3. Convetional and Real-time Pcr-based Assayfor Detecting Pathogenics

38
Conventional and Real-Time PCR-Based Assay for Detecting Pathogenic Alternaria brassicae in Cruciferous Seed Thomas Guillemette, UMR 77 Pathologie Végétale, Faculté des Sciences, Angers, France; Béatrice Iacomi- Vasilescu, UMR 77 Pathologie Végétale, France, and USAMV, Department of Plant Protection, Bucharest, Romania; and Philippe Simoneau, UMR 77 Pathologie Végétale, France ABSTRACT Guillemette, T., Iacomi-Vasilescu, B., and Simoneau, P. 2004. Conventional and real-time PCR- based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis. 88:490- 496. Alternaria brassicae is an important seedborne pathogenic fungus responsible for the black spot disease of crucifers. Sanitary control of commercial seed is necessary to limit the spread of this pathogen. Current detection methods, based on culture and morphological identification of the fungus, are time consuming, laborious, and not always reliable. Therefore, a polymerase chain reaction (PCR)-based assay was developed with A. brassicae-specific primers designed on the basis of the sequence of two clustered genes potentially involved in pathogenicity. Two sets of primers were selected for conventional and real-time PCR, respectively. In both cases, A. brassi- cae was specifically detected using DNA extracted from seed. The real-time PCR-based method presented here can be automated easily and preliminary results indicate that it is efficient for quantitative estimation of seed infection. Additional keywords: ABC transporter, molecular diagnostic, nonribosomal peptide synthase seed (1), thus complicating pathogen iden- tification. Some isolates sporulate sparsely or produce sterile mycelium under labora- tory conditions. Morphological identifica- tion is impossible when this occurs. Molecular approaches, mainly the poly- merase chain reaction (PCR), frequently have been used as tools for the detection of numerous fungal pathogens (4,14,17). A sensitive and rapid PCR assay, based on amplification of sequences of the internal transcribed spacer (ITS) regions of the ribosomal DNA, recently was developed to detect A. brassicicola or A. japonica infec- tion of cruciferous seed (8). Unfortunately, this method did not generate a reliable diagnosis when seed were contaminated with A. brassicae because cross-reactions with other fungal species sometimes were observed. The genus Alternaria comprises sapro- phytic and pathogenic species of filamen- tous fungi. Plant pathogens of this genus have a distinct and limited host range. It has been strongly suggested that both viru- lence and host specificity are partly de- pendent on the production of host-specific toxins (HSTs; 18,27). A complex of three species, A. brassicae, A. brassicicola, and A. japonica (formerly named A. raphani), is responsible for the black spot disease of crucifers and is transmitted by seed of many species belonging to the genera Brassica and Raphanus. The disease is of major importance in cultivated crucifers worldwide, with most commercial culti- vars being susceptible (25). It occurs at all host plant growth stages, on aerial parts, and is identifiable by black lesions, often surrounded by chlorotic zones (26). The disease also can be destructive for seed producers because infection often leads to premature pod shatter and shriveled seed, with altered germination efficiency, as noted in various crucifer hosts such as Brassica juncea, B. campestris, and B. rapa (20,21). Black spot disease results in a serious reduction of crop yields, such as reduced market quality of cauliflower heads and oil quality in family Brassicaceae oilseed species. The fungi overwinter on infected crop residues, seed, and any related cruciferous weed species. They can be seedborne via mycelia within the seed or transitory spores on the seed surface. Spores are readily windborne and can be dispersed great distances through- out the growing season. Common practices to prevent the dis- ease do not always provide satisfactory control of infection. Genetic control could be the most effective strategy, but most commercially available cultivars show little resistance to the pathogen. Black spot disease could be controlled with fungi- cides, but field isolates of A. brassicicola expressing cross-resistance to

description

Fitopatologia

Transcript of 3. Convetional and Real-time Pcr-based Assayfor Detecting Pathogenics

Conventional and Real-Time PCR-Based Assay for Detecting Pathogenic Alternaria brassicae in Cruciferous Seed

Conventional and Real-Time PCR-Based Assay for DetectingPathogenic Alternaria brassicae in Cruciferous SeedThomas Guillemette, UMR 77 Pathologie Vgtale, Facult des Sciences, Angers, France; Batrice Iacomi- Vasilescu, UMR 77 Pathologie Vgtale, France, and USAMV, Department of Plant Protection, Bucharest, Romania; and Philippe Simoneau, UMR 77 Pathologie Vgtale, FranceABSTRACTGuillemette, T., Iacomi-Vasilescu, B., and Simoneau, P. 2004. Conventional and real-time PCR- based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis. 88:490-

496.

Alternaria brassicae is an important seedborne pathogenic fungus responsible for the black spot disease of crucifers. Sanitary control of commercial seed is necessary to limit the spread of this pathogen. Current detection methods, based on culture and morphological identification of the fungus, are time consuming, laborious, and not always reliable. Therefore, a polymerase chain reaction (PCR)-based assay was developed with A. brassicae-specific primers designed on the basis of the sequence of two clustered genes potentially involved in pathogenicity. Two sets of primers were selected for conventional and real-time PCR, respectively. In both cases, A. brassi- cae was specifically detected using DNA extracted from seed. The real-time PCR-based method presented here can be automated easily and preliminary results indicate that it is efficient for quantitative estimation of seed infection.

Additional keywords: ABC transporter, molecular diagnostic, nonribosomal peptide synthase

seed (1), thus complicating pathogen iden- tification. Some isolates sporulate sparsely or produce sterile mycelium under labora- tory conditions. Morphological identifica- tion is impossible when this occurs.

Molecular approaches, mainly the poly- merase chain reaction (PCR), frequently have been used as tools for the detection of numerous fungal pathogens (4,14,17). A sensitive and rapid PCR assay, based on amplification of sequences of the internal transcribed spacer (ITS) regions of the ribosomal DNA, recently was developed to detect A. brassicicola or A. japonica infec- tion of cruciferous seed (8). Unfortunately, this method did not generate a reliable diagnosis when seed were contaminated

with A. brassicae because cross-reactions with other fungal species sometimes were observed.

The genus Alternaria comprises sapro-

phytic and pathogenic species of filamen- tous fungi. Plant pathogens of this genus have a distinct and limited host range. It has been strongly suggested that both viru- lence and host specificity are partly de- pendent on the production of host-specific toxins (HSTs; 18,27). A complex of three species, A. brassicae, A. brassicicola, and A. japonica (formerly named A. raphani), is responsible for the black spot disease of crucifers and is transmitted by seed of many species belonging to the genera Brassica and Raphanus. The disease is of major importance in cultivated crucifers worldwide, with most commercial culti- vars being susceptible (25). It occurs at all host plant growth stages, on aerial parts, and is identifiable by black lesions, often surrounded by chlorotic zones (26). The disease also can be destructive for seed producers because infection often leads to premature pod shatter and shriveled seed, with altered germination efficiency, as noted in various crucifer hosts such as Brassica juncea, B. campestris, and B. rapa (20,21). Black spot disease results in

a serious reduction of crop yields, such as reduced market quality of cauliflower heads and oil quality in family Brassicaceae oilseed species. The fungi overwinter on infected crop residues, seed, and any related cruciferous weed species. They can be seedborne via mycelia within the seed or transitory spores on the seed surface. Spores are readily windborne and can be dispersed great distances through- out the growing season.

Common practices to prevent the dis- ease do not always provide satisfactory control of infection. Genetic control could be the most effective strategy, but most commercially available cultivars show little resistance to the pathogen. Black spot disease could be controlled with fungi- cides, but field isolates of A. brassicicola expressing cross-resistance to common broad-spectrum fungicides recently were identified in France (7). Rotations with noncruciferous crops, crop residue destruc- tion, and weed control also can help to reduce the incidence of this disease. More- over, the use of pathogen-free seed is es- sential to limit the spread and incidence of the disease. The current routine technique used to assess levels of pathogenic Alter- naria spp. contamination in cruciferous seed is based on the culture of the seedborne fungi on nutritive media and further morphological characterization. This is a time-consuming process, whereby it takes at least 1 week to obtain a diagnos- tic result. Accurate diagnosis is not easy because numerous saprophytic Alternaria spp. commonly are found on cruciferous

Johnson et al. (10) recently described the use of a PCR-based technique using primers designed from a gene involved in pathogenicity (synthesis of the host-spe- cific AM-toxin) to specifically detect A. alternata apple pathotypes among Alter- naria field isolates. Host specificitytypi- cal of several pathogenic Alternaria spp. is dependent mainly on toxin production; therefore, effective molecular probes could be developed for diagnostic techniques by cloning genes involved in virulence.

In the present study, we developed PCR assays for detecting A. brassicae in seed batches. These methods used oligonucleo- tides complementary to sequences located on a cluster of genes that may be required for the pathogenicity of the fungus. The specificity and suitability of the designed primers were tested using standard and real-time PCR.

MATERIALS AND METHODSFungal strains and culture conditions. Isolates of Alternaria spp. and other gen- era (Table 1) were recovered from seed. Cultures were grown and maintained in petri dishes on potato dextrose agar. Alternaria isolates were identified on the basis of morphology criteria (11,16). Iden- tifications then were confirmed by PCR using specific ITS primer pairs (8) for Alternaria spp. pathogenic to crucifers.

