species i is written as:

    iiii mRT ln (10)

    The osmotic coefficient of water is related to the activity coefficients that can be derivedfrom activity coefficient relations.4,6

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 13 (49)

    Copyright © Outotec Oyj 2014

    36.8. Excess Enthalpy and Heat Capacities

    Excess Gibbs energy yields other thermodynamic properties such as excess enthalpies andheat capacities determined by appropriate differentiation. The enthalpy of the entireelectrolyte solution can then be calculated by the addition of the partial enthalpies multipliedby the solute species amounts in moles. Furthermore, the partial heat capacity of a solutecan be determined by further differentiation of the excess enthalpy function. This meansthat the equations of all the relevant thermodynamic properties of the aqueous systemspecies can be led back to the equations of the logarithmic activity coefficient expressions.The excess enthalpy is derived from the temperature dependency of the activity coefficientfunction as follows:

    2,ln

    vRTH

    T

    exim

    P

    i (11)

    Excess enthalpy is often noted as L and it is related to apparent molar enthalpy as follows:

    22

    11

    nL

    nLnLL (12)

    The second derivative of excess Gibbs energy and the first derivative of enthalpy yields thefollowing expression for heat capacity:

    P

    mmP

    P

    mmP T

    LCT

    HC 0,, (13)

    The apparent molar heat capacity, CP (J/Kmol), is derived as follows:

    2

    011

    nCnCC PPP (14)

    In equations (12)-(14):

    L is the apparent relative molal enthalpy of a solution, J/molL is the relative enthalpy of a solution (is excess enthalpy), JL°1 is the excess enthalpy of water, J/molCP,m is the specific heat capacity, J/KmolHm is the enthalpy, J/molT is temperature, KLm is the molar excess enthalpy, J/molC°P,m is the standard molar heat capacity, J/Kmol.CP is the heat capacity, J/KC°P1 is the infinite dilute partial molal heat capacity of the solvent, J/Kmol andn1 and n2 are the molar amounts of the solvent and the solute, mol

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 14 (49)

    Copyright © Outotec Oyj 2014

    36.9. Summary of the Equations Used in HSC Aqua

    Davies:)1ln(2

    1ln Ib

    bIbIAi (15)

    (not actually the Davies equation but called Davies here).

    Pitzer:n

    nMnM mFza Ma

    ZCMaBam 2ln 22

    , (16)

    nnMnM mFz

    c XcZCXcBcm 2ln 2

    2, (17)

    The mean activity coefficient of a dissolved salt (in the Pitzer formalism without ternaries):

    )322(ln ZCBBmvvvfzz (18)

    The osmotic coefficient of water (in the Pitzer formalism without ternaries):

    )(2)1(

    1 ZCBmvvv

    IbIzzA (19)

    Parameters used in the Pitzer option in the calculations:

    )0(MX ,

    )1(MX ,

    )2(MX , MXC , nM

    Harvie:c

    Mcaa

    aMccM mmFza Ma

    ZCMaBam 2ln 22

    , (20)

    a a c nnMnca

    aacMaaaa mCmmzmm

    ''' ...2

    aXca

    ccXaaM mmFz

    c XcZCXcBcm 2ln 2

    2, (21)

    c c c nnXnca

    aacXcccc mCmmzmm

    ''' ...2

    Parameters used in the Harvie option in the calculations:

    )0(MX ,

    )1(MX ,

    )2(MX , MXC , ij , and ijk .

    The Number of Pitzer Parameters on the Database is:

    - The interaction parameter data was collected from the available literature. At present, thedatabase is not visible to the user but the parameter species pairs that exist on thedatabase are listed in Appendix B.

    All the parameters of the HSC Aqua Pitzer database were then fitted to the sametemperature-dependent equation (22):

    22)ln( fTeTdTTcTbaF (22)

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 15 (49)

    Copyright © Outotec Oyj 2014

    where T is the solution temperature in Kelvin and a, b, c, d, e and f are adjustableparameters.

    In many cases only data at a standard temperature, 25 °C, exists. In such cases, theparameters were included on the database as constant terms (“a” parameters), which areshown as the first term in the function.

    Osmotic Coefficient and Activity of Water

    The osmotic coefficient of pure water has a numerical value of 1,000. The osmoticcoefficient differs if any other components are dissolved in water, including salts. Theosmotic coefficient is related to the vapor pressure of the water and is thermodynamicallyrelated to ion activities in the solution. The osmotic coefficient and activity of water arerelated through the following equation2:

    iw mWa

    1000(23)

    The activity of water can further be used to calculate important properties like water activityand vapor pressure (24), and relative humidity (25). The pure water vapor pressure inEquation (24) was calculated from the vapor pressure values listed in the “Measure Units”database of HSC 8. The pressure values were fitted to polynomial regression curves inorder to match the experimental pressure values as well as possible.

    In order to increase the accuracy of the fit, the temperature range was split into two partsabove and below 160 °C, see Appendix A. The vapor pressures, osmotic coefficients, andrelative humidities (water activities) are calculated in the new “Osmcalc” subroutine of theAquaDLL.dll calculation routine.

    0ppaw (24)

    %100(%)0p

    pRH (25)

    in equations (23)-(25):

    aw is water activityW is the molar mass of water, g/molmi is the molality of a solute species i, mol/kgRH(%) is the relative humidityp is the solution vapor pressure andp0 is the vapor pressure of pure water, see Appendix A.

    The osmotic coefficient of water was added to the “Water phase’’ listing for multi-component solution systems.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 16 (49)

    Copyright © Outotec Oyj 2014

    Osmotic Pressure

    The osmotic coefficient can also be used to determine the osmotic pressure of anelectrolyte solution. Osmotic pressure has units of pressure and gives a pressure differencecompared to pure water. It is an important property in membrane systems, whenconsidering processes like reverse osmosis, for example. The osmotic pressure value iscalculated in HSC Aqua using Equation (26)6.

    In the first version of the calculation code, the temperature-dependent water densityfunction Equation (27) required for the calculation was taken from McCutcheon et al.14. Theosmotic pressure is calculated in the “Osmcalc” subroutine of AquaDLL.dll.

    )ln()ln( ww

    ww

    wa

    MRTa

    vRT

    (26)

    29863.312963.682.508929

    9414.28811000 CC

    Cw TT

    T(27)

    In equations (26)-(27):

    aw is the water activity,R is the molar gas constant, J/(mol K)T is the solution temperature, Kvw is the partial molar volume of the solvent, m3/mol

    is the osmotic pressure, PaMw is the molecular weight of the solvent, kg/mol

    w is the density of the solvent, kg/m3 andTC is the solution temperature, ºC.

    Boiling Point Elevation and Freezing Point Depression

    Since the vapor pressure of the solution and freezing point of a liquid are directly related tothe phase equilibrium, the water activity can be further related to estimating importantsolution properties, namely boiling point elevation and freezing point depression.

    The derivation of the boiling and freezing point changes begin with the definition ofchemical potential. Because the calculation of the freezing point depression is analogous tothe boiling point elevation, only the freezing point depression will be considered here indetail. At the solid-liquid equilibrium point, the chemical potential of the solvent is equalbetween the solid and the liquid phase. The chemical potential of the different phases may,in turn, be expressed with Equations (28)-(29). Since the activity of the pure solid solvent isunity and because the chemical potentials of the phases are equal, the Gibbs free energy offusion can be expressed with Equation (30). When the Gibbs-Helmholz equation is appliedto expression (30), the relation (31) is obtained15.

    )),,(ln(),(),( 0 mPTaRTPTPT liqliqliq (28)

    )),(ln(),(),( 0 PTaRTPTPT solsolsol (29)

    )ln(000 liqsolliqfus aRTG (30)

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 17 (49)

    Copyright © Outotec Oyj 2014

    2

    )ln(RTH

    dTad fusTliq (31)

    In equations (28)-(31):liq and sol are the chemical potential of the liquid solvent (water) and solid solvent (ice),°liq and °sol are the chemical potential of the pure liquid solvent and pure solid solvent,

    T , P and R are temperature, pressure and molar gas constantm is the solute molalityaliq and asol are the activity of the liquid solvent and solid solvent

    G0fus and HTfus are the Gibbs free energy of fusion and the enthalpy of fusion.

    Because of the relatively large freezing point depressions of some salts, the enthalpy offusion term of Eq. (31) is often not constant. In most cases, a linear temperaturedependency related to the heat capacity change of the phase transition (32) is assumed. Byintegrating Eq. (31) and combining it with Eq. (32), an expression for the temperaturechange of the freezing point depression Eq. (33) is obtained. By approximating thelogarithmic function with the first two terms of the Taylor series, the freezing point Equation(34) used in AquaDLL.dll is derived. The boiling point elevation is similar to this expression,although the enthalpies and heat capacity changes of fusion are replaced by those ofvaporization15.

