2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

download 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

of 70

description

2kw power DC to DC converter

Transcript of 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    1/70

    2 kW Dual Input DC-DC Converter for

    Fuel cells and Ultracapacitors

    Bachelor Thesis, April 2007

    by

    Stefan Pihl Bergendorff

    rsted DTU, AutomationTechnical University of Denmark

    DK-2800 Kongens Lyngby

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    2/70

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    3/70

    i

    Abstract

    This Bachelor thesis covers design and construction of a dual input converter with the ability to

    be bidirectional, to one of the converters input. The work is done in collaboration with American

    Power Conversion, who wanted an alternative to the DC-DC converter that are currently used for

    their fuel cell UPSes, Uninterruptible Power systems. The dual input is a way to eliminate batteries

    from APCs system and replace them with ultracapacitors.

    The Dual input converter is a DC-DC convert with an operating range of 30-60VDC, which it

    converts to 200V. The intended power level for this type of converter is 4kW but the prototype isdownscaled to 2kW.

    The purpose of the thesis is primarily to investigate the potential of the converter in terms of

    efficiency and complexity. The requirements for the input harmonics is not taken into consideration,

    since it is the first prototype. The efficiency is high due to a solid design of the power components.

    The bidirectional part of the converter was not realized due to lack of time and the designed control

    scheme, is not used to test the converters efficiency because it was not available before the deadline

    of the thesis.

    The measurement was made with an improvised control, and an efficiency of 91% was obtained

    at the lowest input voltage.

    i

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    4/70

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    5/70

    iii

    Resum p dansk

    Dette bachelorprojekt omhandler design og konstruktion af en "dual input converter" med mulighed

    for at fre effekt tilbage til en af indgangende p konverteren. Arbejdet er udfrt i samarbejde medAmerican Power Conversion, som nskede et alternativ til den nuvrende DC-DC konverter som

    benyttes til deres fuel cell UPS, Uninterruptible Power systems. Idn med two input er at APC

    nsker at fjerne batterierne fra deres UPS systemer og erstate dem med ultracapacitore.

    Dual input converteren er en DC-DC konverter som kan omforme indgangs spndingen som er

    mellem 30 og 60volt til en udgangsspnding p 200V. Det tiltnkte effect niveauet var 4kW mendet valgtes for prototypen at nedskalere effecten til 2kW.

    Formlet med projektet er primrt at undersge potentialet af converteren i form af effektivitet

    og kompleksitet. kravende til de harmoniske inputstrmme er der ikke taget videre hensyn til da det

    er en prototype. Effektiviteten holdes hj ved et grundigt design og valg af effektkomponenter. Den

    bidirektionele del af konverteren er ikke blevet realiseret p grunde tidspres. Kontrol kredslbet er af

    samme rsag blevet nedprioteret, og det designede regulering er ikke benyttet til test af konverteren,

    da det ikke var tilgngeligt fr afleverings datoen.

    Mlingerne, som var lavet med en improviseret regulering, viste en hj effektivitet p 91

    iii

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    6/70

    iv

    Preface

    This thesis has been submitted to the Automation Department, rsted, Technical University of

    Denmark, with the purpose of obtaining an international engineering bachelor degree in powerelectronics. The experimental research presented in this thesis has been carried out from the 15 of

    January 2007 to the 10 of April 2007.

    During this period I have spent most of the time at APC, the daily contact with the research

    engineers at APC, has been a great source of knowledge for me. I would especially like to thank

    my supervisor projekt manger Henning Roar Nielsen, and former RD Engineer Jesper Winston

    Petersen, for their insight and expertise. I would also like to thank my supervising Professor Michael

    A. E. Andersen for putting me in contact with APC and Klaus T. Moth, former director of emerging

    technology department.

    Finally I would like to thank my family and friends for being patient with

    me, when I have been busy with my study.

    Stefan Pihl Bergendorff Marts 2007.