Preparation of seed samples. Seed samples were prepared from contaminated seed of radish and cabbage as described by Iacomi-Vasilescu et al. (8). For artificial contaminations, seed were disinfected with

490 Plant Disease / Vol. 88 No. 5

1% sodium hypochlorite, rinsed with ster- ile water, soaked for 1 h in a calibrated spore suspension (106 spores/ml), and dried at room temperature on sterile filter paper. Disinfection and inoculation accu- racy was confirmed by placing 20 seed on the surface of malt-agar plates for 1 week at 25C. Seed batches showing 0% (disin- fected seed) or 100% (inoculated seed) infection were selected and mixed together to prepare seed samples with different levels of contamination (0, 5, 10, 50, and

100%). Samples were produced by placing

20 seed (artificially contaminated) or 100 seed (naturally contaminated) in a sterile tube and covering them with 0.5 and 3 ml, respectively, of liquid culture MDP medium (2% malt extract, 2% dextrose, 0.1% pep- tone). The tubes were incubated at 25C for48 h with occasional shaking. This incuba- tion step is an enrichment phase that allows an optimal increase of the fungal biomass from seed. The tubes then were vortexed briefly to separate mycelia and conidia from seed. The seed were discarded and the fun- gal structures were collected on mi- crocentrifuge filters (pore size: 0.45 m; Ultrafree-Mc Millipore, Bedford, MA) by centrifugation at 5,000 g for 10 min.DNA manipulation. DNA was ex- tracted from fungal mycelia and conidia harvested by scraping the surface of petri plate cultures (extraction from fungal cul- tures) or collected on microcentrifuge filters (extraction from seed samples). Nucleic acids were isolated according to the microwave miniprep procedure de- scribed by Goodwin and Lee (6). Alterna- tively, DNA was extracted using the Nu- cleospin Food kit (Macherey-Nagel, Dren, Germany) according to the manu- facturers instructions.PCR-based assay. Specific oligonu- cleotides ABCsens (5-CTGGTGAAA- AGGTTGCGATCGT-3) and ABCrev (5- GTGACTTTCATGAAATGACATTGATG-3), complementary to the 3 end of open reading frame (ORF)2, and 115sens (5- AACCCTATAGACCCACGTCGACTA-3) and 115rev (5-GATGGTACGCAAGGC- TTGGT-3), complementary to a portion of ORF1, were designed for the standard and real-time PCR assays, respectively, using the appropriate software (Primer 3 online and ABI PRISM Primer Express). The two ORFs were deduced from the nucleotide sequence of an A. brassicae genomic DNA fragment identified after screening a cos-

mid library with a probe corresponding to a portion of the nonribosomal peptide syn- thase (NRPS) gene. In order to test the specificity of the primer pairs against A. brassicae isolates, amplifications were performed using DNA extracted from pure fungal cultures from a range of Alternaria spp. and other fungi isolated from seed. Then the PCR procedure was applied to detect seed contamination. The universal primer pair ITS1/ITS2 (28) was used as a positive control to assess the quality of the extracted DNA. Conventional PCR was performed using 2 l of undiluted DNA preparations under the following condi- tions: Tris-HCl, pH 9.0, 20 mM (NH4)2SO4, 0.01% (wt/vol) Tween 20, 1.5 mM MgCl2, 200 M each deoxyribonu- cleotide triphosphate, and 1 unit of ther- mostable DNA polymerase (Goldstar Red DNA polymerase, Eurogentec, Seraing, Belgium). A Thermojet thermocycler (Equibio, Seraing, Belgium) was used with an initial step of 3 min at 95C; followed by 35 cycles of 30 s at 95C, 50 s at 60C, and 1 min at 72C; and a final step of 10 min at 72C. The amplification results were visualized after electrophoresis of an aliquot (10 l) of the reaction mixture on a

Fig. 1. Gel electrophoresis of polymerase chain reaction products obtained with internal transcribed spacer (ITS) 1/2 universal primers and with ABCsens/rev diagnostic primers. DNA was extracted from pure Alternaria brassicae cultures or from radish seed infected with A. brassicae, using the Nu- cleospin Food kit. Lanes M were loaded with a DNA ladder (SmartLadder Classic, Eurogentec, Seraing, Belgium).

Plant Disease / May 2004 4911.2% agarose gel. The real-time PCR reac- tions were carried out in a 25-l final vol- ume containing: 2.5 l of DNA, 12.5 l of SYBR Green PCR Master Mix 2X (Ap- plied Biosystems, Courtaboeuf, France),

300 nM forward and reverse primers and H2O up to 25 l. An ABI PRISM 700 Se- quence Detection System (Applied Biosys- tems) was used with the following steps: 2 min at 50C, 10 min at 95C, and 40 cy- cles consisting in one step at 95C for 15 s followed by one step at 60C for 1 min. Nucleic acids were quantified in unknown samples by direct comparison to a stan- dard. The DNA used as standard was ex- tracted from fungal cultures, with the con- centration measured by fluorometric assay (Turner Design Inst. 700, Sunnyvale, CA) before dilution.

RESULTSSelection of the diagnostic PCR prim- ers. Bacterial and fungal genes involved in toxin production have been used success- fully to develop molecular diagnostic tools (10). Therefore, primer pairs were de- signed on the basis of the nucleotide se- quence of a potential pathogenic cluster of two A. brassicae genes encoding an NRPS and an ATP-binding cassette (ABC) trans- porter. These genes putatively are involved in the synthesis and excretion of a toxic peptide metabolite produced by A. brassi- cae and, thus, may be suitable targets for PCR-based detection of this pathogen. We

expected to find homologous genes in related pathogenic Alternaria spp.; there- fore, PCR screening of the A. japonica and A. brassicicola genomes was performed using primers that span the A. brassicae gene cluster. This preliminary approach revealed that the two A. brassicae ORFs have counterparts on the genome of other Alternaria spp. pathogenic to crucifers (data not shown). However, the central part and 3 end of the NRPS and ABC trans- porter, respectively, were found to be less conserved among the three species. There- fore, we focused on these regions to select primers for specific detection of A. brassi- cae. Two primer pairs were designed: one for standard PCR assays, called AB- Csens/ABCrev, located near the 3 end of the ABC transporter gene coding se- quence; and one for real-time PCR assays, called 115sens/115rev, located at ap- proximately 10 kb of the NRPS gene start codon.

DNA extraction from seed. DNA was extracted routinely from fungal mycelia in pure cultures or from seed samples using a standard miniprep procedure. This tech- nique involved lysis at high temperature in a detergent-containing buffer, extraction with organic solvents, and nucleic acid precipitation in the presence of alcohol. However, alternative extraction procedures using commercial kits were tested with the aim of designing a simple and safe diag- nostic assay that could be automated to

process numerous samples. The Nucleo- spin Food kit was found to be the most efficient. Irrespective of the method used for isolating nucleic acids (i.e., from pure fungal cultures or seed samples), similar amplification patterns were obtained with both universal and specific primer pairs (Fig. 1). The DNA obtained with the Nu- cleospin Food kit also was tested successfully as template for real-time PCR (described below).

Specificity of the selected PCR prim- ers. To test the specificity toward A. bras- sicae isolates, ABCsens/rev primers were first used in a PCR reaction with genomic DNA extracted from mycelial pure cultures of different fungal isolates (Table 1). These were selected to represent a range of fungi commonly found on cruciferous seed, including the three pathogenic Alternaria spp. A. brassicicola (five isolates), A. ja- ponica (five isolates), and A. brassicae (five isolates), as well as saprophytic A. alternata isolates (two isolates), and iso- lates of Fusarium spp. (two isolates), Peni- cillium spp., Aspergillus spp., and Phoma spp. (one isolate each). Another seedborne Alternaria sp. (A. dauci) and isolates from the closely related genera Ulocladium and Stemphylium also were tested, along with one Botrytis cinerea strain isolated from sunflower seeds. A representative sample gel is shown in Figure 2. After optimisa- tion of the cycling parameters, PCR prod- ucts of the expected size (780 bp) were obtained from A. brassicae isolates only. No cross hybridization was observed with

Table 1. Names and origins of species and isolates used in the present study

Detection by Species Isolate no. Origin conv-PCRa Q-PCRbAlternaria brassicae Bre14 Radish seed + + A. brassicae Bre16 Radish seed + + A. brassicae Bre39 Radish seed + + A. brassicae Bre103 Radish seed + + A. brassicae Bre112 Radish seed + + A. brassicicola Bra3 Radish seed A. brassicicola Bra18 Radish seed A. brassicicola Bra40 Radish seed A. brassicicola Bra41 Radish seed A. brassicicola Bra43 Radish seed A. japonica Jap4 Radish seed A. japonica Jap19 Radish seed A. japonica Jap52 Radish seed A. japonica Jap63 Radish seed A. japonica Jap108 Radish seed A. alternata Alt62 Radish seed A. alternata R7404 Cabbage seed A . dauci R9228 Cress seed nt

other cruciferous pathogenic Alternaria2A and 2B), with nonpathogenic A. alter- nata or other tested fungi (Fig. 2C). Sig- nals were obtained with all tested fungi when the universal ITS1-ITS2 primer pair was used as a control of DNA quality (data not shown).

The specificity of the real-time PCR primers was checked using 100 pg of DNA extracted from pure cultures of fungi listed in Table 1. All of the selected fungi origi- nated from cruciferous seed. No increasing fluorescent signal exceeding the back- ground fluorescence (baseline threshold) was observed except when A. brassicae DNA was used as template. In that case, standard fluorescent amplification curves representing an exponential growth of PCR products were recorded and a mean 26.65

Stemphylium botryosum C27381 Cabbage seed S. botryosum R7410 Cabbage seed Botrytis cinerea BC40 Sunflower seed nt Fusarium sp. Fu6 Radish seed Fusarium sp. Fu7 Radish seed Phoma sp. Pho1 Radish seed Penicillium sp. P1 Cabbage seed Aspergillus sp. A2 Cabbage seed Verticillium sp. V1 Tomato seed nt

a conv-PCR refers to conventional polymerase chain reaction (PCR) with the ABCsens-ABCrev primer set.

b Q-PCR refers to real-time PCR with the 115sens-115rev primer set; + = amplification, = no ampli- fication, and nt = not tested.

temperature profiles of the PCR products at the end of the cycling reactions were determined with samples containing A. brassicae DNA. A single dissociation peak of increased fluorescence was obtained for the specific 115sens-115rev primer at a melting temperature of 83 to 84C (data not shown). This indicated that the specific amplification obtained did not involve cross hybridization with other A. brassi- cae-related sequences or the formation of primer dimers.