    FsolP

    liqP

    fusTF

    fusP

    fusT

    fusT CCHTTCHH FF )()( ,0,0 (32)

    FF

    F

    F

    FFfusP

    FFF

    fusTliq T

    TT

    TCTT

    HaRF

    ln11)ln( ,0 (33)

    )ln(5.02

    )()ln(2)ln(2

    ,0

    2,0

    2,0

    liqfusP

    F

    fusT

    fusTliqF

    fusPliqF

    fusT

    F

    aRCTH

    HaRTCaRTH

    F

    FF

    (34)

    )ln(5.02

    )()ln(2)ln(2

    ,0

    2,0

    2,0

    liqvapP

    B

    vapT

    vapTliqB

    vapPliqB

    vapT

    B

    aRCTH

    HaRTCaRTH

    B

    BB

    (35)

    where

    T is the freezing temperature of the solution,TF and TB are the (normal) freezing and boiling temperatures of the pure solvent,

    HTfus is the enthalpy change of fusion of the solution,H0,TFfus is the enthalpy change of fusion of the pure solvent at TF,H0,TBvap is the enthalpy change of vaporization of the pure solvent at TB,CPfus is the heat capacity difference between the liquid and solid phases at TF,CPvap is the heat capacity difference between the vapor and liquid phases at TB,

    CPliq is the real heat capacity of the liquid solvent,CPsol is the heat capacity of the solid solvent,CPvap is the heat capacity of the solvent vapor,R is the molar gas constant,

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 18 (49)

    Copyright © Outotec Oyj 2014

    aliq is the activity of the liquid solventF and B are the freezing point depression and boiling point elevation.

    The new “Colligcalc” subroutine was developed for boiling point elevation and freezing pointdepression calculations. The heat capacities and water activities of Equations (32)-(35)were calculated at the boiling and freezing points of an ideal solution (i.e. pure water). Inorder to do this, a new subroutine called “CPPitzer” was created. Essentially, this is just ascaled-down version of the “Pitzer_AC” subroutine. The calculation of the activitycoefficients has been removed and only the osmotic coefficient and its temperaturederivatives are calculated.

    In addition to the expressions related directly to water activity, other important expressionswere included in the new software version. The ionic strength I of the solution Equation (36)is an essential denominator in the Pitzer formalism and it was therefore already included inthe previous versions of the HSC Aqua calculation algorithm. However, this quantity is nowalso visible on the results sheet for both binary and multi-component systems, since aprinting command was added to the “Istrength” subroutine of AquaDLL.dll. In addition,molar activity coefficients displayed in HSC Aqua next to the molal activity coefficients havebeen calculated with the Pitzer formalism. These activity coefficients were derived throughEq. (37) and were displayed because the HSC Gibbs calculation routine uses the molaractivity coefficients in the “Equilibrium Compositions” module user interface. The newcalculations were included in AquaDLL.dll.

    i izimI

    221

    (36)

    )( 2OHxm

    x (37)

    In equations (36)-(37):

    I is the ionic strength of the solution,mi is the molality of a solute species i (mol/kg) andzi is the charge of solute species i.xi is the mole fraction of solute species i,

    x and m are the molar and the molal activity coefficient of solute species i and

    Another extremely essential property of the aqueous solution is the pH value of the solution.Because the pH is the 10-base logarithm of the hydrogen ion activity in the solution (38),this quantity can also readily be determined with HSC Aqua. The ability to simulate the pHvalue of different solutions is crucial to the software development, because pH is a verycommon and independent measurement, which can be performed in fairly simple laboratoryconditions. It is therefore an important and easily perceived reference point for the accuracyof the calculations. The pH of the solution is calculated in the new “pHcalc” subroutine ofAquaDLL.dll. If the hydrogen ion has not been specified as an aqueous species by the user,the pH values are not calculated. In the future development of the calculations, some kindof notification about the hydrogen ion specification could be included in the code.

    )log()log( HHH mapH (38)

    in Equation (38):

    aH+ is the hydrogen ion activity,

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 19 (49)

    Copyright © Outotec Oyj 2014

    H+ is the hydrogen ion (molal) activity coefficient andmH+ is the hydrogen ion molality.

    All the new calculation results of HSC Aqua have been included in the multi-componentsheet (“Water Phase”). Furthermore, the enthalpy of dilution is calculated from the apparentrelative molal enthalpies (39). The enthalpy of dilution of a binary system is calculated fromone molal concentration to another and the calculation principle has been presented bySilvester and Pitzer7.

    The enthalpy of dilution can be calculated as the difference of relative apparent molarenthalpies L between two molalities:

    1221 )( LLmmHD (39)

    where

    HD is the enthalpy of dilution, J/Kmolm1 and m2 are the initial molality of the solution and the final molality of the dilution, mol/kgL1 and L2 are the apparent relative molal enthalpies of initial and final solution, J/mol

    Data Validation and Database Development

    New data was added to the database and verified against literature data using HSC Aqua,i.e. the new data was validated by comparing the calculation results with experimental orother calculated values. Through this testing, not only the validity of the parameter sets butalso the capabilities of the calculation tool are determined in a more rigorous way than justby cross-referencing parameter values. In this study, previous testing of the software wasexpanded with further binary salts and some new solution properties. The experimentaldata was derived from different literary sources.

    Based on the test results, tabulation errors in the Pitzer parameter database were correctedand some parameter sets were also replaced or modified. In addition, new parameterentries were also made.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 20 (49)

    Copyright © Outotec Oyj 2014

    36.10. Conclusions

    The HSC Chemistry 8 software has been expanded with the HSC Aqua module, whichdeals with non-ideal electrolyte solutions. It estimates the activity coefficients, enthalpies,and heat capacities of binary and multi-component aqueous solutions. The module wasalso tested with several aqueous binary electrolytes and some multi-component examples.

    The enthalpies yield satisfactory results, but the heat capacities, being the 2nd derivativesof Pitzer functions, show a greater deviation from experimental data. This estimation shouldbe used as guidance only and the direct measurement of heat capacities for the mostimportant process solutions is recommended.

    From the test cases it is clear that the HSC Aqua aqueous electrolyte module is a capabletool for the modeling of different thermodynamic properties of aqueous electrolyte ionicspecies with respect to temperature and composition.

    The various example systems examined in this work clearly show that aqueous electrolytesystems differ considerably from ideal systems. Even at low solute molalities, the activitycoefficients, molal enthalpies, and molal heat capacities are greatly affected by the ioninteractions between the different solute species.

    It can therefore be stated that accurate aqueous solution calculations in HSC Chemistrydefinitely require a model for the estimation of corrections to ideal solution properties. Thismodule will be developed and improved further.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 21 (49)

    Copyright © Outotec Oyj 2014

    36.11. References

    1. K. S. Pitzer, Thermodynamics of electrolytes. 1. Theoretical basis and generalequations, J. Phys. Chem., 77, (1973) 268-277.

    2. C. Harvie, N. Møller, and J. Weare, The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionicstrengths at 25oC, Geochim. Cosmochim. Acta., 48 (1984) 723-751.

    3. Debye and E. Huckel, The theory of electrolytes. I. Lowering of freezing point andrelated phenomena, Physik. Z. 24 185, 334 (1923). Ref. from, H. Harned and B.Owen, The Physical Chemistry of Electrolyte Solutions, 2nd edition, ReinholdPublishing Corp. 1950, p.18.

    4. K. S. Pitzer, Thermodynamics, 3rd edition, McGraw-Hill, 1995.5. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton,

    Florida, USA, 1979.6. Prausnitz, R. Lichtenthaler, and E. Azevedo, Molecular Thermodynamics of Fluid-

    Phase Equilibria, 3rd edition, Prentice-Hall, 1999.7. Silvester, Pitzer, Thermodynamic of electrolytes. X. Enthalpy and the effects of

    temperature on the activity coefficients, J. Sol. Chem., 7 No 5 (1978) 327-337.8. C. M. Criss and J. F. Millero., J. Phys. Chem. 100 (1996), 1288-1294.9. Zemaitis et al., Handbook of aqueous electrolyte thermodynamics. Theory and

    application, New York, 198610. Wagman, et al., The NBS Tables of Chemical Thermodynamic Properties, J. Phys.

    Chem. Ref. Data. 5, 10 (1982).11. R. T. Pabalan and K.S. Pitzer, Apparent molar heat capacity and other

    thermodynamic properties of aqueous KCl solutions to high temperatures andpressures, J. Chem. Eng. Data, 33 (1988a) 354-362.

    12. Clegg and Whitfield, Activity coefficients in Electrolyte Solutions, 2nd ed., K.S. Pitzer,ed., CRC Press, Boca Raton, 1991, p.413.

