3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

57
3: Transport Layer 3-1 CSE401N: Computer Networks Lecture-8 Transport Layer
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    231
  • download

    2

Transcript of 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

Page 1: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-1

CSE401N: Computer Networks

Lecture-8Transport Layer

Page 2: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-2

Transport LayerOur goals goals: understand principles

behind transport layer services: multiplexing/

demultiplexing reliable data transfer flow control congestion control

instantiation and implementation in the Internet

Overview: transport layer services multiplexing/demultiplexing connectionless transport: UDP principles of reliable data

transfer connection-oriented transport:

TCP reliable transfer flow control connection management

principles of congestion control

TCP congestion control

Page 3: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-3

Transport services and protocols provide logical

communication between app’ processes running on different hosts

Hosts running the processes were directly connected (logically), but in reality the hosts were connected via numerous routers and a wide range of link types.

Transport protocols run in end systems not in routers

Network routers act only on the network protocol data unit.

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysicalnetwork

data linkphysical

logical end-end transport

Page 4: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-4

Transport services and protocols

transport vs network layer services:

network layer: data transfer between end systems

transport layer: data transfer between processes relies on, enhances,

network layer services Household examples:

Application messages: letters in envelopes

Processes: sender & receiver

Hosts: houses Transport-protocol:

postman and postbox Network-protocol: postal

service

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysicalnetwork

data linkphysical

logical end-end transport

Page 5: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-5

Transport-layer protocols

Internet transport services: reliable, in-order unicast

delivery (TCP) congestion flow control connection setup

unreliable (“best-effort”), unordered unicast or multicast delivery: UDP

services not available: real-time bandwidth guarantees reliable multicast

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysical

networkdata linkphysicalnetwork

data linkphysical

logical end-end transport

Page 6: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-6

applicationtransportnetwork

MP2

applicationtransportnetwork

Multiplexing/demultiplexing

Recall: segment - unit of data exchanged between transport layer entities aka TPDU: transport

protocol data unitreceiver

HtHn

Demultiplexing: delivering received segments to correct app layer processes

segment

segment Mapplicationtransportnetwork

P1M

M MP3 P4

segmentheader

application-layerdata

Page 7: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-7

Multiplexing/demultiplexing

multiplexing/demultiplexing: Based on dest port#, ip

address. based on sender, receiver

port numbers, IP addresses(TCP) source, dest port #s in

each segment recall: well-known port

numbers for specific applications

gathering data from multiple app processes, enveloping data with header (later used for demultiplexing)

source port # dest port #

32 bits

applicationdata

(message)

other header fields

TCP/UDP segment format

Multiplexing:

Page 8: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-8

Multiplexing/demultiplexing: examples

host A server Bsource port: xdest. port: 23

source port:23dest. port: x

port use: simple telnet app

Web clienthost A

Webserver B

Web clienthost C

Source IP: CDest IP: B

source port: x

dest. port: 80

Source IP: CDest IP: B

source port: y

dest. port: 80

port use: Web server

Source IP: ADest IP: B

source port: x

dest. port: 80

Page 9: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-9

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones” Internet transport protocol

“best effort” service, UDP segments may be: lost delivered out of order

to app connectionless:

no handshaking between UDP sender, receiver

each UDP segment handled independently of others

Why is there a UDP? no connection

establishment (which can add delay)

simple: no connection state at sender, receiver

small segment header no congestion control:

UDP can blast away as fast as desired

Page 10: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-10

UDP: more

often used for streaming multimedia apps loss tolerant rate sensitive

other UDP uses (why?): DNS SNMP

reliable transfer over UDP: add reliability at application layer application-specific

error recovery!

source port # dest port #

32 bits

Applicationdata

(message)

UDP segment format

length checksumLength, in

bytes of UDPsegment,including

header

Page 11: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-11

UDP checksum

Sender: treat segment contents

as sequence of 16-bit integers

checksum: addition (1’s complement sum) of segment contents

sender puts checksum value into UDP checksum field

Receiver: compute checksum of

received segment check if computed checksum

equals checksum field value: NO - error detected YES - no error detected.