492 Plant Disease / Vol. 88 No. 5

PCR detection in seed samples. In a preliminary experiment, the PCR detection test was applied to radish and cabbage seed batches artificially contaminated with A. brassicae (isolate Bre112). DNA was extracted from the different seed samples and used as a template in PCR experiments with either the ABCsens-ABCrev primer pair (standard assays) or the 115sens-

115rev primer pair (real-time PCR). In the latter case, parallel experiments with serial dilutions of a calibrated A. brassicae DNA extract were carried out. A. brassicae was detected using the conventional PCR pro- cedure in all contaminated seed batches (Fig. 3), even at contamination levels as low as 5% (Fig. 3B). As expected, a sig- nal also was observed with the positive control (DNA extracted from a mycelial pure culture of the A. brassicae isolate) but not with the negative control (disin- fected seed). Amplifications using the universal ITS1/ITS2 primer pair were successful with all samples, indicating that the extracted DNA was suitable for PCR (Fig. 3A). No fungal growth was observed with disinfected seed plated on solid growth medium; therefore, the sig- nal obtained with these seed after amplifi- cation with the nonspecific primers probably originated from co-extracted host plant DNA.When real-time PCR was used with se- rial dilutions of an A. brassicae DNA cali- brated extract as template, a standard curve was plotted using known amounts of A. brassicae DNA against the CT calculated with ABI Prism 7000 sequence detection system (SDS) software (Fig. 4). This curve revealed that the primer set used in this experiment was quite accurate over a linear range of at least 3.5 orders of magnitude and that the correlations between CT and DNA quantities were high (R2 = 0.986). The mean CT values obtained with 100 and

10% artificially contaminated radish seed batches were 25.56 and 32.55, respec- tively, corresponding to approximately 250 and 3.5 pg of A. brassicae DNA, respec- tively.

These results were obtained with artifi- cially contaminated seed free of other fun- gal or bacterial contaminations. It was then necessary to check this molecular diagno- sis approach with cabbage and radish seed naturally contaminated with pathogenic Alternaria spp. Six different seed lots were tested (Table 2). Infection levels were de- termined on 200 seed using the standard plating technique. Amplifications using the nonspecific ITS1-ITS2 primer pair were successful with all DNA extracted from samples, indicating that this DNA was suitable for further amplifications (Fig.

5B). When the ABCsens/rev primer pairReal-time PCR was carried out with samples prepared with the six radish seed lots. Amplification curves were obtained only with DNA extracted from lots C to F. Similar CT values (mean: 32.54) were noted for seed lots E and F (Fig. 4). This mean value is close to that obtained with the 10% artificially contaminated seed batch. The CT value for seed lot C, with an A. brassicae infection level of 2%, was

34.28.

DISCUSSIONConventional tests used to detect A. brassicae in seed involve a combination of pathogenicity assays and morphological characterization. However, the drawback of such methods is that accurate pathogen identification can be difficult and time- consuming. Hence, there is an urgent need for a sensitive and rapid test that could

detect seedborne A. brassicae. With ad- vances in molecular biology, most recently developed techniques for microorganism detection involve PCR analysis. The ad- vantages of PCR-based assays include specificity, sensitivity, and speed. Hence, such assays have been designed for the detection of various plant pathogens, in- cluding seedborne fungi (22,24). A few PCR-based methods have already been reported for the detection of Alternaria spp. on carrot (12,19), linseed (15), and cruciferous (8) seed, as well as in host tissues (15) or food products (32). The ITS region of nuclear rDNA (8,12,15,32) is the main genomic region targeted for PCR primer development. Recently, Iacomi- Vasilescu et al. (8) reported a sensitive and rapid PCR diagnostic assay for the identi- fication of A. brassicicola and A. japonica on cruciferous seed. Nevertheless, the ITS

was used, A. brassicae contaminations up to 3% (seed lot D) were detected (Fig. 5A). No amplification signal was obtained with DNA extracted from the A, B, and C seed lots.

Fig. 2. Gel electrophoresis of polymerase chain reaction products obtained with the ABCsens/rev

diagnostic primers and DNA extracted from pure cultures of various Alternaria brassicae isolates or from pure cultures of A, A. brassicicola isolates or B, A. japonica isolates or C, isolates from different fungal species recovered from seed. Numbers above the gels correspond to isolate identification codes as described in Table 1. M lanes were loaded with a DNA ladder (SmartLadder Classic, Eurogentec, Belgium).

Plant Disease / May 2004 493primers designed in this study for A. bras- sicae were found to be not very specific because amplification signals were consis- tently obtained with DNA from some A. japonica isolates.

In the present study, we used two primer sets, highly specific to A. brassicae, de- signed from two clustered genes corre- sponding to an NRPS gene and an ABC transporter gene. These two genes may produce and secrete factors associated with the virulence of the fungal pathogen (i.e., host-specific peptidic toxins or sideropho- res).

The conventional PCR-based seed assay that we developed specifically detects the presence of A. brassicae in cruciferous seed, even at infection levels as low as 3% and after only 2 days of incubation. The first major obstacle that we had to over- come was the low levels of target DNA from the fungi. An incubation of 48 h in MDP liquid nutritive medium was suitable to obtain an optimal increase of the fungal biomass (8); therefore, the amount of fun- gal genomic DNA recovered generally was sufficient for amplification of the target

Fig. 4. Standard curve of Alternaria brassicae DNA concentration standards against the cycle thresh- old (CT). CTs were determined, using real-time PCR and 115sens/rev diagnostic primers, as the cycle at which the fluorescent signal exceeded background fluorescence. CTs obtained with DNA extracted from 100% () and 10% () artificially contaminated radish seed or 10% naturally infected radish seed () are indicated on the plot.

Fig. 3. Gel electrophoresis of polymerase chain reaction products obtained with internal transcribed spacer (ITS) 1/2 universal primers or ABCsens/rev diagnostic primers and DNA extracted from seed artificially infected with Alternaria brassicae. Seed contamination levels are indicated above the gels. Lanes labeled T+ were loaded with DNA extracted from a pure culture of A. brassicae and lanes labeled M were loaded with a DNA ladder (SmartLadder Classic, Eurogentec, Seraing, Belgium).

494 Plant Disease / Vol. 88 No. 5

DNA sequences. The nutritive medium used for macerating seed was chosen on the basis of our previous observations. Two other liquid incubation media (i.e., clari- fied V8 broth and CW; 30), also were tested by Iacomi-Vasilescu et al. (8). Simi- lar results were obtained with MDP or V8 media, but MDP was preferred because of easier handling during a subsequent filtra- tion step, whereas no signal was obtained with the CW medium. PCR inhibitors

represent another obstacle commonly en- countered when conducting assays using complex samples (3,9). These inhibitors often have seed component origins (19). In this study, the seed were removed after incubation and prior to DNA extraction and fungal mycelia and conidia were col- lected using a spin filter unit. For technical reasons (e.g., size of the spin filter), we used seed batches containing only 100 seed. Thus, infection levels lower than 3%

were not detected with good repeatability. In the original PCR diagnostic method described for A. japonica and A. brassici- cola (8), phenol-chloroform extraction followed by an isopropanol precipitation step were sufficient to obtain a crude DNA preparation that subsequently could be used as template for amplification without any further treatment. In the present work, we demonstrated that this DNA isolation procedure could be replaced successfully

Table 2. Infection level (%) of seed lots naturally infected with pathogenic Alternaria spp. used in the present study

Infection level (%) of seed lot numberFungal speciesA (cabbage)B (radish)C (radish)D (radish)E (radish)F (radish)

Alternaria brassicae00239.510

A. brassicicola800000

A. japonica010000

A. alternata19391138.52713.5

Fusarium sp.200100.5

Phoma sp.1001.500

Fig. 5. Gel electrophoresis of polymerase chain reaction products obtained with A, ABCsens/rev diagnostic primers or B, internal transcribed spacer (ITS)

1/2 universal primers and DNA extracted from seed. Samples were prepared with seed naturally infected with Alternaria spp. from seed lots A to E. Lanes labeled T+ were loaded with DNA extracted from a pure culture of Alternaria brassicae and lanes labeled M were loaded with a DNA ladder (SmartLadder Classic, Eurogentec, Seraing, Belgium).

Plant Disease / May 2004 495by treating the fungal mycelium with a lysis buffer initially designed for process- ing food samples, and purifying DNA us- ing an affinity-based method with silica membranes from a commercial kit. This DNA extraction procedure potentially could be used for routine analysis of seed lots and is amenable to automation. In the same vein, routine analyses require an alternative method for electrophoretic separation of the amplification products. Our preliminary results with real-time PCR using SYBR green are encouraging. This fluorescent reporter dye binds double- stranded DNA; therefore, increasing fluo- rescence may be monitored continuously during the amplification procedure, thus eliminating the need for post-PCR analy- sis. Real-time PCR assays have been im- plemented for the detection of fungal plant pathogens in several recent studies (2,5,13,29,31). This technique should soon be useful for seed health testing, and Tay- lor et al. (23) already have used it for the detection of Microdochium nivale in wheat seed. We showed here that rapid and spe- cific detection of A. brassicae is possible using real-time PCR in the presence of SYBR green with a primer set designed from an NRPS gene sequence. This primer set gave satisfactory results with a wide range of target DNA concentrations, thus allowing accurate quantification of seed infection levels. We obtained similar CT values with DNA extracted from naturally contaminated seed (10% infection, as esti- mated by the standard plating method) or from seed artificially infected with A. brassicae at a level of 10%. Real-time PCR was found to be more sensitive than the standard amplification procedure, and a successful amplification was obtained with a seed lot with 2% A. brassicae in- fection. According to the Internal Seed Testing Association, this corresponds to the maximal level of infection of com- mercial cruciferous seed by pathogenic Alternaria spp.The PCR diagnosis method described here, which combines DNA extraction from seed using the Nucleospin Food kit and real-time PCR in the presence of SYBR green and primers designed from an NRPS gene, is readily amenable to auto- mation. With this method, after ap- proximately 50 h, A. brassicae can be accurately and sensitively detected in in- fected seed. Homologous sequences have been identified in the A. japonica and A. brassicicola genomes; therefore, the same method also may be applied for the detec- tion of these two seed pathogens, provided that relevant primers are designed. More- over, although many tests probably will be necessary to accurately correlate the amount of DNA extracted from infected seed and their level of infection (particularly when testing seed lots with very low infection levels), it should be

possible to further develop this method to make it quantitative.