    13. Malatesta et al., Activity and osmotic coefficients from the emf of liquid-membranecells. VII: Co(ClO4)2, Ni(ClO4)2, K2SO4, CdSO4, CoSO4, and NiSO4. J. Sol. Chem.28 No 5 (1999) 593-619.

    14. McCutcheon S. C., Martin J. L. & Barnwell T. O. Jr. (1993) Water Quality. In:Maidment D. R. (editor) (1993) Handbook of Hydrology. McGraw-Hill, New York, NY.1424 p.

    15. Ge X. & Wang X. Estimation of Freezing Point Depression, Boiling Point Elevation,and Vaporization Enthalpies of Electrolyte Solutions. Ind. Eng. Chem. Res., 48 (2009)2229–2235.

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 22 (49)

    Copyright © Outotec Oyj 2014

    Appendix A. Vapour pressure of pure water

    1000)( 23456789100 kTjTiThTgTfTeTdTcTbTap (A1)

    T< 160 ºCa = -3.10432954399391·10-21b = 1.00959411100662·10-18c = -5.88099024207425·10-17d = -3.18476754457404·10-14e = 6.55612456912702·10-12f = 2.25575938350116·10-9g = 2.99998801482107·10-7h = 2.57849258952755·10-5i = 1.43776358189044·10-3j = 4.51730065352071·10-2k = 0.599030194123347

    T 160 ºCa = 1.11982860630743·10-18b = -4.04920519596997·10-15c = 6.08290457531376·10-12d = -5.12897992812743·10-9e = 2.7240831169274·10-6f = -9.59696050004219·10-4g = 0.228254919514224h = -36.311462374836i = 3706.72828793979j = -219658.499462442k = 5746593.5787401

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 23 (49)

    Copyright © Outotec Oyj 2014

    Appendix B. HSC Aqua thermodynamic database

    The Pitzer parameter sets of the HSC Aqua database are presented in this appendix.Because some of the parameter sets have a temperature dependency presented inEquation (22) and some parameters have only been tabulated as constant values, thetemperature dependencies of the parameter sets are presented here as well. As thelogarithmic activity coefficient expression is differentiated to calculate the enthalpies andheat capacities, the constant terms and first order terms of Equation (22) are eliminated.Therefore, the temperature dependencies of the H and Cp expressions have to beconsidered separately.

    The total number of entries in the HSC Aqua database for each sheet of Pitzer parametersis displayed below. The entries of the previous Pitzer parameter database, which was usedas a template for the HSC Aqua database, are given in parentheses. These old parameterset amounts also include sets that have been replaced with new parameter entries in thenew HSC Aqua database.

    - Binary ion pairs (Beta and C parameters): 425- Cation-cation and anion-anion (Theta parameter) pairs: 114- Ternary (Psi) ion interaction parameters: 199- Neutral-ion (Lambda parameter) pairs: 293

    Total amount of entries: 1031

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 24 (49)