But maybe errors nonetheless? More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Page 12: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-12

Principles of Reliable data transfer important in app., transport, link layers top-10 list of important networking topics!

characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Page 13: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-13

Reliable data transfer: getting started

sendside

receiveside

rdt_send(): called from above, (e.g., by app.). Passed data to deliver to receiver upper layer

udt_send(): called by rdt,to transfer packet over unreliable channel to

receiver

rdt_rcv(): called when packet arrives on rcv-side of channel

deliver_data(): called by rdt to deliver data to

upper

Page 14: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-14

Reliable data transfer: getting startedWe’ll: incrementally develop sender, receiver

sides of reliable data transfer protocol (rdt) consider only unidirectional data transfer

but control info will flow on both directions!

use finite state machines (FSM) to specify sender, receiver

state1

state2

event causing state transitionactions taken on state transition

state: when in this “state” next state

uniquely determined by next event

eventactions

Page 15: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-15

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable no bit errors no loss of packets

separate FSMs for sender, receiver: sender sends data into underlying channel receiver read data from underlying channel

Wait for call from above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)deliver_data(data)

Wait for call from

below

rdt_rcv(packet)

sender receiver

Page 16: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-16

Rdt2.0: channel with bit errors

underlying channel may flip bits in packet recall: UDP checksum to detect bit errors

the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells

sender that pkt received OK negative acknowledgements (NAKs): receiver

explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK human scenarios using ACKs, NAKs?

new mechanisms in rdt2.0 (beyond rdt1.0): error detection receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

Page 17: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-17

rdt2.0: FSM specification

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

belowsender

receiverrdt_send(data)

Page 18: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-18

rdt2.0: operation with no errors

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

below

rdt_send(data)

Page 19: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-19

rdt2.0: error scenario

Wait for call from above

snkpkt = make_pkt(data, checksum)udt_send(sndpkt)

extract(rcvpkt,data)deliver_data(data)udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for ACK or

NAK

Wait for call from

below

rdt_send(data)

Page 20: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-20

rdt2.0 has a fatal flaw!

What happens if ACK/NAK corrupted?

sender doesn’t know what happened at receiver!

can’t just retransmit: possible duplicate

What to do? sender ACKs/NAKs

receiver’s ACK/NAK? What if sender ACK/NAK lost?

retransmit, but this might cause retransmission of correctly received pkt!

Handling duplicates: sender adds sequence

number to each pkt sender retransmits current

pkt if ACK/NAK garbled receiver discards (doesn’t

deliver up) duplicate pkt

Sender sends one packet, then waits for receiver response

stop and wait

Page 21: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-21

rdt2.1: sender, handles garbled ACK/NAKs

Wait for call 0 from

above

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)

rdt_send(data)

Wait for ACK or NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isNAK(rcvpkt) )

sndpkt = make_pkt(1, data, checksum)udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isNAK(rcvpkt) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt)

Wait for call 1 from

above

Wait for ACK or NAK 1

Page 22: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-22

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 0 from below sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq0(rcvpkt)))

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

Wait for 1 from below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK, chksum)udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt)))

Page 23: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-23

rdt2.1: discussion

Sender: seq # added to pkt two seq. #’s (0,1)

will suffice. Why? must check if

received ACK/NAK corrupted

twice as many states state must

“remember” whether “current” pkt has 0 or 1 seq. #

Receiver: must check if

received packet is duplicate state indicates

whether 0 or 1 is expected pkt seq #

note: receiver can not know if its last ACK/NAK received OK at sender

Page 24: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-24

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using NAKs only instead of NAK, receiver sends ACK for last pkt

received OK receiver must explicitly include seq # of pkt being

ACKed

duplicate ACK at sender results in same action as NAK: retransmit current pkt

Page 25: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-25

rdt2.2: sender, receiver fragments

Wait for call 0 from

above

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0)

Wait for ACK

0

sender FSMfragment

Wait for 0 from below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(ACK1, chksum)udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSMfragment

Page 26: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-26

rdt3.0: channels with errors and loss

New assumption: underlying channel can also lose packets (data or ACKs) checksum, seq. #,

ACKs, retransmissions will be of help, but not enough

Q: how to deal with loss? sender waits until

certain data or ACK lost, then retransmits

yuck: drawbacks?

Approach: sender waits “reasonable” amount of time for ACK

retransmits if no ACK received in this time

if pkt (or ACK) just delayed (not lost): retransmission will be

duplicate, but use of seq. #’s already handles this

receiver must specify seq # of pkt being ACKed

requires countdown timer

Page 27: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-27

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)udt_send(sndpkt)start_timer

rdt_send(data)

Wait for

ACK0

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isACK(rcvpkt,1) )

Wait for call 1 from

above

sndpkt = make_pkt(1, data, checksum)udt_send(sndpkt)start_timer

rdt_send(data)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0)

rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) ||isACK(rcvpkt,0) )

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1)

stop_timerstop_timer

udt_send(sndpkt)start_timer

timeout

udt_send(sndpkt)start_timer

timeout

rdt_rcv(rcvpkt)

Wait for call 0from

above

Wait for

ACK1

rdt_rcv(rcvpkt)

Page 28: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-28

rdt3.0 in action

Page 29: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-29

rdt3.0 in action

Page 30: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-30

Performance of rdt3.0

rdt3.0 works, but performance stinks example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit

= 8kb/pkt10**9 b/sec

= 8 microsec

U sender: utilization – fraction of time sender busy sending 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link network protocol limits use of physical resources!