ACKNOWLEDGMENTSWe thank the Agence Universitaire de la Fran- cophonie for providing B. Iacomi-Vasilescu with a post-doctoral fellowship.

LITERATURE CITED1. Babadoost, M., Gabrielson, R. L., Olson, S.

A., and Mulanax, M. W. 1993. Control of Al- ternaria disease of brassica seed crops caused by Alternaria brassicae and Alternaria brassi- cicola with ground and aerial fungicide appli- cations. Seed Sci. Technol. 21:1-7.

2. Cullen, D. W., Lees, A. K., Toth, I. K., and Duncan, J. M. 2002. Detection of Colleto- trichum coccodes from soil and potato tubers by conventional PCR and quantitative real- time PCR. Plant Pathol. 281-292.

3. De Boer, S. H., Ward, L. J., Li, X., and Chitta- ranjan. 1995. Attenuation of PCR inhibition in the presence of plant compounds by addition of BLOTTO. Nucleic Acids Res. 23:2567-

2568.

4. Fernandez, D., Ouinten, M., Tantaoui, A., Geiger, J. P., Daboussi, M. J., and Langin, T.

1998. Fot 1 insertions in the Fusarium ox- ysporum f. sp. albedinis genome provide diag- nostic PCR targets for detection of the date palm pathogen. Appl. Environ. Microbiol.

64:633-636.

5. Frederick, R. D., Snyder, K. E., Tooley, P. E., Berthier-Schaad, Y., Peterson, G. B., Bonde, M. R., Schaad, N. W., and Knorr, D. A. 2000. Identification and differentiation of Tilletia in- dica and T. walkeri using the polymerase chain reaction. Phytopathology 90:951-960.

6. Goodwin, D. C., and Lee, S. B. 1993. Micro- wave miniprep of total genomic DNA from fungi, plants, protists and animals for PCR. Biotechniques 15:438-444.

7. Iacomi-Vasilescu, B., Avenot, H., Bataill- Simoneau, N., Laurent, E., Gunard, M., and Simoneau, P. In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Prot. In press.

8. Iacomi-Vasilescu, B., Blancard, D., Gunard, M., Molinero-Demilly, V., Laurent, E., and Simoneau, P. 2002. Development of a PCR- based diagnostic assay for detecting patho- genic Alternaria species in cruciferous seeds. Seed Sci. Technol. 30:87-95.

9. Jobes, D. V., Hurley, D. L., and Thien, L. B.

1995. Plant DNA isolation: a method to effi- ciently remove polyphenolics, polysaccha- rides, and RNA. Taxon 44:379-386.

10. Johnson, R. D., Johnson, L., Kohomoto, K., Otani, H., Lane, C; R., and Kodama, M. 2000. A Polymerase Chain Reaction-based method to specifically detect Alternaria alternata ap- ple pathotype (A. mali), the causal agent of Al- ternaria blotch of apple. Phytopathology

90:973-976.

11. Joly, P. 1964. Le genre Alternaria. (The Genus

Alternaria). P. Lechevalier Press, Paris.

12. Konstantinova, P., Bonants, P. J. M., Van Gent- Pelzer, M. P. E., Van der Zouwen, P., and Van den Bulk, R. 2002. Development of specific primers for detection and identification of Al- ternaria spp. in carrot material by PCR and comparison with blotter and plating assays. Mycol. Res. 106:23-33.

13. Lees, A. K., Cullen, D. W., Sullivan, L., and Nicolson, M. J. 2002. Development of conven- tional and real-time PCR assays for the detec- tion and identification of Rhizoctonia solani AG-3 in potato in soil. Plant Pathol. 51:293-

302.

14. Li, K. N., Rouse, D. I., and German, T. L.

1994. PCR primers that allow intergeneric dif- ferentiation of ascomycetes and their applica- tion to Verticillium spp. Appl. Environ. Micro- biol. 60:4324-4331.

15. McKay, G. J., Brown, A. E., Bjourson, A. J., and Mercer, P. C. 1999. Molecular charaterisa- tion of Alternaria linicola and its detection in linseed. Eur. J. Plant Pathol. 105:157-166.

16. Neegard, P. 1945. Danish Species of Alter- naria and Stemphylium. Oxford University Press, London.

17. Niessen, M. L., and Vogel, R. F. 1998. Group specific PCR-detection of potential trichothe- cene-producing Fusarium-species in pure cul- tures and cereal samples. Syst. Appl. Micro- biol. 21:618-631.

18. Nishimura, S., and Kohmoto, K. 1983. Host- specific toxins and chemical structures from Alternaria species. Annu. Rev. Phytopathol.

21:87-116.

19. Pryor, B. M., and Gilbertson, R. L. 2001. A PCR-based assay for detection of Alternaria radicina on carrot seed. Plant Dis. 85:18-23.

20. Rude, S. K., Duczek, L. J., and Seidle, E.

1999. The effect of Alternaria brassicae, Al- ternaria raphani and Alternaria alternata on seed germination of Brassica rapa canola. Seed Sci. Technol. 27:795-798.

21. Shrestha, S. K., Mathur, S. B., and Munk, L.

2000. Alternaria brassicae in seeds of rape- seed and mustard, its location, transmission from seeds to seedling and control. Seed Sci. Technol. 28:75-84.

22. Smith, O. P., Peterson, G. L., Beck, R. J., Schaad, N. W., and Bonde, M. R. 1996. Devel- opment of a PCR-based method for identifica- tion of Tilletia indica, causal agent of Karnal bunt of wheat. Phytopathology 86:115-122.

23. Taylor, E., Bates, J., Kenyon, D., Maccaferri, M., and Thomas, J. 2001. Modern molecular methods for characterization and diagnosis of seed-borne fungal pathogens. J. Plant Pathol.

83:75-81.

24. Taylor, J. L. 1993. A simple, sensitive, and rapid method for detecting seed contaminated with highly virulent Leptosphaeria maculans. Appl. Environ. Microbiol. 59:3681-3685.

25. Tewari, J. P. 1991. Structural and biochemical bases of the blackspot disease of crucifers. Adv. Struct. Biol. 1:325-349.

26. Verma, P. R., and Saharan, G. S. 1994. Mono- graph of Alternaria diseases of Crucifers. In: Saskatoon Research Centre Technical Bulletin

1994-6E. Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.

27. Walton, J. D. 1996. Host-selective toxins: Agents of compatibility. Plant Cell 8:1723-

1733.

28. White, T. J., Bruns, T., Lee, S., and Taylor, J.

1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: PCR protocols: A guide to methods and appli- cations. Academic Press. San Diego, CA.

29. Winton, L. M., Stone, J. K., Watrud, L. S., and Hansen, E. M. 2002. Simultaneous one-tube quantification of host and pathogen DNA with real-time polymerase chain reaction. Phytopa- thology 92:112-116.

30. Wu, W. S., and Chen, T. W. 1999. Develop- ment of a new selective medium for detecting Alternaria brassicicola in cruciferous seeds. Seed Sci. Technol. 27:397-409.

31. Zhang, A. W., Hartman, G. L., Curio-Penny, B., and Becker, K. B. 1999. Molecular detec- tion of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopa- thology 89:796-804.

32. Zur, G., Hallerman, E. M., Sharf, R., and Kashi, Y. 1999. Development of a Polymerase Chain Reaction-based assay for the detection of Alternaria fungal contamination in food products. J. Food Prot. 62:1191-1197.

496 Plant Disease / Vol. 88 No. 5

ESPAOL

Pgina 1

Convencional y en tiempo real el ensayo de PCR-base para la deteccinBrassicae Alternariapatgena en Semilla CruciferousThomas Guillemette,UMR 77 Pathologie Vgtale, Facult des Sciences, Angers, Francia;Batrice Iacomi-Vasilescu,UMR 77 Pathologie Vgtale, Francia y USAMV, Departamento de Proteccin Vegetal, Bucarest, Rumania;

yPhilippe Simoneau,UMR 77 Pathologie Vgtale, Francia

RESUMENGuillemette, T., Iacomi-Vasilescu, B., y Simoneau, P. 2004. convencional y PCR en tiempo real para la deteccin de ensayo basadoAlternariapatgena

brassicaeen las semillas de las crucferas.Dis Planta.88: 490-

496.Alternaria brassicaees un importante hongo patgeno transmitida por semilla responsable de la enfermedad de la mancha negro de las crucferas.Control sanitario de comercial

semilla es necesario limitar la propagacin de este patgeno.Mtodos de deteccin actuales, basados en la cultura y la identificacin morfolgica de los hongos, son

consume mucho tiempo, laboriosa, y no siempre fiable.Por lo tanto, una reaccin en cadena de la polimerasa (PCR) fue desarrollado con base enA.brassicae-

cebadores especficos diseados sobre la base de la secuencia de dos genes agrupados potencialmente implicados en la patogenicidad.Se seleccionaron dos grupos de cebadores

para convencional y PCR en tiempo real, respectivamente.En ambos casos,A.brassi- caese detect especficamente utilizando ADN extrado de la semilla.El Real-

mtodo basado en la PCR en tiempo que aqu se presenta se puede automatizar fcilmente y los resultados preliminares indican que es eficaz para la estimacin cuantitativa de las semillas

infeccin.