    Copyright © Outotec Oyj 2014

    Table B1. The parameter sets and the parameter temperature dependencies of the HSCAqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CAg(+a) NO3(-a) N N NAl(+3a) Cl(-a) Y Y Y Y Y Y Y Y YAl(+3a) NO3(-a) N N NAl(+3a) SO4(-2a) N N N NBa(+2a) Br(-a) Y Y Y N N NBa(+2a) CH3COO(-a) N N NBa(+2a) Cl(-a) Y Y Y Y Y Y Y Y YBa(+2a) ClO4(-a) N N NBa(+2a) HSO4(-a) N Y NBa(+2a) I(-a) N N NBa(+2a) NO3(-a) Y Y N NBa(+2a) OH(-a) N NBa(+2a) SO4(-2a) Y Y Y Y Y Y N N NBe(+2a) SO4(-2a) N N NCa(+2a) B(OH)4(-a) Y Y Y N N Y NCa(+2a) Br(-a) Y Y N N NCa(+2a) Cl(-a) Y Y Y Y Y Y Y N YCa(+2a) ClO4(-a) Y Y Y N N NCa(+2a) HCO3(-a) N NCa(+2a) HS(-a) N NCa(+2a) HSO3(-a) N NCa(+2a) HSO4(-a) N NCa(+2a) I(-a) N N NCa(+2a) NO3(-a) Y Y Y Y Y Y Y Y YCa(+2a) OH(-a) N N NCa(+2a) PbCl3(-a) N NCa(+2a) PbCl4(-2a) N NCa(+2a) SO4(-2a) Y Y Y Y Y Y N N NCaB(OH)(+a) Cl(-a) NCd(+2a) Br(-a) N N NCd(+2a) Cl(-a) N N NCd(+2a) ClO4(-a) N N NCd(+2a) I(-a) N N NCd(+2a) NO2(-a) N N NCd(+2a) NO3(-a) N N NCd(+2a) SO3(-2a) N N NCd(+2a) SO4(-2a) Y Y Y Y N N N NCe(+3a) Cl(-a) N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 25 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CCH3NH3(+a) Cl(-a) N N N(CH3)2NH2(+a) Cl(-a) N N NCH3NH3(+a) NO3(-a) N N N(CH3)2NH2(+a) NO3(-a) N N N(CH3)3NH(+a) NO3(-a) N N NCH6N3(+a) Br(-a) N N NCH6N3(+a) ClO4(-a) N N NCH6N3(+a) F(-a) N N NCH6N3(+a) I(-a) N N NCH6N3(+a) NO3(-a) N N N(CH3)4CH6N3(+a) Br(-a) N N N(CH3)4CH6N3(+a) Cl(-a) N N N(CH3)4CH6N3(+a) ReO4(-a) N N N(CH3)4CH6N3(+a) H2NSO3(SFAA)(-a)N N NC6H14N4O2H(ARG)(+a) Cl(-a) N N NC6H9N3O2H(HIS)(+a) Cl(-a) N NC6H14N2O2H(LYS)(+a) Cl(-a) N N NCm(+3a) Cl(-a) N N NCmCO3(+a) Cl(-a) N N NCo(+2a) Br(-a) N N NCo(+2a) Cl(-a) Y Y Y N N NCo(+2a) ClO4(-a) N N NCo(+2a) I(-a) N N NCo(+2a) NO3(-a) N N NCo(+2a) SeO4(-2a) N N NCo(+2a) SO3(-2a) N N NCo(+2a) SO4(-2a) N N N NCr(+3a) Cl(-a) N N NCr(+3a) NO3(-a) N N NCs(+a) Br(-a) Y Y N N NCs(+a) CH3COO(-a) N N NCs(+a) Cl(-a) Y Y Y Y Y Y Y Y YCs(+a) F(-a) Y Y N N NCs(+a) HSO4(-a) Y N Y Y Y N NCs(+a) I(-a) Y Y N N NCs(+a) NO2(-a) N N NCs(+a) NO3(-a) N NCs(+a) OH(-a) N NCs(+a) S2O8(-2a) N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 26 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CCs(+a) SO4(-2a) Y Y Y Y Y Y Y Y YCu(+2a) Br(-a) N N NCu(+2a) Cl(-a) Y Y N N NCu(+2a) ClO4(-a) N N NCu(+2a) CuCl3(-a) N N NCu(+2a) CuCl4(-2a) N N N NCu(+2a) HSO4(-a) N NCu(+2a) NO3(-a) N N NCu(+2a) SO4(-2a) Y Y Y Y N N N NCuCl(+a) Cl(-a) N N NCuCl(+a) CuCl3(-a) N N NCuCl(+a) CuCl4(-2a) N N NCuCl(+a) SO4(-2a) N NDy(+3a) Cl(-a) N N NDy(+3a) ClO4(-a) N N NDy(+3a) NO3(-a) N N NEr(+3a) Cl(-a) N N NEr(+3a) ClO4(-a) N N NEr(+3a) NO3(-a) N N NEu(+3a) Cl(-a) N N NEu(+3a) NO3(-a) N N NFe(+2a) Cl(-a) N N NFe(+2a) HSO4(-a) N NFe(+2a) SO4(-2a) N N N NFe(+3a) Cl(-a) N N NGa(+3a) Cl(-a) N N NGaOH(+3a) Cl(-a) N NGa(+3a) ClO4(-a) N N NGd(+3a) Cl(-a) N N NGd(+3a) ClO4(-a) N N NGd(+3a) NO3(-a) N N NH(+a) Br(-a) Y Y Y Y Y Y Y Y YH(+a) C7H8O3S(4MBSA)(-a) N N NH(+a) C8H9O3S(25DMBSA)(-a) N N NH(+a) CF3O3S(-a) N N NH(+a) Cl(-a) Y Y Y Y Y Y Y Y YH(+a) ClO4(-a) Y Y Y N N NH(+a) CuCl3(-a) N N NH(+a) CuCl4(-2a) N N NH(+a) F(-a) N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 27 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CH(+a) HF2(-a) N N NH(+a) HSO4(-a) Y Y Y Y Y NH(+a) I(-a) Y Y Y N N NH(+a) NO3(-a) Y Y Y Y N Y N NH(+a) H2NSO3(SFAA)(-a) N N NH(+a) PbCl3(-a) N NH(+a) PbCl4(-2a) NH(+a) ReO4(-a) N N NH(+a) SO4(-2a) Y Y Y Y Y YH(+a) SO2Cl(-a) N NHf(+4a) Cl(-a) N N NHfOH(+3a) Cl(-a) N NHg(+2a) ClO4(-a) N N NHgCl(+a) ClO4(-a) N NHgOH(+a) ClO4(-a) N N NHg2OH(+3a) ClO4(-a) N N NHo(+3a) Cl(-a) N N NHo(+3a) ClO4(-a) N N NHo(+3a) NO3(-a) N N NIn(+3a) Cl(-a) N NK(+a) (CH2COO)2(-2a) N NK(+a) Al(OH)4(-a) N N NK(+a) AsO4(-3a) N N NK(+a) B(OH)4(-a) Y Y Y N N NK(+a) B3O3(OH)(-a) NK(+a) B4O5(OH)4(-2a) NK(+a) Br(-a) Y Y Y Y Y N N NK(+a) BrO3(-a) Y Y Y Y Y Y Y Y YK(+a) CH3COO(-a) N N NK(+a) CCl3COO(-a) N N NK(+a) CF3O3S(3FMSFOA)(-a) N N NK(+a) CH4O3S(MSA)(-a) N N NK(+a) C5H8N4(GLU)(-a) N N NK(+a) Cl(-a) Y Y Y Y Y Y Y Y YK(+a) ClO3(-a) Y Y Y Y Y Y Y Y YK(+a) CNS(-a) Y Y Y N N NK(+a) Co(CN)6(-3a) N N NK(+a) CO3(-2a) Y Y Y Y Y Y Y Y YK(+a) Cr2O7(-2a) N N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 28 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CK(+a) CrO4(-2a) N N NK(+a) F(-a) Y Y Y N N NK(+a) Fe(CN)6(-3a) Y Y Y N N NK(+a) Fe(CN)6(-4a) Y Y Y N N NK(+a) H2AsO4(-a) N NK(+a) H2P2O7(-2a) N N NK(+a) H2PO4(-a) Y Y Y N N NK(+a) HasO4(-2a) N N NK(+a) HCO3(-a) Y Y Y Y Y Y Y Y YK(+a) HOOC(CH2)2COO(-a) N N NK(+a) HOOC(CH2)4COO(-a) N NK(+a) HOOCCH2COO(-a) N N NK(+a) H3CSO4(-a) N N NK(+a) H2NSO3(SFAA)(-a) N N NK(+a) HPO4(-2a) N N NK(+a) HS(-a) Y N Y YK(+a) HSO4(-a) Y Y Y Y Y Y Y Y NK(+a) I(-a) Y Y Y N N NK(+a) IO3(-a) N NK(+a) NH2C6H4SO3(4ABSA)(-a) N N NK(+a) NO2(-a) N N NK(+a) NO3(-a) Y Y Y N N NK(+a) OH(-a) Y Y Y Y Y Y Y Y YK(+a) PbCl4(-2a) NK(+a) P3O9(-3a) N N NK(+a) PtF6(-a) N NK(+a) PO4(-3a) N N NK(+a) Pt(CN)4(-2a) N N NK(+a) SCN(-a) N N NK(+a) SO4(-2a) Y Y Y Y Y Y Y Y YLa(+3a) Cl(-a) Y Y Y N N NLa(+3a) ClO4(-a) Y Y Y N N NLa(+3a) NO3(-a) Y Y Y N N NLi(+a) B4O7(-2a) N N N NLi(+a) B4O5(OH)4(-2a) N N NLi(+a) Br(-a) Y Y Y N N NLi(+a) BrO3(-a) N N NLi(+a) BrO3(-a) N NLi(+a) CF3O3S(3FMSFOA)(-a) N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 29 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CLi(+a) CH3COO(-a) N N NLi(+a) CCl3COO(-a) N N NLi(+a) CH4O3S(MSA)(-a) N N NLi(+a) Cl(-a) Y Y Y N N Y YLi(+a) ClO3(-a) N N NLi(+a) ClO4(-a) Y Y Y N N NLi(+a) CuCl3(-a) N NLi(+a) CuCl4(-2a) N NLi(+a) HSO4(-a) Y Y Y Y Y Y N N YLi(+a) H2NSO3(SFAA)(-a) N N NLi(+a) I(-a) N NLi(+a) IO3(-a) N N NLi(+a) NO2(-a) N N NLi(+a) NO3(-a) N N NLi(+a) OH(-a) N NLi(+a) ReO4(-a) N N NLi(+a) SO4(-2a) Y Y Y N N NLu(+3a) Cl(-a) N N NLu(+3a) ClO4(-a) N N NLu(+3a) NO3(-a) N N NMg(+2a) B(OH)4(-a) Y Y Y N N Y NMg(+2a) Br(-a) Y Y N Y Y N NMg(+2a) CH3COO(-a) N N NMg(+2a) Cl(-a) Y Y Y Y Y Y N N NMg(+2a) ClO4(-a) Y Y Y N N NMg(+2a) CuCl3(-a) N NMg(+2a) CuCl4(-2a) N N NMg(+2a) F(-a) N N NMg(+2a) HCO3(-a) N NMg(+2a) HPO4(-2a) N NMg(+2a) H2PO4(-a) N NMg(+2a) HS(-a) N N NMg(+2a) HSO3(-a) N N NMg(+2a) HSO4(-a) N NMg(+2a) I(-a) N N NMg(+2a) NO3(-a) Y Y N N NMg(+2a) PbCl3(-a) N NMg(+2a) PbCl4(-2a) NMg(+2a) SeO4(-2a) N N NMg(+2a) SO3(-2a) N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 30 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CMg(+2a) SO4(-2a) Y Y Y Y Y Y Y Y Y Y Y YMgB(OH)4(+a) Cl(-a) NMgOH(+a) Cl(-a) N NMn(+2a) Br(-a) N N NMn(+2a) Cl(-a) N N NMn(+2a) ClO4(-a) N N NMn(+2a) SO3(-2a) N N NMn(+2a) SO4(-2a) N N N NN(C2H5)4(+a) Cl(-a) N N NN(C3H7)4(+a) Cl(-a) N N NN(C4H9)4(+a) Br(-a) Y Y Y Y Y Y Y Y YN(C4H9)4(+a) Cl(-a) N N NN(CH3)4(+a) Cl(-a) N N NNa(+a) Al(OH)4(-a) Y Y Y Y Y Y Y Y YNa(+a) AsO4(-3a) N N NNa(+a) B(OH)4(-a) Y Y Y N N NNa(+a) B3O3(OH)4(-a) N NNa(+a) B4O5(OH)4(-2a) N NNa(+a) BF4(-a) Y Y Y Y Y Y N N NNa(+a) BO2(-a) N N NNa(+a) Br(-a) Y Y Y Y Y Y Y Y YNa(+a) BrO3(-a) Y Y Y Y Y Y Y Y YNa(+a) (CH2COO)2(-2a) N N NNa(+a) (CHCOO)2(cis)(-2a) N N NNa(+a) (CHCOO)2(trans)(-2a) N N NNa(+a) C6H5O7(CAC)(-3a) N N NNa(+a) H(C6H5O7(CAC))(-2a) N N NNa(+a) H2(C6H5O7(CAC))(-a) N N NNa(+a) CF3O3S(3FMSFOA)(-a) N N NNa(+a) C2H5COO(-a) N N NNa(+a) CH3COO(-a) N N NNa(+a) CH4O3S(MSA)(-a) N N NNa(+a) C12H17O3S(25IPBSA)(-a) N NNa(+a) C8H9O3S(24DMBSA)(-a) N N NNa(+a) C10H13O3S(2M5IPBSA)(-a)N N NNa(+a) C5H8N4(GLU)(-a) N N NNa(+a) C7H5O2(BA)(-a) N N NNa(+a) C7H6O3(SA)(-a) N N NNa(+a) C8H9O3(3MSA)(-a) N N NNa(+a) C13H20O3(35DIPSA)(-a) N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 31 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CNa(+a) C2O4(-2a) N N NNa(+a) CoC2O2(-2a) N N NNa(+a) HC2O4(-a) N N NNa(+a) MnC2O2(-2a) NNa(+a) NiC2O2(-2a) N N NNa(+a) Cl(-a) Y Y Y Y Y Y Y Y YNa(+a) ClO3(-a) Y Y Y Y Y Y Y Y YNa(+a) ClO4(-a) Y Y Y Y Y Y Y Y YNa(+a) Cm(CO3)2(-a) N N NNa(+a) Cm(CO3)3(-3a) N N NNa(+a) Cm(CO3)4(-5a) N N NNa(+a) CNS(-a) Y Y N N NNa(+a) CoC6H5O7(CAC)(-3a) N N NNa(+a) CO3(-2a) Y Y N N NNa(+a) CrO4(-2a) N N NNa(+a) CuCl3(-a) N N NNa(+a) CuCl4(-2a) N N NNa(+a) F(-a) Y Y Y Y Y Y Y Y YNa(+a) HAsO4(-2a) N N NNa(+a) H2AsO4(-a) N NNa(+a) H2PO4(-a) N N NNa(+a) H2SiO4(-2a) N NNa(+a) H3SiO4(-a) N NNa(+a) HCO3(-a) Y Y N NNa(+a) HCOO(-a) N N NNa(+a) HOOC(CH2)2COO(-a) N N NNa(+a) HOOC(CH2)4COO(-a) N NNa(+a) HOOCCH2COO(-a) N N NNa(+a) H3CSO4(-a) N N NNa(+a) Hf(OH)6(-2a) N N NNa(+a) HgCl3(-a) N NNa(+a) HgCl4(-2a) N NNa(+a) H2NSO3(SFAA)(-a) N N NNa(+a) HPO4(-2a) Y Y Y Y Y Y Y Y YNa(+a) HS(-a) Y N Y YNa(+a) HSO3(-a) Y Y Y Y Y Y Y Y YNa(+a) HSO4(-a) Y Y Y Y Y N N YNa(+a) I(-a) Y Y Y N N NNa(+a) Mg(CO3)2(-2a) N N NNa(+a) NH2C6H4SO3(4ABSA)(-a)N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 32 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant values