U sender

= .008

30.008 = 0.00027

microseconds

L / R

RTT + L / R =

L (packet length in bits)R (transmission rate, bps)

=

Page 31: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-31

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arriveslast packet bit arrives, send ACK

ACK arrives, send next packet, t = RTT + L / R

U sender

= .008

30.008 = 0.00027

microseconds

L / R

RTT + L / R =

Page 32: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-32

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver

Two generic forms of pipelined protocols: go-Back-N, selective repeat

Page 33: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-33

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arriveslast packet bit arrives, send ACK

ACK arrives, send next packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACKlast bit of 3rd packet arrives, send ACK

U sender

= .024

30.008 = 0.0008

microseconds

3 * L / R

RTT + L / R =

Increase utilizationby a factor of 3!

Page 34: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-34

Go-Back-NSender: k-bit seq # in pkt header “window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” may deceive duplicate ACKs (see receiver)

timer for each in-flight pkt timeout(n): retransmit pkt n and all higher seq # pkts in window

Page 35: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-35

GBN: sender extended FSM

Wait start_timerudt_send(sndpkt[base])udt_send(sndpkt[base+1])…udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ }else refuse_data(data)

base = getacknum(rcvpkt)+1If (base == nextseqnum) stop_timer else start_timer

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

base=0nextseqnum=0

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Page 36: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-36

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest in-order seq # may generate duplicate ACKs need only remember expectedseqnum

out-of-order pkt: discard (don’t buffer) -> no receiver buffering! Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)deliver_data(data)sndpkt = make_pkt(expectedseqnum,ACK,chksum)udt_send(sndpkt)expectedseqnum++

expectedseqnum=0

Page 37: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-37

GBN inaction

Page 38: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-38

Selective Repeat

receiver individually acknowledges all correctly received pkts buffers pkts, as needed, for eventual in-order

delivery to upper layer

sender only resends pkts for which ACK not received sender timer for each unACKed pkt

sender window N consecutive seq #’s again limits seq #s of sent, unACKed pkts

Page 39: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-39

Selective repeat: sender, receiver windows

Page 40: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-40

Selective repeat

data from above : if next available seq # in

window, send pkt

timeout(n): resend pkt n, restart

timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received if n smallest unACKed

pkt, advance window base to next unACKed seq #

senderpkt n in [rcvbase, rcvbase+N-

1]

send ACK(n) out-of-order: buffer in-order: deliver (also

deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise: ignore

receiver

Page 41: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-41

Selective repeat in action

Page 42: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-42

Selective repeat: dilemma

Example: seq #’s: 0, 1, 2, 3 window size=3

receiver sees no difference in two scenarios!

incorrectly passes duplicate data as new in (a)

Q: what relationship between seq # size and window size?

Page 43: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-43

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data: bi-directional data flow

in same connection MSS: maximum

segment size

connection-oriented: handshaking (exchange

of control msgs) init’s sender, receiver state before data exchange

flow controlled: sender will not

overwhelm receiver

point-to-point: one sender, one

receiver

reliable, in-order byte steam: no “message

boundaries”

pipelined: TCP congestion and flow

control set window size

send & receive bufferssocketdoor

T C Psend buffer

T C Preceive buffer

socketdoor

segm ent

applicationwrites data

applicationreads data

Page 44: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-44

TCP segment structure

source port # dest port #

32 bits

applicationdata

(variable length)

sequence number

acknowledgement numberrcvr window size

ptr urgent datachecksum

FSRPAUheadlen

notused

Options (variable length)

URG: urgent data (generally not used)

ACK: ACK #valid

PSH: push data now(generally not used)

RST, SYN, FIN:connection estab(setup, teardown

commands)

# bytes rcvr willingto accept

countingby bytes of data(not segments!)