Palabras clave adicionales: ABC transportador, diagnstico molecular, no ribosomal pptido sintasa

semillas (1), lo que complica patgeno identificacin.Algunos aislamientos esporulan escasamente o producen micelio estril bajo laboratorio

condiciones.La identificacin morfolgica es imposible cuando esto ocurre.

Enfoques moleculares, principalmente la reaccin en cadena de la polimerasa (PCR), con frecuencia se han utilizado como herramientas para la deteccin de numerosos

hongos patgenos (4,14,17).Un ensayo de PCR sensible y rpido, basado en la amplificacin de secuencias del espaciador transcrito interno (ITS)

regiones del ADN ribosomal, recientemente se ha desarrollado para detectarA.brassicicolaoA.cinjaponicainfeccin de las semillas de las crucferas (8).

Desafortunadamente, este mtodo no gener un diagnstico fiable cuando estaban contaminados de semillas

conun.brassicaeporque reacciones cruzadas

con otras especies de hongos en otro tiempo estabais

observado.

El gneroAlternariacomprende sapro-

ftico y especies patgenas de hongos filamentosos tous.Patgenos de las plantas de este gnero tienen una gama de huspedes distinta y limitada.Ha sido

sugiere fuertemente que tanto la virulencia y especificidad de acogida son parte de- pendiente de la produccin de toxinas especficas de servidor (HSTS; 18,27).La

complejo de tres especies,A.brassicae, A. brassicicola,yA.japonica(anteriormente llamadoA. raphani),es el responsable del punto negro

enfermedad de las crucferas y se transmite por la semilla de muchas especies pertenecientes a los gnerosBrassicayRaphanus.La enfermedad es de gran

importancia en crucferas cultivadas en todo el mundo, con la mayora de cultivares comerciales siendo susceptible (25).Ocurre en todo el crecimiento planta husped

etapas, en las partes areas, y es identificable por lesiones negras, a menudo rodeados por zonas clorticas (26).La enfermedad tambin puede ser destructivo

para los productores de semillas porque la infeccin a menudo conduce a aicos pod prematuro y semilla arrugada, con una eficiencia de germinacin alterada, como

observado en varios hosts de crucferas, tales comoBrassica juncea, B.campestris,yB.rapa(20,21).La enfermedad mancha negra en

una seria reduccin de los rendimientos de los cultivos, como la reduccin de la calidad del mercado de cabezas de coliflor y la calidad del aceite en la familiaBrassicaceaeoleaginosa

especies.Los hongos pasan el invierno en los residuos infectados de cultivos, semillas y cualquier especie de malezas crucferas relacionadas.Pueden ser transmitidos por semilla a travs de micelios

dentro de la semilla o esporas de transitorios en la superficie de la semilla.Las esporas son fcilmente arrastrados por el viento y pueden dispersarse a grandes distancias pasantes a cabo la

estacin de crecimiento.

Las prcticas comunes para prevenir la enfermedad no siempre proporcionan un control satisfactorio de la infeccin.Control gentico podra ser el ms

cultivares estrategia eficaz, pero la mayora disponibles comercialmente muestran poca resistencia al patgeno.Enfermedad del punto negro podra ser controlado

con fungicidas, pero aislados de campo deA.brassicicolaexpresar resistencia cruzada a los fungicidas de amplio espectro comunes fueron recientemente

identificado en Francia (7).Las rotaciones con cultivos noncruciferous, la destruccin de residuos de cultivos y control de malas hierbas tambin pueden ayudar a reducir la incidencia

de esta enfermedad.Ms an, el uso de semilla libre de patgenos es esencial para limitar la propagacin y la incidencia de la enfermedad.La rutina actual

tcnica utilizada para evaluar los niveles de patgenosAlternativo nariaspp.la contaminacin de las semillas de las crucferas se basa en la cultura de los hongos por las semillas

en medios nutritivos y posterior caracterizacin morfolgica.Este es un proceso que consume tiempo, por lo que se necesitan al menos 1 semana para obtener una

diag- resultado tic.El diagnstico exacto no es fcil porque numerosos saprofticaAlternariaspp.comnmente se encuentran en las crucferas

Johnson et al.(10) describieron recientemente el uso de una tcnica basada en PCR que utilizan cebadores diseados a partir de un gen implicado en la patogenicidad

(Sntesis de la espe- AM-toxina acogida espe-) para detectar especficamenteA.patotipos manzanaAlternariaentreAlternativocamponariaasla.Anfitrin

especificidad-tpico de variasspp.-Alternariapatgenadepende principalmente de la produccin de toxinas;por lo tanto, sondas moleculares eficaces

podra ser desarrollado para tcnicas de diagnstico por la clonacin de genes implicados en la virulencia.

En el presente estudio, hemos desarrollado ensayos de PCR para la deteccin deA.brassicaeen lotes de semillas.Estos mtodos utilizados oligonucleo- mareas

complementaria a secuencias localizadas en un grupo de genes que pueden ser necesarios para la patogenicidad del hongo.La especificidad y

idoneidad de los cebadores diseados se ensayaron usando estndar y PCR en tiempo real.MATERIALES Y METODOSCepas y condiciones de cultivo de hongos.Los aislamientos deAlternariaspp.y otra era generacin (Tabla 1) se recuperaron de la semilla.Los cultivos fueron

crecer y se mantuvieron en placas de Petri sobre agar de dextrosa de patata.aislamientosde Alternariase identificaron sobre la base de criterios de morfologa (11,16).

Identificaciones luego fueron confirmados por PCR utilizando pares de cebadores especficos SUS (8) deAlternariaspp.patgenos para las crucferas.

Preparacin de muestras de semillas.Se prepararon muestras de semillas de la semilla contaminada de rbano y repollo como se describe por Iacomi-

Vasilescu et al.(8).Para contaminaciones artificiales, semillas se desinfectaron con

Pgina 2

490 Plant Disease / Vol.88 No. 5

Hipoclorito de sodio al 1%, se enjuaga con agua estril, empapado durante 1 h en una suspensin de esporas calibrado (106 esporas / ml), y se sec a habitacin

temperatura sobre papel de filtro estril.Desinfeccin y la inoculacin precisa picante se confirm mediante la colocacin de 20 semillas en la superficie de malta-agar

placas durante 1 semana a 25 C.Se seleccionaron y se mezclan lotes de semillas que muestran 0% (desin- semilla infectado) o 100% (semilla inoculada) infeccin

juntos para preparar muestras de semillas con diferentes niveles de contaminacin (0, 5, 10, 50, y

100%).Las muestras fueron producidos colocando

20 semillas (contaminado artificialmente) o 100 semillas (contaminada de manera natural) en un tubo estril y se les cubre con 0,5 y 3 ml, respectivamente, de

MDP medio de cultivo lquido (extracto de malta 2%, 2% de dextrosa, 0,1% PEP-tono).Los tubos se incubaron a 25 C durante

48 h con agitacin ocasional.Este paso de incubacin es una fase de enriquecimiento que permite un aumento ptimo de la biomasa fngica a partir de semillas.

Los tubos se agitaron brevemente a continuacin para separar el micelio y conidios de la semilla.La semilla se descartaron y las estructuras fun- gal eran

recogido en filtros migrantes crocentrifuge (tamao de poro: 0,45 m; Ultrafree-Mc Millipore, Bedford, MA) por centrifugacin a 5000 gdurante 10 min.

ADN manipulacin.El ADN se extrajeron a partir de micelios de hongos y conidios cosechada por raspado de la superficie de cultivos en placas de Petri

(Extraccin de las culturas por hongos) o recogidos en los filtros de microcentrfuga (extraccin de muestras de semillas).Se aislaron los cidos nucleicos

de acuerdo con el procedimiento miniprep de microondas se describe por Goodwin y Lee (6).Alternativamente, el ADN fue extrado por medio de la Nu-

kit de Alimentos cleospin (Macherey-Nagel, Dren, Alemania) de acuerdo con las instrucciones del fabricante.

Ensayo basado en PCR.Utilizando el software apropiado (Primer 3 en lnea y ABI PRISM Primer Express).Los dos ORFs se dedujeron a partir de la secuencia de nucletidos.El genotipo fragmento de ADNbrassicaeidentificado despus de cribado de una cosmediados biblioteca con una sonda correspondiente a una parte de Thase el pptido no ribosomal sin- gen (NRPS).Con el fin de probar la especificidad de los pares de cebadores contraA.brassicaeasla, amplificaciones se realizaron utilizando ADN extrado a partir de cultivos puros de hongos a partir de una gama de Alternariaspp.y otros hongos aislados a partir de semillas.A continuacin, el procedimiento de PCR se aplic para detectar la contaminacin de la semilla.El cebador universal

par ITS1 / ITS2 (28) se utiliz como control positivo para evaluar la calidad del ADN extrado.PCR convencional se realiz con 2 l

de preparados diluidos de ADN bajo las siguientes condiciones: Tris-HCl, pH 9,0, 20 mM (NH

4

)2SO4

, 0,01% (peso / vol)

, 200 mM de cada trifosfato cleotide desoxirribonucletidos, y 1 unidad de ADN polimerasa ter- resistente a la deformacin .Un termociclador se utiliz por 3 min a 95 C;seguido por 35 ciclos de 30s a 95 C, 50 s a 60 C y 1 min a 72 C;y una etapa final de 10 min a 72 C.Los resultados se visualizaron despus de la electroforesis de una alcuota

Fig.1.Gel de electroforesis de los productos de reaccin en cadena de la polimerasa obtenida con espaciador transcrito interno (ITS) 1/2 cebadores universales y con

Page 3

ABCsens / rev cebadores de diagnstico.Se extrajo ADN deAlternaria brassicaeculturaspuroo a partir de semillas de rbano infectado conA.brassicae,utilizando el Nu-

kit de Alimentos cleospin.Lanes M se cargaron con una escalera de ADN (Smartladder Classic, Eurogentec, Seraing, Blgica).