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CNa(+a) NiC6H5O7(CAC)(-a) N N NNa(+a) NO2(-a) N N NNa(+a) NO3(-a) Y Y Y Y Y Y Y Y YNa(+a) OH(-a) Y Y Y Y Y Y Y Y YNa(+a) PbCl3(-a) Y Y Y Y Y Y Y Y YNa(+a) PbCl4(-2a) NNa(+a) PO4(-3a) Y Y Y Y Y Y Y Y YNa(+a) ReO4(-a) N N NNa(+a) Si2O3(OH)4(-2a) N NNa(+a) Si3O6(OH)3(-3a) N NNa(+a) Si3O5(OH)5(-3a) N NNa(+a) Si4O8(OH)4(-4a) N NNa(+a) Si4O6(OH)6(-2a) N NNa(+a) Si4O7(OH)6(-4a) N NNa(+a) Si6O15(-6a) N NNa(+a) S2O3(-2a) N N NNa(+a) S2O6(-2a) N NNa(+a) S2O8(-2a) N NNa(+a) SO3(-2a) Y Y Y Y Y Y Y Y YNa(+a) SO4(-2a) Y Y Y Y Y Y Y Y YNa(+a) SO2Cl(-a) N NNa(+a) Th(CO3)(-6a) N NNa(+a) WO4(-2a) N N NNd(+3a) Cl(-a) N N NNd(+3a) ClO4(-a) N N NNd(+3a) NO3(-a) N N NNH4(+a) Br(-a) N N NNH4(+a) Cl(-a) Y Y Y Y Y Y Y Y YNH4(+a) ClO4(-a) N NNH4(+a) CNS(-a) N N NNH4(+a) F(-a) Y N N Y YNH4(+a) H2PO4(-a) Y Y Y N N NNH4(+a) HCO3(-a) N NNH4(+a) HPO4(-2a) N N NNH4(+a) I(-a) N N NNH4(+a) NO3(-a) N N NNH4(+a) SO4(-2a) N N NNi(+2a) Br(-a) N N NNi(+2a) Cl(-a) Y Y Y N N NNi(+2a) ClO4(-a) N N NEmpty cell = no parameter value

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 33 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CNi(+2a) HSO4(-a) N Y NNi(+2a) NO3(-a) N N NNi(+2a) SeO4(-2a) N N NNi(+2a) SO3(-2a) N N NNi(+2a) SO4(-2a) Y Y Y Y N N N NPb(+2a) Cl(-a) Y Y Y Y Y Y Y Y YPb(+2a) ClO4(-a) Y Y Y Y Y Y Y Y YPb(+2a) HSO4(-a) Y N Y YPb(+2a) NO3(-a) N N NPb(+2a) SO4(-2a) N Y Y N Y YPbCl(+a) Cl(-a) Y Y Y Y Y Y Y Y YPbCl(+a) ClO4(-a) Y Y Y Y Y Y Y Y YPr(+3a) Cl(-a) N N NPr(+3a) ClO4(-a) N N NPr(+3a) NO2(-a) N N NPr(+3a) NO3(-a) N N NRa(+2a) HSO4(-a) N Y NRa(+2a) SO4(-2a) N Y Y N NRb(+a) Br(-a) Y Y N N NRb(+a) CH3COO(-a) N N NRb(+a) Cl(-a) Y Y N N NRb(+a) F(-a) Y Y N N NRb(+a) I(-a) Y Y N N NRb(+a) NO2(-a) N N NRb(+a) NO3(-a) N N NRb(+a) S2O8(-2a) N NRb(+a) SO4(-2a) Y Y N N NSc(+3a) Cl(-a) N N NSm(+3a) Cl(-a) N N NSm(+3a) ClO4(-a) N N NSm(+3a) NO3(-a) N N NSr(+2a) B(OH)4(-a) Y Y Y N N Y NSr(+2a) Br(-a) Y Y N N NSr(+2a) Cl(-a) Y Y Y Y Y Y Y Y YSr(+2a) ClO4(-a) Y Y Y N N NSr(+2a) HCO3(-a) N NSr(+2a) HSO3(-a) Y Y Y N N NSr(+2a) HSO4(-a) N NSr(+2a) I(-a) N N NSr(+2a) NO3(-a) Y Y N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 34 (49)

    Copyright © Outotec Oyj 2014

    Table B1 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Binary parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep., AC T dep., H T dep., CpCation Anion (0) (1) (2) C (0) (1) (2) C (0) (1) (2) CSr(+2a) OH(-a) N N NSr(+2a) SO4(-2a) Y Y Y Y Y Y N N NTb(+3a) Cl(-a) N N NTb(+3a) ClO4(-a) N N NTb(+3a) NO3(-a) N N NTI(+a) Cl(-a) N NTI(+a) NO2(-a) N N NTl(+a) CH3COO(-a)N N NTl(+a) ClO4(-a) N NTl(+a) NO3(-a) N NTm(+3a) Cl(-a) N N NTm(+3a) ClO4(-a) N N NTm(+3a) NO3(-a) N N NUO2(+2a) Cl(-a) N N NUO2(+2a) ClO4(-a) N N NUO2(+2a) NO3(-a) N N NUO2(+2a) SO4(-2a) N N NY(+3a) Cl(-a) N N NY(+3a) NO3(-a) N N NYb(+3a) Cl(-a) N N NYb(+3a) ClO4(-a) N N NYb(+3a) NO3(-a) N N NZn(+2a) Br(-a) N N NZn(+2a) Cl(-a) N N NZn(+2a) ClO4(-a) Y Y Y N N NZn(+2a) F(-a) N NZn(+2a) HSO4(-a) N N NZn(+2a) I(-a) N N NZn(+2a) NO3(-a) N N NZn(+2a) SeO4(-2a) N N NZn(+2a) SO4(-2a) Y Y Y Y N N N N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 35 (49)

    Copyright © Outotec Oyj 2014

    Table B2. The parameter sets and the parameter temperature dependencies of the HSCAqua Pitzer database Theta parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpAl(+3a) Ca(+2a) NAl(+3a) Cu(+2a) NAl(+3a) Fe(+2a) NAl(+3a) H(+a) NAl(+3a) K(+a) NAl(+3a) Mg(+2a) NAl(+3a) Ni(+2a) NAl(+3a) Na(+a) NAl(OH)4(-a) OH(-a) NBa(+2a) Ca(+2a) NBa(+2a) Cs(+a) NBa(+2a) H(+a) Y NBa(+2a) K(+a) NBa(+2a) Li(+a) NBa(+2a) Na(+a) NB(OH)4(-a) Cl(-a) Y Y NB(OH)4(-a) SO4(-2a) NB3O3(OH)4(-a) Cl(-a) NB3O3(OH)4(-a) HCO3(-a) NB3O3(OH)4(-a) SO4(-2a) NB4O5(OH)4(-2a) Cl(-a) NB4O5(OH)4(-2a) HCO3(-a) NB4O5(OH)4(-2a) SO4(-2a) NB4O7(-2a) Cl(-a) NBr(-a) Cl(-a) NBr(-a) Cr2O7(-2a) NBr(-a) OH(-a) NCa(+2a) Co(+2a) NCa(+2a) H(+a) Y NCa(+2a) K(+a) NCa(+2a) Mg(+2a) NCa(+2a) Mg(+a) NCa(+2a) Na(+a) NCa(+2a) PbCl(+a) NCl(-a) AsO4(-3a) NCl(-a) B4O5(OH)4(-2a)NCl(-a) CH3COO(-a) NCl(-a) CO3(-2a) NCl(-a) Cr2O7(-2a) NCl(-a) CuCl3(-a) NCl(-a) CuCl4(-2a) NCl(-a) F(-a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 36 (49)