    List of publications

    [1] H. Schneider, S. Pihl Bergendorff, L. Petersen and M. A. E. Andersen, "Isolated EWiRaC: A New Low-

    Stress Single-Stage Isolated PFC Converter", APEC2007 conference paper, Technical University of Den-

    mark.

    iv

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    7/70

    TABLE OF CONTENTS v

    Table of Contents

    Abstract i

    Resum p dansk iii

    Preface v

    List of figures 2

    List of tables 3

    1 Introduction 4

    1.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.1 Overall System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.2 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.1.3 Ultracapacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.1.4 UPS Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.1.5 Basic Requirements For The DC-DC Converter . . . . . . . . . . . . . . . 11

    1.1.6 Project Delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    2 DC-DC Converter Theory 132.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    2.1.1 The Modified Voltage Fed Full Bridge Converter . . . . . . . . . . . . . . 13

    2.1.2 The Modified Current Fed Full Bridge Converter . . . . . . . . . . . . . . 16

    2.1.3 The Modified Current Fed Push-Pull Converter . . . . . . . . . . . . . . . 18

    2.1.4 Conclusion Topology Selection . . . . . . . . . . . . . . . . . . . . . . . 20

    2.1.5 CCM or DCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    v

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    8/70

    vi TABLE OF CONTENTS

    3 DC-DC Converter Design 21

    3.1 Power Calculation and Component Selection . . . . . . . . . . . . . . . . . . . . 213.1.1 Switch Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.1.2 Input Inductor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.1.3 Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    3.1.4 Output Diode Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.1.5 Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3.1.6 Estimated Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    3.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    3.2.1 Constructed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    4 Implementation, Measurements and Performance 43

    4.1 Layout of the DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    4.1.1 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4.2 Efficiency of the converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    5 Discussion, Conclusion and Future Work 46

    Bibliography 47

    Appendix 47

    A 48

    A.1 Magnetomotive force in the transformers. . . . . . . . . . . . . . . . . . . . . . . 48

    B 49

    B.1 Leakage inductance in the transformers . . . . . . . . . . . . . . . . . . . . . . . 49

    C 51

    C.1 Control design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    D 62

    D.1 Pspice diagram of the converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    vi

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    9/70

    LIST OF FIGURES 1

    List of Figures

    1.1 Block diagram of the overall system for ulracaps/fuell cell application . . . . . . . 5

    1.2 Fuel cell chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.3 A fuel cell stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.4 Performance curves for a single PEM fuel cell . . . . . . . . . . . . . . . . . . . 7

    1.5 Individual ultracapacitor cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.6 Ultracapacitors MC2600 series (with 2600 farad capacitance) produced by Maxwell

    Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.1 The modified voltage fed full bridge converter . . . . . . . . . . . . . . . . . . . . 14

    2.2 Waveforms for the modified voltage fed full bridge converter . . . . . . . . . . . . 15

    2.3 Modified current fed full bridge converter . . . . . . . . . . . . . . . . . . . . . . 16

    2.4 Modified current fed full bridge converter waveforms . . . . . . . . . . . . . . . . 17

    2.5 Modified current fed push-pull converter . . . . . . . . . . . . . . . . . . . . . . . 18

    2.6 Modified current fed push-pull converter waveforms. . . . . . . . . . . . . . . . . 19

    3.1 Diagram of the DC-DC converter. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.2 Switch PWM signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.3 Switch current at 30V in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.4 Pspice simulation graph of the switch current at 30V in . . . . . . . . . . . . . . . 253.5 Normalized on resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . 26

    3.6 MOSFET and its turn-on/turn-off transition waveform . . . . . . . . . . . . . . . 27

    3.7 Pspice simulation graph of the switch current and voltage at 30V in. . . . . . . . . 28

    3.8 Core loss density curve, Kool M . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3.9 Primary voltage in one switch cycle . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3.10 Winding chamber of an ETD49 coil former . . . . . . . . . . . . . . . . . . . . . 34

    1

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    10/70

    2 LIST OF FIGURES

    3.11 Correction factor for the transformer resistance as a function of and number of

    layers M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.12 Core loss density curve, for 3C90. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.13 Core loss frequency/density curve vs. temperature, for 3C90 . . . . . . . . . . . . 38

    3.14 Forward current versus voltage drop . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3.15 controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.16 controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.17 Controller diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    4.1 Picture of the DC-DC converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4.2 Operating efficiency of the converter . . . . . . . . . . . . . . . . . . . . . . . . . 45