Internetchecksum

(as in UDP)

Page 45: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-45

TCP seq. #’s and ACKsSeq. #’s:

byte stream “number” of first byte in segment’s data

ACKs: seq # of next byte

expected from other side

cumulative ACKQ: how receiver handles

out-of-order segments A: TCP spec doesn’t

say, - up to implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Usertypes

‘C’

host ACKsreceipt

of echoed‘C’

host ACKsreceipt of

‘C’, echoesback ‘C’

timesimple telnet scenario

Page 46: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-46

TCP: reliable data transfer

simplified sender, assuming

waitfor

event

waitfor

event

event: data received from application above

event: timer timeout for segment with seq # y

event: ACK received,with ACK # y

create, send segment

retransmit segment

ACK processing

•one way data transfer•no flow, congestion control

Page 47: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-47

TCP: reliable data transfer

00 sendbase = initial_sequence number 01 nextseqnum = initial_sequence number 0203 loop (forever) { 04 switch(event) 05 event: data received from application above 06 create TCP segment with sequence number nextseqnum 07 start timer for segment nextseqnum 08 pass segment to IP 09 nextseqnum = nextseqnum + length(data) 10 event: timer timeout for segment with sequence number y 11 retransmit segment with sequence number y 12 compue new timeout interval for segment y 13 restart timer for sequence number y 14 event: ACK received, with ACK field value of y 15 if (y > sendbase) { /* cumulative ACK of all data up to y */ 16 cancel all timers for segments with sequence numbers < y 17 sendbase = y 18 } 19 else { /* a duplicate ACK for already ACKed segment */ 20 increment number of duplicate ACKs received for y 21 if (number of duplicate ACKS received for y == 3) { 22 /* TCP fast retransmit */ 23 resend segment with sequence number y 24 restart timer for segment y 25 } 26 } /* end of loop forever */

SimplifiedTCPsender

Page 48: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-48

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival, no gaps,everything else already ACKed

in-order segment arrival, no gaps,one delayed ACK pending

out-of-order segment arrivalhigher-than-expect seq. #gap detected

arrival of segment that partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500msfor next segment. If no next segment,send ACK

immediately send singlecumulative ACK

send duplicate ACK, indicating seq. #of next expected byte

immediate ACK if segment startsat lower end of gap

Page 49: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-49

TCP: retransmission scenarios

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim

eout

time lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

Host A

Seq=100, 20 bytes data

ACK=100

Seq=

92

tim

eout

time premature timeout,cumulative ACKs

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Seq=

10

0 t

imeou

t

ACK=120

Page 50: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-50

TCP Flow Controlreceiver: explicitly

informs sender of (dynamically changing) amount of free buffer space RcvWindow field

in TCP segmentsender: keeps the

amount of transmitted, unACKed data less than most recently received RcvWindow

sender won’t overrun

receiver’s buffers bytransmitting too

much, too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

Page 51: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-51

TCP Round Trip Time and TimeoutQ: how to set TCP

timeout value? longer than RTT

note: RTT will vary too short: premature

timeout unnecessary

retransmissions too long: slow

reaction to segment loss

Q: how to estimate RTT? SampleRTT: measured time

from segment transmission until ACK receipt ignore retransmissions,

cumulatively ACKed segments

SampleRTT will vary, want estimated RTT “smoother” use several recent

measurements, not just current SampleRTT

Page 52: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-52

TCP Round Trip Time and TimeoutEstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

Exponential weighted moving average influence of given sample decreases exponentially fast typical value of x: 0.1

Setting the timeout EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation + x*|SampleRTT-EstimatedRTT|

Page 53: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-53

Example RTT estimation:RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RTT

(mill

isec

onds

)

SampleRTT Estimated RTT

Page 54: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-54

TCP Connection Management

Recall: TCP sender, receiver establish “connection” before exchanging data segments

initialize TCP variables: seq. #s buffers, flow control info

(e.g. RcvWindow) client: connection initiator Socket clientSocket = new

Socket("hostname","port

number"); server: contacted by client Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client end system sends TCP SYN control segment to server specifies initial seq #

Step 2: server end system receives SYN, replies with SYNACK control segment

ACKs received SYN allocates buffers specifies server->

receiver initial seq. #

Page 55: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-55

TCP Connection Management (cont.)

Closing a connection:

client closes socket: clientSocket.close();

Step 1: client end system sends TCP FIN control segment to server

Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim

ed w

ait

Page 56: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-56

TCP Connection Management (cont.)

Step 3: client receives FIN, replies with ACK.

Enters “timed wait” - will respond with ACK to received FINs

Step 4: server, receives ACK. Connection closed.

Note: with small modification, can handly simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim

ed w

ait

closed

Page 57: 3: Transport Layer3-1 CSE401N: Computer Networks Lecture-8 Transport Layer.

3: Transport Layer 3-57

TCP Connection Management (cont)

TCP clientlifecycle

TCP serverlifecycle