    Copyright © Outotec Oyj 2014

    Table B2 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Theta parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpCl(-a) HAsO4(-2a) NCl(-a) H2AsO4(-a) NCl(-a) H2PO4(-a) NCl(-a) HCO3(-a) NCl(-a) HPO4(-a) NCl(-a) HSO4(-a) NCl(-a) NO3(-a) NCl(-a) OH(-a) Y Y NCl(-a) PO4(-3a) NCl(-a) SO3(-2a) NCl(-a) SO4(-2a) Y NClO4(-a) CO3(-2a) NClO4(-a) HCO3(-a) NClO4(-a) Th(CO3)(-6a) NCm(+3a) Na(+a) NCo(+2a) H(+a) Y NCo(+2a) Mg(+2a) NCo(+2a) Na(+a) NCo(+2a) Zn(+2a) NCO3(-2a) F(-a) NCO3(-2a) HCO3(-a) NCO3(-2a) NO2(-a) NCO3(-2a) NO3(-a) NCO3(-2a) OH(-a) NCO3(-2a) SO4(-2a) NCr2O7(-2a) SO4(-2a) NCs(+a) H(+a) NCs(+a) K(+a) NCs(+a) Li(+a) NCs(+a) Na(+a) Y Y YCu(+2a) CuCl(+a) NCu(+2a) H(+a) NCu(+a) Na(+a) NCu(+2a) Na(+a) NCuCl(+a) H(+a) NCuCl(+a) Na(+a) NCuCl3(-a) CuCl4(-2a) NF(-a) HF2(-a) NF(-a) NO3(-a) NF(-a) OH(-a) NH(+a) K(+a) Y N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 37 (49)

    Copyright © Outotec Oyj 2014

    Table B2 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Theta parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpH(+a) Li(+a) NH(+a) Mg(+2a) Y NH(+a) Mn(+2a) NH(+a) Na(+a) Y NH(+a) NH4(+a) NH(+a) Ni(+2a) Y NH(+a) Sr(+2a) Y NH(+a) UO2(+2a) NHCO3(-a) SO4(-2a) NHSO4(-a) SO4(-2a) Y Y YK(+a) Li(+a) NK(+a) Mg(+2a) NK(+a) Na(+a) Y Y YK(+a) Sr(+2a) NLi(+a) Na(+a) NMg(+2a) Na(+a) Y NMg(+2a) Ni(+2a) NMg(+2a) PbCl(+a) NMn(+2a) Na(+a) NNa(+a) La(+3a) NNa(+a) Pb(+2a) NNa(+a) PbCl(+a) NNa(+a) Sr(+2a) NNa(+a) UO2(+2a) NNa(+a) Zn(+2a) NNi(+2a) Zn(+2a) NNO2(-a) PO4(-3a) NNO3(-a) SO4(-2a) NOH(-a) PO4(-3a) NOH(-a) SO4(-2a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 38 (49)

    Copyright © Outotec Oyj 2014

    Table B3. The parameter sets and the parameter temperature dependencies of the HSCAqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpAl(+3a) Ca(+2a) SO4(-2a) NAl(+3a) Cu(+2a) SO4(-2a) NAl(+3a) Fe(+2a) SO4(-2a) NAl(+3a) H(+a) Cl(-a) Y Y YAl(+3a) K(+a) Cl(-a) Y Y YAl(+3a) Mg(+2a) SO4(-2a) NAl(+3a) Na(+a) Cl(-a) Y Y YAl(+3a) Ni(+2a) SO4(-2a) NAl(OH)4(-a) OH(-a) K(+a) NAl(OH)4(-a) OH(-a) Na(+a) NBa(+2a) Ca(+2a) Cl(-a) NBa(+2a) Cs(+a) Cl(-a) NBa(+2a) H(+a) Br(-a) NBa(+2a) H(+a) Cl(-a) Y NBa(+2a) K(+a) Cl(-a) NBa(+2a) Li(+a) Cl(-a) NBa(+2a) Na(+a) Cl(-a) NB(OH)4(-a) Cl(-a) Ca(+2a) NB(OH)4(-a) Cl(-a) Na(+a) NB(OH)4(-a) Cl(-a) Mg(+2a) NB3O3(OH)4(-a) Cl(-a) Na(+a) NB4O5(OH)4(-2a) Cl(-a) Na(+a) NB4O7(-2a) Cl(-a) Li(+a) NBr(-a) Cl(-a) K(+a) NBr(-a) Cl(-a) Na(+a) NBr(-a) Cr2O7(-2a) K(+a) NBr(-a) OH(-a) K(+a) NBr(-a) OH(-a) Na(+a) NCa(+2a) Co(+2a) Cl(-a) NCa(+2a) H(+a) Br(-a) NCa(+2a) H(+a) Cl(-a) Y NCa(+2a) K(+a) Cl(-a) Y Y YCa(+2a) K(+a) SO4(-2a) NCa(+2a) Mg(+2a) Cl(-a) NCa(+2a) Mg(+2a) NO3(-a) NCa(+2a) Mg(+2a) SO4(-2a) NCa(+2a) Na(+a) Cl(-a) NCa(+2a) Na(+a) NO3(-a) NCa(+2a) Na(+a) SO4(-2a) NCl(-a) AsO4(-3a) Na(+a) NCl(-a) B4O5(OH)4(-2a)K(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 39 (49)

    Copyright © Outotec Oyj 2014

    Table B3 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpCl(-a) B4O5(OH)4(-2a)Li(+a) NCl(-a) B4O5(OH)4(-2a)Na(+a) NCl(-a) CO3(-2a) K(+a) NCl(-a) CO3(-2a) Na(+a) NCl(-a) Cr2O7(-2a) K(+a) NCl(-a) CuCl3(-a) Cu(+2a) NCl(-a) CuCl4(-2a) Cu(+2a) NCl(-a) CuCl3(-a) CuCl(+a)NCl(-a) CuCl4(-2a) CuCl(+a)NCl(-a) CuCl3(-a) H(+a) NCl(-a) CuCl3(-a) Na(+a) NCl(-a) CuCl4(-a) Na(+a) NCl(-a) F(-a) Na(+a) NCl(-a) HAsO4(-2a) Na(+a) NCl(-a) H2AsO4(-a) Na(+a) NCl(-a) H2PO4(-a) K(+a) NCl(-a) H2PO4(-a) Na(+a) NCl(-a) HCO3(-a) Mg(+2a) NCl(-a) HCO3(-a) Na(+a) NCl(-a) HPO4(-2a) Na(+a) NCl(-a) HSO4(-a) H(+a) NCl(-a) HSO4(-a) Na(+a) NCl(-a) NO3(-a) Ca(+2a) NCl(-a) NO3(-a) K(+a) NCl(-a) NO3(-a) Li(+a) NCl(-a) NO3(-a) Mg(+2a) NCl(-a) NO3(-a) Na(+a) NCl(-a) OH(-a) Ca(+2a) NCl(-a) OH(-a) K(+a) NCl(-a) OH(-a) Na(+a) NCl(-a) PO4(-3a) Na(+a) NCl(-a) SO3(-2a) Na(+a) NCl(-a) SO4(-2a) Ca(+2a) NCl(-a) SO4(-2a) Co(+2a) NCl(-a) SO4(-2a) Cu(+2a) NCl(-a) SO4(-2a) K(+a) Y Y YCl(-a) SO4(-2a) Li(+a) NCl(-a) SO4(-2a) Mg(+2a) NCl(-a) SO4(-2a) Na(+a) Y Y NCl(-a) SO4(-2a) Ni(+2a) NClO4(-a) CO3(-2a) Na(+a) NClO4(-a) HCO3(-a) Mg(+2a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 40 (49)