    A.1 Behavior of the MMF in a transformer . . . . . . . . . . . . . . . . . . . . . . . . 48

    C.1 Control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    C.2 Simulation model for the output characteristic . . . . . . . . . . . . . . . . . . . . 53

    C.3 Bodeplot of the output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . 54

    C.4 Close loop bodeplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    C.5 Control sheet 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    C.6 Control sheet 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57C.7 Control sheet 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    C.8 Control sheet 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    C.9 Control sheet 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    C.10 Control sheet 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    D.1 Pspice diagram of the converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    2

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    11/70

    LIST OF TABLES 3

    List of Tables

    1.1 Table showing different types of fuel cells . . . . . . . . . . . . . . . . . . . . . . 8

    1.2 Basic requirements for the DC-DC converter. . . . . . . . . . . . . . . . . . . . . 11

    3.1 Loss in power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    3

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    12/70

    4 Chapter 1. Introduction

    Chapter 1

    Introduction

    This project has been developed in collaboration with APC (American Power Conversion) as they

    have a great desire to eliminate batteries from their UPS (Uninteruptible Power system) systems.

    APC is one of the biggest takers of lead batteries in the world, they have to replace approximately

    80 million batteries every year. APC is currently investigating new technologies such as fuel cells.

    But even with fuel cell systems there is a need for batteries, because the fuel cell systems have a

    upstarts periode of 5-20 seconds. So this thesis report propose a DC-DC converter that incorporates

    ultracapacitors in a fuel cell system, instead of batteries.

    4

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    13/70

    1.1. Background Information 5

    1.1 Background Information

    1.1.1 Overall System

    The chosen solution for incorporating ultracapacitors, as a power source, for a UPS system is illus-

    trated on figure1.1.

    Figure 1.1: Block diagram of the overall system for ulracaps/fuell cell application

    The overall system is powered from a fuel cell module and a ultracapacitor module. The output

    voltage from these, which is 30-60V, has to be converted to 200Vfor the input to the UPS. Thenominal power that the DC-DC converter should transfer is 4kw, but for reasons of convenience,

    and simplicity it has been chosen to make the converter a 2kw. The main focus in the project will

    be laid on showing that the topology actually works, and that it is highly efficient.

    The specifications for the DC-DC converter will meet the demands from a fuel cell system and a

    ultracapacitor module. The expected efficiency for the DC-DC converter is 93%. The specifications

    is summarized in table1.2subsection1.1.5

    1.1.2 Fuel Cells

    Fuel cells convert fuel and air directly to electricity, heat and water in an electrochemical process.

    Unlike conventional engines, they do not burn the fuel and run pistons or shafts, and so have fewer

    efficiency losses, low emissions and no moving parts.

    In principle a fuel cell operates like a battery. However, unlike a battery, it will not run down

    while it continues to be supplied with fuel and air.

    It is an essentially clean technology that uses hydrogen (from its fuel source) and oxygen (from

    the air) to generate electricity and heat without combustion or pollution, its only basic emission

    5

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    14/70

    6 Chapter 1. Introduction

    being vaporized water.

    Basic Principle Of A Fuel Cell

    In the fuel cell hydrogen and oxygen react to create water, electricity and heat, which can be used

    in various applications. The reaction is essentially the reverse of electrolysis. There is no noise or

    mechanical movement involved. The fuel cell is like a battery, the only difference being that as long

    as hydrogen is provided it will continue to provide power. Hydrogen (1) and oxygen is supplied

    Figure 1.2: Fuel cell chemistry

    on each side of a cell. The cell consists of an electrolyte membrane with a catalyst layer on each

    side. When hydrogen is lead to the first catalyst layer, the anode, the hydrogen molecules are split

    into their basic elements, a proton (2) and an electron. The protons migrate through the electrolyte

    membrane (4) to the second catalyst layer, the cathode. Here they react with oxygen to form water

    (5). At the same time the electrons are forced to travel around the membrane to the cathode side,

    because they can not pass the membrane. This movement of electrons thus creates an electrical

    current (3).