Plant Disease / Mayo 2004 491

1,2% de gel de agarosa.Los PCR en tiempo real las reacciones se llevaron a cabo en un volumen final de 25 l que contiene: 2,5 l de ADN, 12,5 l de SYBR

Green PCR Master Mix 2X (Aplicado Biosystems, Courtaboeuf, Francia),

300 nM adelante y atrs primers y H

2

O hasta 25 l.Un ABI PRISM 700 Se- Sistema de Deteccin de secuencia (Applied Biosystems) fue

se utiliza con los siguientes pasos: 2 min a 50 C, 10 min a 95 C y 40 ciclos consistentes en un paso a 95 C durante 15 s, seguido de un paso a

60 C durante 1 min.Los cidos nucleicos se cuantificaron en muestras desconocidas por comparacin directa a un estndar.El ADN utilizado como estndar era

extrajeron a partir de cultivos de hongos, con la concentracin medida mediante ensayo fluoromtrico (Turner Diseo Inst. 700, Sunnyvale, CA) antes

dilucin.

RESULTADOSLa seleccin de la PCR de diagnstico cebado res.Los genes de bacterias y hongos que participan en la produccin de toxinas se utilizo para desarrollar herramientas de diagnstico molecular.Por lo tanto, los pares de cebadores fueron sobre la base de la secuencia de nucletidos de dos genes que codifican unaA.brassicae.

Estos genes involucrados en un metabolito pptido txico producido porA.brassicaey son adecuadas para PCR deteccin basada de este patgeno.Se esperaba encontrar genes homlogos en patgena relacionadaAlternariaspp, Por lo tanto, la deteccin por PCR de laA.japonicayA.brassicicola se realiz usando cebadores que abarcan elA.brassicae.seleccionar cebadores para la deteccin especfica deA. brassicae.Dos pares de cebadores fueron diseados: uno para los ensayos de PCR estndar, llamado AB-

Csens / ABCrev, situado cerca del extremo 3 'del gen transportador ABC secuencia de codificacin;y otro para los ensayos de PCR en tiempo real, llamado

115sens / 115rev, ubicado en Aproximadamente 10 kb de los PNR codn de inicio del gen.La extraccin de ADN a partir de semillas.Se extrajo el ADN del micelios de hongos de las muestras de semillas, para estraccion se uso kit de alimentos que fue muy eficiente.Para aislar

cidos nucleicos, patrones de amplificacin similares se obtuvieron con ambos pares de cebadores universales y especficosEl ADN obtenido con el kit de Alimentos tambin fue probado con xito como molde para la PCR en tiempo real

Especificidad de las imprimaciones PCR seleccionados.Para probar la especificidad de A. brassicae se utilizaron cebadores mediante reaccin de PCR con ADN genmico extrado de cultivos puros de micelio de diferentes aislados fngicos (Tabla 1).Estos fueron seleccionados para

representar una gama de hongos que se encuentran comnmente en las semillas de crucferas, incluyendo los tres patgenoAlternariaspp.A.brassicicola(cinco aislamientos),

A. japonica(cinco aislamientos), yA.brassicae(cinco aislamientos), as comoAlternariaasla (dos aislamientos), y los aislados de

Fusariumspp.(dos aislamientos),penitente Cilliumspp.,Aspergillusspp., yPhomaspp.(Uno aislar cada uno).OtraAlternariasp transmitida por semilla.(A.dauci)y aislados de los gneros estrechamente relacionadosUlocladiumyStemphyliumtambin fueron probados, junto con unode Botrytis cinereacepa

aislado de semillas de girasol.Una muestra de gel representativo se muestra en la Figura 2. Despus de la optimi- zacin de los parmetros de ciclacin, ducto PCR

ductos del tamao esperado (780 pb) se obtuvieron deA.brassicaeasla solamente.No hibridacin cruzada se observ con

Tabla 1.Los nombres y orgenes de las especies y los aislamientos utilizados en el presente estudio

Deteccin porEspeciesAislar no.OrigenCONV-PCRunQ-PCRbAlternaria brassicaeBre14

Semilla de rbano

+

+A.brassicaeBre16

Rbano

semilla

+

+A.brassicaeBre39

Semilla de rbano

+

+A.brassicaeBre103

Semilla de rbano

+

+A.brassicaeBre112

Semilla de rbano

+

+A.brassicicolaBra3

Semilla de rbano

-

-A.brassicicolaBra18

Semilla de rbano

-

-A.brassicicolaBra40

Semilla de rbano

-

-A.brassicicolaBra41

Semilla de rbano

-

-A.brassicicolaBra43

Rbano

semilla

-

-A.japonicaJap4

Semilla de rbano

-

-A.japonicaJap19

Semilla de rbano

-

-A.japonicaJap52

Semilla de rbano

-

-A.japonicaJap63

Semilla de rbano

-

-A.japonicaJap108

Semilla de rbano

-

-A.AlternariaAlt62

Semilla de rbano

-

-A.AlternariaR7404

Semillas de col

-

-A.dauciR9228

Semillas de berro

-

Nuevo Testamento

otraAlternariapatgena crucferas

2A y 2B), con no patgenoA.alternativashongos ensayadosnatau otros (Fig. 2C).Seales se obtuvieron con todos los hongos ensayados cuando el

universal de par de cebadores ITS1-ITS2 se utiliz como un control de la calidad del ADN(datosno mostrados).La especificidad de los cebadores de PCR en tiempo real se comprob usando 100 pg de ADN extrado de cultivos puros de hongos listados en la Tabla 1. Todos

de los hongos seleccionados origi- nado a partir de semillas de las crucferas.No hay seal fluorescente creciente exceda la fluorescencia de fondo (lnea de base

umbral) se observ excepto cuandoA.ADNbrassicaefue utilizado como plantilla.En ese caso, las curvas de amplificacin fluorescentes estndar

que representa un crecimiento exponencial de productos de PCR fueron grabadas y una media 26.65

Stemphylium botryosumC27381

Semillas de col

-

-S.botryosumR7410

Semillas de col

-

-Botrytis cinereaFC40

Semilla de girasol

-

ntFusariumsp.FU6

Semilla de rbano

-

-Fusarium sp.FU7

Semilla de rbano

-

-Phoma sp.Pho1

Semilla de rbano

-

-Penicillium sp.P1

Semillas de col

-

-Aspergillussp.

A2

Semillas de col

-

-

Pgina 4

Verticilliumsp.

V1

Tomate de semillas

-

Nuevo Testamento

un

conv-PCR se refiere a la reaccin en cadena de la polimerasa convencional (PCR) con el conjunto de cebadores ABCsens-ABCrev.

b

Q-PCR se refiere a la PCR en tiempo real con el conjunto de cebadores 115sens-115rev;+ = Amplificacin, - = sin amplificacin, y nt = no ensayado.

perfiles de temperatura de los productos de PCR en el extremo de las reacciones cclicas se determinaron con muestras que contienenA.ADNbrassicae.La

pico disociacin solo del aumento de la fluorescencia se obtuvo para el cebador especfico 115sens-115rev a una temperatura de fusin de 83 a

84 C(datosno mostrados).Esto indica que la amplificacin especfica obtenida no implicaba la hibridacin cruzada con otraA.secuenciasbrassi- CAE-relacionadas o la formacin de dmeros de cebadores.

492 Plant Disease / Vol.88 No. 5

Deteccin de PCR en muestras de semillas.En un experimento preliminar, la prueba de deteccin de PCR se aplic a rbano y col lotes de semillas

contaminado artificialmente conA.brassicae(aislar Bre112).Se extrajo el ADN de las diferentes muestras de semillas y se utiliza como una plantilla en

Experimentos de PCR, ya sea con la pareja ABCsens-ABCrev imprimacin (ensayos estndar) o la 115sens-

115rev par de cebadores (PCR en tiempo real).En este ltimo caso, experimentos paralelos con diluciones seriadas de un calibradoA.extracto de ADN fueronbrassicaellevado a cabo.A.brassicaese detect utilizando el procedimiento de PCR convencional en todos los lotes de semillas contaminadas (Fig. 3), incluso a

los niveles de contaminacin tan bajas como 5% (Fig. 3B).Como era de esperar, una seal tambin Nal se observ con el control positivo (ADN extrado de una

cultivo puro del micelio de laA.brassicaeaislar) pero no con el control negativo (semilla infectado desin-).Ampliaciones utilizando el

universal de par de cebadores ITS1 / ITS2 tuvieron xito con todas las muestras, indicando que el ADN extrado era adecuado para PCR (Fig. 3A).

Sin crecimiento de hongos se observ con semilla desinfectada chapada en medio de crecimiento slido;por tanto, el de seal obtenidos con estos descendencia despus

la amplificacin con los cebadores no especficos probablemente se origin a partir de co-extrados planta husped ADN.

Cuando se utiliz la PCR en tiempo real con diluciones serial de unaA.extracto bradobrassicaeADN cali- como molde, de una curva estndar se traz

usando cantidades conocidas deA.ADNbrassicaecontra de la C

T

calculada con el ABI Prism 7000 secuencia sistema de deteccin (SDS) de software (Fig.

4).Esta curva revel que el conjunto de cebadores usado en este experimento era bastante precisa en un rango lineal de al menos 3,5 rdenes de magnitud

y que las correlaciones entre C

T

y las cantidades de ADN fueron altas(R2

= 0,986).La media C

T

valores obtenidos con 100 y

10% de rbano contaminadas artificialmente lotes de semillas fueron 25,56 y 32,55, respectivamente, correspondiente a aproximadamente 250 y 3,5 pg deA.ADNbrassicae,respectivamente.