    Copyright © Outotec Oyj 2014

    Table B3 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. HT dep. CpClO4(-a) HCO3(-a) Na(+a) NCm(+3a) Na(+a) Cl(-a) NCo(+2a) Ca(+2a) Cl(-a) NCo(+2a) H(+a) Cl(-a) Y NCo(+2a) Mg(+2a) SeO4(-2a) NCo(+2a) Na(+a) Cl(-a) NCo(+2a) Na(+a) SO4(-2a) NCo(+2a) Rb(+a) SO4(-2a) NCo(+2a) Zn(+2a) SeO4(-2a) NCO3(-2a) F(-a) Na(+a) NCO3(-2a) HCO3(-a) K(+a) NCO3(-2a) HCO3(-a) Na(+a) NCO3(-2a) OH(-a) K(+a) NCO3(-2a) OH(-a) Na(+a) NCO3(-2a) SO4(-2a) K(+a) NCO3(-2a) SO4(-2a) Na(+a) NCr2O7(-2a) SO4(-2a) K(+a) NCs(+a) H(+a) Cl(-a) NCs(+a) K(+a) Cl(-a) NCs(+a) Li(+a) Cl(-a) NCs(+a) Na(+a) Cl(-a) NCu(+2a) CuCl(+a) Cl(-a) NCu(+2a) CuCl(+a) CuCl3(-a) NCu(+2a) CuCl(+a) CuCl4(-2a) NCu(+2a) H(+a) Cl(-a) NCu(+2a) H(+a) CuCl3(-a) NCu(+2a) H(+a) CuCl4(-2a) NCu(+2a) H(+a) HSO4(-a) NCu(+2a) Na(+a) Cl(-a) NCu(+2a) Na(+a) CuCl3(-a) NCu(+2a) Na(+a) CuCl4(-2a) NCu(+2a) Na(+a) SO4(-2a) NCu(+2a) Ni(+2a) NO3(-a) NCuCl(+a) H(+a) Cl(-a) NCuCl(+a) H(+a) CuCl3(-a) NCuCl(+a) H(+a) CuCl4(-2a) NCuCl(+a) Na(+a) Cl(-a) NCuCl(+a) Na(+a) CuCl3(-a) NCuCl(+a) Na(+a) CuCl4(-2a) NCuCl3(-a) CuCl4(-2a) Cu(+2a) NCuCl3(-a) CuCl4(-2a) CuCl(+a) NCuCl3(-a) CuCl4(-2a) H(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 41 (49)

    Copyright © Outotec Oyj 2014

    Table B3 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpCuCl3(-a) CuCl4(-2a) Na(+a) NF(-a) HF2(-a) H(+a) NF(-a) NO3(-a) Na(+a) NF(-a) OH(-a) Na(+a) NFe(+2a) H(+a) HSO4(-a) NGa(+3a) H(+a) Cl(-a) NH(+a) K(+a) Br(-a) NH(+a) K(+a) Cl(-a) NH(+a) K(+a) HSO4(-a) NH(+a) K(+a) SO4(-2a) NH(+a) Li(+a) Br(-a) NH(+a) Li(+a) Cl(-a) NH(+a) Li(+a) ClO4(-a) NH(+a) Mg(+2a) Br(-a) NH(+a) Mg(+2a) Cl(-a) Y NH(+a) Mg(+a) Cl(-a) NH(+a) Mg(+a) HSO4(-a) NH(+a) Mn(+2a) Cl(-a) NH(+a) Na(+a) Br(-a) NH(+a) Na(+a) Cl(-a) NH(+a) Na(+a) ClO4(-a) NH(+a) Na(+a) HSO4(-a) NH(+a) Na(+a) NO3(-a) NH(+a) Na(+a) SO4(-2a) NH(+a) NH4(+a) Br(-a) NH(+a) NH4(+a) Cl(-a) NH(+a) Ni(+2a) Br(-a) NH(+a) Ni(+2a) Cl(-a) Y NH(+a) Sr(+2a) Br(-a) NH(+a) Sr(+2a) Cl(-a) Y NH(+a) UO2(+2a) ClO4(-a) NH(+a) UO2(+2a) NO3(-a) NHCO3(-a) SO4(-2a) Mg(+2a) NHCO3(-a) SO4(-2a) Na(+a) NHSO4(-a) SO4(-2a) K(+a) NHSO4(-a) SO4(-2a) Mg(+2a) NHSO4(-a) SO4(-2a) Na(+a) Y Y YK(+a) Mg(+2a) Cl(-a) Y Y YK(+a) Mg(+2a) SO4(-2a) NK(+a) Mg(+a) Cl(-a) NK(+a) Mg(+a) SO4(-2a) NK(+a) Na(+a) B4O5(OH)4(-2a)N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 42 (49)

    Copyright © Outotec Oyj 2014

    Table B3 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Psi parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter value

    IONS T dep. AC T dep. H T dep. CpK(+a) Na(+a) Br(-a) NK(+a) Na(+a) Cl(-a) Y Y YK(+a) Na(+a) CO3(-2a) NK(+a) Na(+a) H2PO4(-a) NK(+a) Na(+a) HCO3(-a) NK(+a) Na(+a) NO3(-a) NK(+a) Na(+a) SO4(-2a) Y Y YK(+a) Sr(+2a) Cl(-a) NLa(+3a) Na(+a) ClO4(-a) NLi(+a) K(+a) B4O5(OH)4(-2a) NLi(+a) K(+a) Cl(-a) NLi(+a) Na(+a) B4O5(OH)4(-2a) NLi(+a) Na(+a) CH3COO(-a) NLi(+a) Na(+a) Cl(-a) NLi(+a) Na(+a) ClO4(-a) NLi(+a) Na(+a) NO3(-a) NMg(+2a) MgOH(+a) Cl(-a) NMg(+2a) Na(+a) Cl(-a) Y NMg(+2a) Na(+a) SO4(-2a) NMg(+2a) Ni(+2a) SeO4(-2a) NMn(+2a) Na(+a) Cl(-a) NNa(+a) Ni(+2a) Cl(-a) NNa(+a) Ni(+2a) SO4(-2a) NNa(+a) Sr(+2a) Cl(-a) NNa(+a) UO2(+2a) ClO4(-a) NNa(+a) UO2(+2a) NO3(-a) NNa(+a) Zn(+2a) SO4(-2a) NNi(+2a) Zn(+2a) SeO4(-2a) NNO2(-a) PO4(-3a) Na(+a) NNO3(-a) SO4(-2a) Na(+a) NOH(-a) PO4(-3a) Na(+a) NOH(-a) SO4(-2a) K(+a) NOH(-a) SO4(-2a) Na(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 43 (49)