    A typical fuel cell produces 0.5-1 volt. The appropriate voltage level for a specific application

    is achieved by combining a number of single cells in series and parallel circuits to form a fuel cell

    stack.

    6

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    15/70

    1.1. Background Information 7

    Figure 1.3: A fuel cell stack

    As figure1.4 demonstrates, a PEM fuel cell yields an efficiency of 34% when operated at its

    point of highest power density. The low efficiency of the fuel cells means, that in order to make

    optimal use of the fuel cell, the system that is powered by them should have a high efficiency.

    In order not to influence the chemical reactions in the fuel cells, the input ripple current have to be

    Figure 1.4: Performance curves for a single PEM fuel cell

    above 1kHz. Other than that there are no known requirements for the size of the input ripple current.

    But from a logical point of view, the input ripple current should be as small as possible.

    The Different Types Of Fuel Cells

    There are several different types of fuel cell, but all share the basic design of two electrodes (a

    negative anode and a positive cathode) separated by a solid or liquid electrolyte.

    Fuel cells are classified according to the nature of their electrolyte which also determines their

    operating temperature. Each type of fuel cell has particular materials requirements and, in theory,

    all can use a wide range of fuels, providing that the fuel contains hydrogen. The most common ones

    7

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    16/70

    8 Chapter 1. Introduction

    can be seen in table1.1

    Types abbreviation Electrolyte Ion Temp. [C]Direct Methanol Fuel Cell DMFC Polymer H+ 30-80

    Proton Exchange Membrane FC PEMFC Polymer H+ 70-200

    Solid Oxide Fuel Cell SOFC Conducting ceramic O2 650-1000

    Phosporic Acid Fuel Cell PAFC Phosporic acid H+ 150-200

    Molten Carbonate Fuel Cell MCFC Carbonate acid CO3 650

    Alkaline Fuel Cell AFC Aqueous alkaline solution OH 150-200

    Table 1.1: Table showing different types of fuel cells

    1.1.3 Ultracapacitors

    Like batteries, ultracapacitors are energy storage devices. They use electrolytes and configure

    various-sized cells into modules to meet the power, energy, and voltage requirements for a wide

    range of applications. But batteries store charges chemically, whereas ultracapacitors store them

    electrostatically.

    Ultracapacitors are true capacitors in that energy is stored via charge separation at the electrode-

    electrolyte interface, and they can withstand hundreds of thousands of charge/discharge cycles with-

    out degrading. An ultracapacitor, also known as a double-layer capacitor, polarizes an electrolytic

    solution to store energy electrostatically. Though it is an electrochemical device, no chemical reac-

    tions are involved in its energy storage mechanism. This mechanism is highly reversible, and allows

    the ultracapacitor to be charged and discharged hundreds of thousands of times.

    How An Ultracapacitor Works

    An ultracapacitor can be viewed as two nonreactive porous plates, or collectors, suspended within

    an electrolyte, with a voltage potential applied across the collectors. In an individual ultracapacitor

    cell, the applied potential on the positive electrode attracts the negative ions in the electrolyte, while

    the potential on the negative electrode attracts the positive ions. A dielectric separator between the

    two electrodes prevents the charge from moving between the two electrodes.[4][5]

    Once an ultracapacitor is charged and energy stored, a load can use this energy. The amount of

    energy stored is very large compared to a standard capacitor because of the enormous surface area

    created by the porous carbon electrodes and the small charge separation created by the dielectric

    separator. However, it stores a much smaller amount of energy than does a battery. Since the

    8

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    17/70

    1.1. Background Information 9

    Figure 1.5: Individual ultracapacitor cell

    rates of charge and discharge are determined solely by its physical properties, the ultracapacitor canrelease energy much faster (with more power) than a battery that relies on slow chemical reactions.

    [4][6]

    A single ultracapacitor can only produce a potential of 2,5-2,7 voltage. For moste applications

    this it not enough, so the ultracapacitors has to be aligned in a konstellation of serial and parallel

    connections, to obtain the desired voltage and energy. Further more to utilize the ultracapacitor

    effectively it is not desired to discharge them more than to half the rated voltage. In this way it is

    possible to obtain 75% of the initial stored energy.[4]

    Figure 1.6: Ultracapacitors MC2600 series (with 2600 farad capacitance) produced by Maxwell Technologies

    A short summary of the features of ultracaps. vs. batteries is listed below.