Estos resultados se obtuvieron con ficial semilla contaminada cialmente libre de otro gal fun- o contaminaciones bacterianas.A continuacin, fue necesario

comprobar este enfoque diagnstico molecular con la col y el rbano semillas naturalmente contaminados con patgenosAlternariaspp.Seis diferentes

lotes de semilla fueron probados (Tabla 2).Los niveles de infeccin eran de- minada de 200 semillas utilizando la tcnica de recubrimiento estndar.Ampliaciones utilizando el

inespecfica par de cebadores ITS1-ITS2 tuvieron xito con todo el ADN extrado de muestras, lo que indica que este ADN era adecuado para

amplificaciones adicionales (Fig.

5B).Cuando el ABCsens / par de cebadores rev

PCR en tiempo real se llev a cabo con muestras preparadas con los seis lotes de semillas de rbano.Curvas de amplificacin se obtuvieron solamente con DNA

extrado de lotes C aF.Similar C

T

Se tom nota de los lotes de semillas E y F (Fig. 4): valores (32,54 media).Este valor medio es similar a la

obtenido con el 10% contaminado artificialmente por lotes de semillas.El C

T

valor para el lote de semillas C, con unaA.nivel de infeccinbrassicaedel 2%, fue

34.28.

DISCUSINLas pruebas convencionales utilizan para detectarA.brassicaeen las semillas de implicar una combinacin de ensayos de patogenicidad y la caracterizacin morfolgica.

Sinembargo,el inconveniente de tales mtodos es que la identificacin de patgenos exacta puede ser difcil y consume mucho tiempo.Por lo tanto, hay una

urgente necesidad de una prueba sensible y rpido que pude

detectar transmitida por semillaA.tcnicasbrassicae.Con ad- adelantos en biologa molecular, desarrollados ms recientemente para la deteccin de microorganismos

involucrar a anlisis de PCR.Las ventajas de los ensayos basados en PCR incluyen especificidad, sensibilidad y velocidad.Por lo tanto, tales ensayos han sido

diseado para la deteccin de varios patgenos de plantas, hongos in- transmitida por semilla INCLUYENDO (22,24).Unos mtodos basados en PCR ya han sido

reportado para la deteccin deAlternariaspp.en la zanahoria (12,19), semillas de lino (15), y crucferas (8) de semillas, as como en los tejidos del husped (15) o comida

productos (32).La regin ITS del ADNr nuclear (8,12,15,32) es la principal regin genmica especfica para el desarrollo de cebadores de PCR.Recientemente,

Iacomi- Vasilescu et al.(8) report un ensayo de diagnstico PCR sensible y rpido para la identificacin deA.brassicicolayA.japonicaen

semillas de crucferas.Sin embargo, el ITS

se utiliz,A.Se detectaron contaminacionesbrassicaehasta 3% (semilla lote D) (Fig. 5A).No hay seal de amplificacin se obtuvo con el ADN

extrado de los lotes de semillas A, B y C.

Fig.2.Gel de electroforesis de los productos de reaccin en cadena de la polimerasa obtenida con el ABCsens / rev

cebadores de diagnstico y ADN extrado de cultivos puros de variosaislamientos deAlternaria brassicaeo a partir de cultivos puros deA,A.brassicicolaasla oB,A.japonicaasla oC,aislados de diferentes especies de hongos recuperados a partir de semillas.Los nmeros encima de los geles corresponden a aislar cdigos de identificacin como

se describe en la Tabla 1. M carriles se cargaron con una escalera de ADN (Smartladder Classic, Eurogentec, Blgica).

Plant Disease / Mayo 2004 493

cebadores diseados en este estudio paraA sicae bras-.resultaron ser no muy especfico porque las seales de amplificacin fueron consistentemente obtienen

con el ADN de algunosA.japonicaasla.

En el presente estudio, hemos utilizado dos conjuntos de cebadores, altamente especficos aA.brassicae,de- firmado a partir de dos genes agrupados correspondiente a un

Gen NRPS y un gen transportador ABC.Estos dos genes pueden producir y secretar factores asociados con la virulencia de la fngica

patgeno (es decir, el husped especfico toxinas peptdicas o res sideropho-).

El ensayo de semillas basado en la PCR convencional que hemos desarrollado especficamente detecta la presencia deA.brassicaeen las semillas de las crucferas, incluso a

los niveles de infeccin de tan solo el 3% y despus de slo 2 das de incubacin.El primer gran obstculo que haba que superar era el bajo nivel de

ADN diana a partir de los hongos.Una incubacin de 48 h en medio nutritivo lquido MDP era adecuado para obtener un aumento ptimo de la fngica

biomasa (8);Por lo tanto, la cantidad de ADN genmico gal fun- recuperado generalmente era suficiente para la amplificacin de la diana

Pgina 5

Fig.4.Curva Estndar deAlternaria brassicaenormas de concentracin de ADN contra el ciclo umbral (C

T

).C

T

s se determinaron, mediante PCR en tiempo real

y 115sens / rev cebadores de diagnstico, como el ciclo en el que la seal fluorescente super la fluorescencia defondo.C

T

s obtenidos con el ADN extrado de

100% () y 10% (A) contaminado artificialmente semillas de rbano o el 10% de semillas de rbano infectados naturalmente (") se indican en la parcela.

Fig.3.Gel de electroforesis de los productos de reaccin en cadena de la polimerasa obtenida con espaciador transcrito interno (ITS) 1/2 cebadores universales o ABCsens / rev

cebadores de diagnstico y el ADN extrado de las semillas infectadas artificialmente conAlternaria brassicae.niveles de contaminacin de la semilla se indican encima de los geles.

Los carriles marcados T + fueron cargados con ADN extrado de un cultivo puro deA.brassicaey carriles marcados M fueron cargados con una escalera de ADN (Smartladder

Clsico, Eurogentec, Seraing, Blgica).

494 Plant Disease / Vol.88 No. 5

Page 6

Secuencias de ADN.El medio nutritivo utilizado para las semillas de maceracin fue elegido sobre la base de nuestras observaciones anteriores.Otros dos lquidos

medios de incubacin (es decir, clari- caldo V8 cado y CW, 30), tambin fueron probados por Iacomi-Vasilescu et al.(8).Se obtuvieron resultados simi- lares

con MDP o medios V8, pero MDP se prefiere debido a un manejo ms fcil durante una etapa de filtracin posterior, mientras que no hay seal era

obtenida con el medio de CW.Inhibidores de la PCR

representar un obstculo ms comnmente ES- contrarrestado cuando se realizan ensayos con muestras complejas (3,9).Estos inhibidores tienen a menudo semilla

orgenes de componentes (19).En este estudio, la semilla se retiraron despus de la incubacin y antes de la extraccin de ADN y micelios fngicos y conidios

se recopilaron utilizando una unidad de filtro giratorio.Por razones tcnicas (por ejemplo, el tamao del filtro giratorio), se utiliz los lotes de semillas que contienen slo 100 semillas.

Por lo tanto, los niveles de infeccin menor que 3%

no se detectaron con una buena repetibilidad.En el mtodo de diagnstico de PCR original descrito porA.japonicayA.brassici- cola(8), fenol-

extraccin con cloroformo seguido por una etapa de precipitacin con isopropanol fueron suficientes para obtener una preparacin de ADN crudo que posteriormente

podra ser utilizado como molde para la amplificacin sin ningn tratamiento adicional.En el presente trabajo, hemos demostrado que este aislamiento de ADN

procedimiento podra ser reemplazado con xito

Tabla 2.Nivel de Infeccin (%) de los lotes de semillas naturalmente infectado con patgenoAlternariaspp.utilizado en el presente estudio

Nivel de Infeccin (%) de semillas de nmero de loteEspecies de hongosA (col)B (rbano)C (rbano)D (rbano)E (rbano)F (rbano)Alternaria brassicae0

0

2

3

9.5

10

A. brassicicola8

0

0

0

0

0

A. japonica0

1

0

0

0

0

A. alternata19

39

11

38.5

27

13.5

Fusariumsp.

2

0

0

1

0

0.5

Phomasp.

1

0

0

1.5

0

0

Fig.5.Gel de electroforesis de los productos de reaccin en cadena de la polimerasa obtenidos conA,ABCsens / rev cebadores oBdediagnstico,espaciador transcrito interno (ITS)

Medio cebadores universales y ADN extrados de la semilla.Las muestras se prepararon con semillas naturalmente infectados conAlternariaspp.de lotes de semillas de A a E. Lanes

Pgina 7

etiquetada T + se cargaron con el ADN extrado de un cultivo puro deAlternaria brassicaey carriles marcados M fueron cargados con una escalera de ADN (Smartladder

Clsico, Eurogentec, Seraing, Blgica).

Plant Disease / Mayo 2004 495

tratando el micelio del hongo con un tampn de lisis diseado inicialmente para muestras de alimentos Processing, y el ADN de purificacin nosotros- ing un

mtodo basado en afinidad con las membranas de slice a partir de un kit comercial.Este procedimiento de extraccin de ADN potencialmente podra ser utilizado para

anlisis de rutina de lotes de semillas y es susceptible de automatizacin.En el mismo sentido, los anlisis de rutina requieren un mtodo alternativo para

separacin electrofortica de los productos de amplificacin.Nuestros resultados preliminares con PCR en tiempo real utilizando SYBR verde son alentadores.