    Copyright © Outotec Oyj 2014

    Table B4. The parameter sets and the parameter temperature dependencies of the HSCAqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpAr(a) Br(-a) NAr(a) Ca(+2a) NAr(a) H(+a) NAr(a) HCO3(-a) NAr(a) K(+a) NAr(a) Mg(+2a) NAr(a) Na(+a) NAr(a) OH(-a) NAr(a) SO4(-2a) NB(OH)3(a) Cl(-a) NB(OH)3(a) H(+a) NB(OH)3(a) K(+a) NB(OH)3(a) Na(+a) NB(OH)3(a) SO4(-2a) NCCl4(a) Br(-a) NCCl4(a) Ca(+2a) NCCl4(a) H(+a) NCCl4(a) HCO3(-a) NCCl4(a) K(+a) NCCl4(a) Mg(+2a) NCCl4(a) Na(+a) NCCl4(a) OH(-a) NCCl4(a) SO4(-2a) NC2H2(a) Br(-a) NC2H2(a) Ca(+2a) NC2H2(a) H(+a) NC2H2(a) HCO3(-a) NC2H2(a) K(+a) NC2H2(a) Mg(+2a) NC2H2(a) Na(+a) NC2H2(a) OH(-a) NC2H2(a) SO4(-2a) NC2H4(a) Br(-a) NC2H4(a) Ca(+2a) NC2H4(a) H(+a) NC2H4(a) HCO3(-a) NC2H4(a) K(+a) NC2H4(a) Mg(+2a) NC2H4(a) Na(+a) NC2H4(a) OH(-a) NC2H4(a) SO4(-2a) NC2H6(a) Br(-a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 44 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpC2H6(a) H(+a) NC2H6(a) HCO3(-a) NC2H6(a) K(+a) NC2H6(a) Mg(+2a) NC2H6(a) Na(+a) NC2H6(a) OH(-a) NC2H6(a) SO4(-2a) NC6H6(a) Br(-a) NC6H6(a) Ca(+2a) NC6H6(a) Cl(-a) NC6H6(a) H(+a) NC6H6(a) HCO3(-a) NC6H6(a) K(+a) NC6H6(a) Li(+a) NC6H6(a) Mg(+2a) NC6H6(a) Na(+a) NC6H6(a) OH(-a) NC6H6(a) SO4(-2a) NC7H6O22(BA)(a) Cl(-a) NC7H6O22(BA)(a) K(+a) NC7H6O22(BA)(a) Li(+a) NC7H6O22(BA)(a) Na(+a) NCF4(a) Br(-a) NCF4(a) Ca(+2a) NCF4(a) H(+a) NCF4(a) HCO3(-a) NCF4(a) K(+a) NCF4(a) Mg(+2a) NCF4(a) Na(+a) NCF4(a) OH(-a) NCF4(a) SO4(-2a) NCH3COOH(a) Cl(-a) NCH3COOH(a) CH3COO(-a) NCH3COOH(a) H(+a) NCH3COOH(a) K(+a) NCH3COOH(a) Na(+a) NCH3NO2(a) Cl(-a) NCH3NO2(a) K(+a) NCH3NO2(a) Li(+a) NCH3NO2(a) Na(+a) NCH4(a) Br(-a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 45 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpCH4(a) Ca(+2a) NCH4(a) H(+a) NCH4(a) HCO3(-a) NCH4(a) K(+a) NCH4(a) Mg(+2a) NCH4(a) Na(+a) NCH4(a) OH(-a) NCH4(a) SO4(-2a) NCO(a) Br(-a) NCO(a) Ca(+2a) NCO(a) H(+a) NCO(a) HCO3(-a) NCO(a) K(+a) NCO(a) Mg(+2a) NCO(a) Na(+a) NCO(a) OH(-a) NCO(a) SO4(-2a) NCO2(a) Al(+3a) Y Y YCO2(a) AlO(+a) Y Y YCO2(a) AlOH(+2a) Y Y YCO2(a) Ca(+2a) Y Y YCO2(a) Cl(-a) Y Y YCO2(a) ClO4(-a) NCO2(a) H(+a) Y Y YCO2(a) HSO4(-a) NCO2(a) K(+a) Y Y YCO2(a) Mg(+2a) Y Y YCO2(a) Na(+a) Y Y YCO2(a) NH4(+a) Y Y YCO2(a) SO4(-2a) Y Y YCoC2O4(a) Cl(-a) NCuCl2(a) Cl(-a) NCuCl2(a) Cu(+2a) NCuCl2(a) CuCl(+a) NCuCl2(a) CuCl3(-a) NCuCl2(a) CuCl4(-2a) NCuCl2(a) Na(+a) NHe(a) Br(-a) NHe(a) Ca(+2a) NHe(a) H(+a) NHe(a) HCO3(-a) NHe(a) K(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 46 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpHe(a) Mg(+2a) NHe(a) Na(+a) NHe(a) OH(-a) NHe(a) SO4(-2a) NHgCl2(a) Na(+a) NHg(OH)2(a) Na(+a) NHgOHCl(a) Na(+a) NH2C2O4(a) Cl(-a) NH2C2O4(a) HSO4(-a) NH2C2O4(a) Na(+a) NH2C2O4(a) NO3(-a) NHF(a) Cl(-a) NHF(a) F(-a) NHF(a) H(+a) NHF(a) HF2(-a) NHF(a) Na(+a) NH2(a) Br(-a) NH2(a) Ca(+2a) NH2(a) H(+a) NH2(a) HCO3(-a) NH2(a) K(+a) NH2(a) Mg(+2a) NH2(a) Na(+a) NH2(a) OH(-a) NH2(a) SO4(-2a) NH4SiO4(a) Na(+a) NH3PO4(a) Cl(-a) NH3PO4(a) H(+a) NH3PO4(a) K(+a) NH3PO4(a) Mg(+2a) NH3PO4(a) Na(+a) N(HOCH2)3CNH2(a) Ca(+2a) N(HOCH2)3CNH2(a) Cl(-a) N(HOCH2)3CNH2(a) K(+a) N(HOCH2)3CNH2(a) Mg(+2a) N(HOCH2)3CNH2(a) Na(+a) NH2S(a) Br(-a) NH2S(a) Ca(+2a) NH2S(a) Cl(-a) NH2S(a) H(+a) NH2S(a) HCO3(-a) NH2S(a) K(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 47 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpH2S(a) Mg(+2a) NH2S(a) Na(+a) NH2S(a) OH(-a) NH2S(a) SO4(-2a) NH2S(a) Sr(+2a) NKr(a) Br(-a) NKr(a) Ca(+2a) NKr(a) H(+a) NKr(a) HCO3(-a) NKr(a) K(+a) NKr(a) Mg(+2a) NKr(a) Na(+a) NKr(a) OH(-a) NKr(a) SO4(-2a) NMgHPO4(a) Na(+a) NMgCO3(a) ClO4(+a) NMgCO3(a) Na(+a) NN2(a) Br(-a) NN2(a) Ca(+2a) NN2(a) H(+a) NN2(a) HCO3(-a) NN2(a) K(+a) NN2(a) Mg(+2a) NN2(a) Na(+a) NN2(a) OH(-a) NN2(a) SO4(-2a) NNaNO2(a) CO3(-2a) Y Y YNe(a) Br(-a) NNe(a) Ca(+2a) NNe(a) H(+a) NNe(a) HCO3(-a) NNe(a) K(+a) NNe(a) Mg(+2a) NNe(a) Na(+a) NNe(a) OH(-a) NNe(a) SO4(-2a) NNH3(a) Br(-a) NNH3(a) Ca(+2a) NNH3(a) Cl(-a) NNH3(a) CO3(-2a) NNH3(a) F(-a) NNH3(a) H(+a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 48 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpNH3(a) K(+a) NNH3(a) Mg(+2a) NNH3(a) Na(+a) NNH3(a) SO4(-2a) NNH3(a) Sr(+2a) NNiC2O4(a) Cl(-a) NN2O(a) Br(-a) NN2O(a) Ca(+2a) NN2O(a) H(+a) NN2O(a) HCO3(-a) NN2O(a) K(+a) NN2O(a) Mg(+2a) NN2O(a) Na(+a) NN2O(a) OH(-a) NN2O(a) SO4(-2a) NNO(a) Br(-a) NNO(a) Ca(+2a) NNO(a) H(+a) NNO(a) HCO3(-a) NNO(a) K(+a) NNO(a) Mg(+2a) NNO(a) Na(+a) NNO(a) OH(-a) NNO(a) SO4(-2a) NO2(a) Br(-a) NO2(a) Ca(+2a) NO2(a) Cl(-a) NO2(a) CO3(-2a) NO2(a) H(+a) NO2(a) HCO3(-a) NO2(a) K(+a) NO2(a) Mg(+2a) NO2(a) Na(+a) NO2(a) OH(-a) NO2(a) SO4(-2a) NPbCl2(a) Ca(+2a) NPbCl2(a) Cl(-a) Y Y YPbCl2(a) ClO4(-a) Y Y YPbCl2(a) Na(+a) NPbCl2(a) Mg(+2a) NRn(a) Br(-a) NRn(a) Ca(+2a) N

  • HSC 8 - AquaNovember 19, 2014

    Research Center, Pori / Petri Kobylin, JustinSalminen, Matias Hultgren

    14021-ORC-J 49 (49)

    Copyright © Outotec Oyj 2014

    Table B4 (continued). The parameter sets and the parameter temperature dependenciesof the HSC Aqua Pitzer database Lambda parameter sheet. (HSC Aqua 2009)Y = the parameter set has at least one temperature-dependent termN = the parameter set is defined by constant valuesEmpty cell = no parameter valueNEUTRAL ION T dep. AC T dep. H T dep. CpRn(a) H(+a) NRn(a) HCO3(-a) NRn(a) K(+a) NRn(a) Mg(+2a) NRn(a) Na(+a) NRn(a) OH(-a) NRn(a) SO4(-2a) NSF6(a) Br(-a) NSF6(a) Ca(+2a) NSF6(a) H(+a) NSF6(a) HCO3(-a) NSF6(a) K(+a) NSF6(a) Mg(+2a) NSF6(a) Na(+a) NSF6(a) OH(-a) NSF6(a) SO4(-2a) NSiO2(a) Al(+3a) Y Y YSiO2(a) AlO(+a) Y Y YSiO2(a) AlOH(+2a)Y Y YSiO2(a) Ca(+2a) Y Y YSiO2(a) Cl(-a) NSiO2(a) H(+a) Y Y YSiO2(a) HCO3(-a) Y Y YSiO2(a) K(+a) Y Y YSiO2(a) Li(+a) NSiO2(a) Mg(+2a) Y Y YSiO2(a) Na(+a) Y Y YSiO2(a) NO3(-a) Y Y YSiO2(a) OH(-a) NSiO2(a) SO4(-2a) Y Y YSO2(a) Cl(-a) NSO2(a) Na(+a) NSO2(a) Mg(+2a) NXe(a) Br(-a) NXe(a) Ca(+2a) NXe(a) H(+a) NXe(a) HCO3(-a) NXe(a) K(+a) NXe(a) Mg(+2a) NXe(a) Na(+a) NXe(a) OH(-a) NXe(a) SO4(-2a) N