3 James Shuck Smith

20
Dr. James Shucksmith Pennine Water Group University of Sheffield 19 th May 2011 Water Industry Forum

Transcript of 3 James Shuck Smith

Page 1: 3 James Shuck Smith

Dr. James ShucksmithPennine Water GroupUniversity of Sheffield

19th May 2011Water Industry Forum

Page 2: 3 James Shuck Smith

ContentsLeakage detection – Current practicePressure transient based techniquesDevelopment of a prototype leakage detection deviceResults from the Yorkshire Water networkFuture plans

Page 3: 3 James Shuck Smith

0

1000

2000

3000

4000

5000

6000

1994

-1995

1995

-1996

1996

-1997

1997

-1998

1998

-1999

1999

-2000

2000

-2001

2001

-2002

2002

-2003

2003

-2004

2004

-2005

2005

-2006

2006

-2007

2007

-2008

Year

Leak

age

(Ml/d

ay)

Source : Ofwat, Security of Supply Report 07/08

Leakage levels in England and Wales 

Page 4: 3 James Shuck Smith

Pinpointing Leaks – Current Practice

Page 5: 3 James Shuck Smith

Valve open

Valve closed, after time, t

When t = L/c, Full compression)

Decompression

What is a Pressure Transient?

Page 6: 3 James Shuck Smith

What is a Pressure Transient?Known as Water hammer – A pressure fluctuation in pipeline due to a change in the system (i.e. from valves, pump start‐up etc...)Occur frequently in distribution systemsChange propagates through the system by wave action which travels through pipe at the speed of soundDiscontinuities and dead ends cause reflections

Work on studying pressure transients ongoing topic of at the University of Sheffield.KTP between Yorkshire Water/University of Sheffield in place October 2008-2010 – Leak Detection by use of Pressure Transients

Page 7: 3 James Shuck Smith

Creating a Detection Device

Hydrant

Valve

Sensor

Electronic Control Box(Battery, Charger, Data Acquisition and Valve

ControlLaptop

(executable file)

U.S.B

Cable

Page 8: 3 James Shuck Smith

Detection Using Pressure Transients1. Create pressure transient by rapidly closing a valve2. Pressure transient travels down the pipe

3. On contact with a feature, a reflection is created

4. Measure the pressure/time information

5. Filter noise from signal and analyse identify features6. Distance to each feature = time of incoming reflection     speed of wave

LeakFlow Sensor

Speed of wave dependant on pipe material, thickness and diameter

Page 9: 3 James Shuck Smith

Pressure Transient Example

0.5 1 1.5 2 2.5 3 3.5 40

Time (s)

Pre

ssur

e

Valve Closes

Initial Pressure Surge

Wave propagates through the system

Wave dissipated, system settles at a higher pressure

Page 10: 3 James Shuck Smith

Data Processing

Raw Data(Pressure/time)

Filtered Data(Pressure/Time)

Analysed Data(Reflection/Distance)

Averaged Result(Reflection/Distance)

0 5 10 15 20 25 300

0.005

0.01

0.015

0.02

0.025

Cepstrum Analysis2

Distance (m)

Cep

stru

m A

mpl

itude

(Am

p. *

Tim

e)

Site

Page 11: 3 James Shuck Smith

Initial Field Tests

Page 12: 3 James Shuck Smith

Leakage Training Ground Tests

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45Distance from Hydrant (m)

Ceps

trum

()

Hydrant 1Valve 1

Hydrant 2

Hydrant 3Leak

Valve 2

Flow

Page 13: 3 James Shuck Smith

Field Tests

Page 14: 3 James Shuck Smith

Roach Road, Sheffield

62m

28m

Distance (m)

Ave

rage

d C

epst

rum

Aver

aged

C

epst

rum

Aver

aged

C

epst

rum

Distance from hydrant 2 (m)

Distance from hydrant 1(m)

Page 15: 3 James Shuck Smith

Courts Close, Selby

0.3l/s

Page 16: 3 James Shuck Smith

Church St, Rotherham

Testing Hydrant

3.15l/s

31m

Leak Point Reflection from end

Page 17: 3 James Shuck Smith

Status of ProjectThree devices will shortly be used by Yorkshire Water  leakage staff alongside existing techniques

Results of fieldwork fed back for further software optimisation / adaption over different ranges/pipe types

Discussion of commercialisation and development with various interested parties is on goingIn investigation of other uses

Asset identificationPermanent deploymentRemote analysis / plan overlay

Page 18: 3 James Shuck Smith

Key benefits of techniqueVastly improved accuracy and performance on ‘quiet’ leaks – i.e. plastic mainsUntroubled by background noise (traffic machinery)Direct relation between reflection strength and leak size provides opportunity for resource prioritisationFlexibility of use (single/multiple hydrants)Significant development opportunities in terms of asset identification, network monitoring  

Page 19: 3 James Shuck Smith

To Conclude.....Existing leakage pinpointing methods are heavily dependant on acoustic techniquesLimited effectiveness of all acoustic devices for quiet leaks (i.e. plastic mains) can result in slow, inaccurate leak pinpointingPressure transient techniques have been shown to offer a entirely new way of pinpointing leaksWith help from manufactures work is now focusing on turning prototype into a commercially viable device

Page 20: 3 James Shuck Smith

Ghazali, M., Staszewski W.J., Shucksmith, J.D., Boxall J.B, and Beck, S.B.M., ”Instantaneous Phase and Frequency for the Detection of Leaks and Features in a Pipeline System” Structural Health Monitoring (first published online on June 28, 2010), doi:10.1177/1475921710373958

Shucksmith, J.D., Boxall J.B, Seth, A and Staszewski W.J and Beck, S.B.M “Leak detection in a pipe network by cepstrum analysis of pressure transients”(Submitted to the ASCE, Journal of Hydraulic Engineering)

M. Taghvaei, S.B.M. Beck, W.J. Staszewski, “Leak detection in pipelines using cepstrum analysis, Institute of Physics-Measurement Science and Technology”, 17 (2006) 367-372.

M. F. Ghazali, S. B. M. Beck, J. D. Shucksmith, J. B. Boxall and W. J. Staszewski, “Comparative study of instantaneous frequency based characteristics for leak detection in pipeline networks.” (Submitted to Mechanical Systems and Signal Processing)