Este colorante indicador fluorescente se une ADN bicatenario;Por lo tanto, el aumento de fluorescencia se puede monitorizar de forma continua durante el

procedimiento de amplificacin, eliminando as la necesidad de post-PCR anlisis.Ensayos de PCR en tiempo real han sido im- complementado para la deteccin

de patgenos fngicos de plantas en varios estudios recientes (2,5,13,29,31).Esta tcnica debera pronto ser til para las pruebas de sanidad de la semilla, y Tay lor et

al.(23) ya lo han utilizado para la deteccin deMicrodochium nivaleen semillas de trigo.Mostramos aqu que la deteccin espe- rpida y espe- deA.brassicaees posible utilizando PCR en tiempo real en presencia de SYBR verde con un conjunto de cebadores diseados a partir de una secuencia de gen de NRPS.Este

conjunto de cebadores dio resultados satisfactorios con una amplia gama de concentraciones de ADN diana, permitiendo as la cuantificacin exacta de las semillas

los niveles de infeccin.Obtuvimos similares C

T

valores con ADN extrado de la infeccin contaminada de manera natural de la semilla (10%, como se estima por la

mtodo de recubrimiento estndar) o de la semilla infectados artificialmente conA.brassicaea un nivel de 10%.PCR en tiempo real se encontr que era ms

sensible que el procedimiento de amplificacin estndar, y una amplificacin con xito se obtuvo con un lote de semillas con 2%A.brassicaein-

infeccin.De acuerdo con la Seed Testing Association interna, esto corresponde al nivel mximo de la infeccin de comercial

semilla crucferas por patgenoAlternariaspp.

El mtodo diagnstico de PCR descrito aqu, que combina la extraccin de ADN a partir de semillas utilizando el kit Nucleospin Alimentos y en tiempo real

PCR en presencia de SYBR verde y los cebadores diseados a partir de un gen de NRPS, es fcilmente susceptible de Automation.Con este mtodo,

despus de aprox 50 h,A.brassicaese puede detectar con precisin y sensibilidad en la semilla infectado cin.Las secuencias homlogas han sido

identificado en elA.japonicayA.genomasbrassicicola;Por lo tanto, el mismo mtodo puede aplicarse tambin para la deteccin de estos dos

patgenos de semillas, a condicin de que los cebadores estn diseados pertinentes.Ms an, a pesar de muchas pruebas, probablemente ser necesario precisin

correlacionar la cantidad de ADN extrado de la semilla infectada y su nivel de infeccin (particularmente cuando se prueba lotes de semillas con muy baja

los niveles de infeccin), debe ser

posible desarrollar an ms este mtodo para que sea cuantitativa.

AGRADECIMIENTOSAgradecemos a la Agencia Universitaria de la Francisco cophonie para proporcionar B. Iacomi-Vasilescu con una beca post-doctoral.

LITERATURA CITADA1. Babadoost, M., Gabrielson, RL, Olson, S.

A., y Mulanax, MW 1993. El control deAl- ternariaenfermedades de los cultivos de semillas de Brassica causada porAlternaria brassicaeyAlternaria Cicola brassi-con suelo y

fungicida area solicitante cationes.Seed Sci.Technol.21: 1-7.

2. Cullen, DW, Lees, AK, Toth, IK, y Duncan, JM 2002. Deteccin deColleto- coccodes trichumde tubrculos del suelo y de la patata por PCR convencional y

en tiempo real de PCR cuantitativa.Pathol Planta.281-292.

3. De Boer, SH, Ward, LJ, Li, X. y Chitta- ranjan.1995. La atenuacin de inhibicin de la PCR en presencia de compuestos de la planta mediante la adicin de BLOTTO.Nucleico

Acids Res.23: 2567-

2568.

4. Fernndez, D., Ouinten, M., Tantaoui, A., Geiger, JP, Daboussi, MJ, y Langin, T.

1998. Fot 1 inserciones en elFusarium ox- ysporumf.sp.albedinisgenoma proporcionar diagnsticos objetivos de PCR diag- para la deteccin del patgeno palmera datilera.Appl.

Environ.Microbiol.

64: 633-636.

5. Frederick, RD, Snyder, KE, Tooley, PE, Berthier-Schaad, Y., Peterson, GB, Bonde, MR, Schaad, NW, y Knorr, DA 2000. Identificacin y

diferenciacin dedica Tilletia dentro y T.walkeriutilizando la reaccin en cadena de la polimerasa.Fitopatologa 90: 951-960.

6. Goodwin, DC, y Lee, SB 1993. Micro onda miniprep de ADN genmico total de hongos, plantas, protistas y animales para la PCR.Biotechniques 15: 438-444.

7. Iacomi-Vasilescu, B., Avenot, H., Bataill- Simoneau, N., Laurent, E., Gunard, M., y Simoneau, P. In vitro fungicida sensibilidad delas especiesde Alternariapatgeno para

crucferas y la identificacin decampobrassicicola Alternariaaislados altamente resistentes a ambos dicarboximidas y fenilpirroles.Crop Prot.En prensa.

Ensayo de diagnstico 8. Iacomi-Vasilescu, B., Blancard, D., Gunard, M., Molinero-Demilly, V., Laurent, E., y Simoneau, P. 2002. Desarrollo de una PCR basada en

detectarlas especiesde Alternariapatgenasen semillas crucferas.Seed Sci.Technol.30: 87-95.

9. Jobes, DV, Hurley, DL, y Thien, LB

1995. Aislamiento de ADN de la planta: un mtodo para eliminar eficientemente polifenoles, polisacridos y ARN.Taxn 44: 379-386.

10. Johnson, RD, Johnson, L., Kohomoto, K., Otani, H., Lane, C;R., y Kodama, M. 2000. Un mtodo basado en la reaccin en cadena de polimerasa para detectar especficamente

Alternaria alternataple AP- patotipo (A. mali), el agente causal deAl- ternariamancha de manzana.Fitopatologa

90: 973-976.

11. Joly, P. 1964. Le gneroAlternaria.(El gnero

Alternaria).P. Lechevalier Press, Pars.

12. Konstantinova, P., Bonants, PJM, Van Gent- Pelzer, MPE, Van der Zouwen, P., y Van den a granel, R. 2002. Desarrollo de cebadores especficos para la deteccin y

identificacin deAl- ternariaspp.en el material de zanahoria por PCR y la comparacin con los ensayos de papel secante y galvanoplastia.Mycol.Res.106: 23-33.

13. Lees, AK, Cullen, DW, Sullivan, L., y Nicolson, MJ 2002. Desarrollo de la convencional y ensayos de PCR en tiempo real para la deteccin e identificacin de

Rhizoctonia solaniAG-3 en la papa en el suelo.Pathol Planta.51: 293-

302.

14. Li, KN, Rouse, DI, y el alemn, TL

1994. Los cebadores de PCR que permiten la diferenciacin intergenrica de ascomicetos y de su aplicacin aVerticilliumspp.Appl.Environ.Biol Micro.60: 4324-4331.

15. McKay, GJ, Brown, AE, Bjourson, AJ, y Mercer, PC 1999. Molecular cin charaterisa- deAlternaria linicolay su deteccin en las semillas de lino.Eur.J. Plant

Pathol.105: 157-166.

16. Neegard, P. 1945. danesa Especies deAlternativo nariayStemphylium.Oxford University Press, Londres.

17. Niessen, ML, y Vogel, RF 1998. Grupo de PCR en la deteccin especfica de potenciales trichothe- cene productorasFusarium-especies en culturas puras y las muestras de cereales.

Syst.Appl.Biol Micro.21: 618-631.

18. Nishimura, S., y Kohmoto, K. 1983. Host- toxinas especficas y estructuras qumicas deAlternariaespecies.Annu.Rev. Phytopathol.

21: 87-116.

19. Pryor, BM, y Gilbertson, RL 2001. ensayo basado en PCR para la deteccin de unAlternaria radicinade semilla de zanahoria.Dis Planta.85: 18-23.

20. Rude, SK, Duczek, LJ y Seidle, E.

1999. El efecto deAlternaria brassicae,Al- raphani ternariayAlternaria alternataen la germinacin de semillas deBrassica rapacanola.Seed Sci.Technol.27: 795-

798.

21. Shrestha, SK, Mathur, SB, y Munk, L.

2000.Alternaria brassicaeen semillas de colza y mostaza, su ubicacin, la transmisin de las semillas de la planta de semillero y el control.Seed Sci.Technol.28: 75-84.

Pgina 8

22. Smith, OP, Peterson, GL, Beck, RJ, Schaad, NW, y Bonde, MR 1996. el Desarrollo de un mtodo basado en PCR para la identificacin deTilletia indica, causal

agente del carbn parcial del trigo.Fitopatologa 86: 115-122.

23. Taylor, E., Bates, J., Kenyon, D., Maccaferri, M., y Thomas, J. 2001. mtodos moleculares modernos para la caracterizacin y diagnstico de hongos transmitidos por la semilla

patgenos.J. Plant Pathol.

83: 75-81.

24. Taylor, JL 1993. Un mtodo simple, sensible y rpido para la deteccin de semillas contaminadas con altamente virulentasmaculans Leptosphaeria.Appl.Environ.

Microbiol.59: desde 3.681 hasta 3.685.

25. Tewari, JP 1991. bases estructurales y bioqumicos de la enfermedad mancha negra de las crucferas.Adv.Struct.Biol.1: 325-349.

26. Verma, PR, y al sur del Sahara, GS 1994. mono- grfico deAlternariaenfermedades de las crucferas.En: Saskatoon Research Centre Boletn Tcnico

1994-6E.Agricultura y Agroalimentacin de Canad, Saskatoon, SK, Canad.

27. Walton, JD 1996. toxinas en host selectiva: Agentes de compatibilidad.Plant Cell 8: 1723-

1733.

28. Blanco, TJ, Bruns, T., Lee, S. y Taylor, J.1990. La amplificacin y secuenciacin directa de los genes ribosomales hongos para la filogentica.En: protocolos de PCR: Una gua de los mtodos y aplicaciones.Academic Press.

San Diego, CA.

29. Winton, LM, Piedra, JK, Watrud, LS, y Hansen, EM 2002. simultnea de un tubo de cuantificacin de acogida y el ADN patgeno con la polimerasa en tiempo real

reaccin en cadena.Phytopa- tologa 92: 112-116.

30. Wu, WS, y Chen, 1999. TW