    Advantages:

    Very high rates of charge and discharge.

    Little degradation over hundreds of thousands of cycles.

    Good reversibility

    9

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    18/70

    10 Chapter 1. Introduction

    Low toxicity of materials used.

    High cycle efficiency (95% or more)

    Disadvantages:

    The amount of energy stored per unit weight is considerably lower than that of an electro-chemical battery (3-5 W.h/kg for an ultracapacitor compared to 30-40 W.h/kg for a battery).

    It is also only about 1/10,000th the volumetric energy density of gasoline!

    The voltage varies with the energy stored. To effectively store and recover energy requiressophisticated electronic control and switching equipment.

    Has the highest dielectric absorption of all types of capacitors

    10

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    19/70

    1.1. Background Information 11

    1.1.4 UPS Load

    A UPS(Uninteruptible Power System - UPS) is a emergency power generating unit. It takes over the

    supply of electrical power for a critical load at a power outage. The critical load will hereby function

    undisturbed. The UPS works with a voltage range ofpm160 220V, but it has been decided on avoltage output of200V, from the DC-DC converter.

    1.1.5 Basic Requirements For The DC-DC Converter

    Table 1.2 shows the basic requirements for the DC-DC converter. The input voltage values are

    typical for the present fuel cell modules at APC. The nominal output voltage is also typical for

    a standard 10kW UPS at APC. Initially the DC-DC converter should have been a 4kW converter

    that would have been connected in parallel on the input and serial on the output with 3 identical

    converters, so that they could handle 10kW with a smaller loss compared to one big 10kW converter.

    But in accordance with APC it was decide to make a 2kW converter, because of the time issue of 10

    weeks to complete the project. As said earlier, the main focus is on how well the converter functions

    U Max ripple Response after load Poutstep (0%-100%-0%)

    [VDC] [Vpp] [V] [kW]

    Input

    Minimum 30

    Maximum 60

    Output

    Nominal 200 2 +20 / -20 2

    Table 1.2: Basic requirements for the DC-DC converter

    and how high an efficiency that can be obtained. Because of the need for galvanic isolation, it is not

    believed that an efficiency higher then 93% is obtainable. The EMI requirements an input currentharmonics will not be taken into greater consideration, because this a prototype. Additional research

    will have to be done if this topology is going to be used in an actual application.

    1.1.6 Project Delimitation

    The project has the following main points, established on the past system analysis and problems

    encountered along the way. The main focus of the report is laid on the following points:

    11

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    20/70

    12 Chapter 1. Introduction

    Power components design

    Converter design

    Construction of the converter design

    However the bidirectional part of the design is neglected as the complexity of the chosen topology

    is high even without this part, and it would be hard pressed to manage it before the deadline of

    10 weeks. The control circuit was demoted to a secondary aspect, because of many problems

    with internal matters at APC as well as having it produced by an external partner. The internal

    problems includes a slow procedure of "inhouse" communication with regard to spending money

    on projects. Another unfortunate incident happened when APC was taken over by a larger company,the Schneider group, which resulted in a downsizing of the ETD department, where I was situated,

    including two of my counsellors. I did not manage to find new counsellors but still had the head

    of technology department, Henning Roar Nielsen as counsellor, but it was limited time he had to

    spare.

    12

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    21/70

    13

    Chapter 2

    DC-DC Converter Theory

    The main criterions to find a suitable converter topology, is the necessary galvanic isolation needed

    in a real application and the converters ability to increase the input voltage to the desired output

    voltage. The dual input and bidirectional ability criterions is also to be taken into consideration.

    The topology that can fulfill these requirements is a boost type converter. There are 3 different

    types of boost converters 1 that is considered, the modified voltage fed full bridge converter, the

    modified current fed full bridge converter and the modified current fed push-pull converter. The

    modification consist essentially in the need for two inputs and an output of

    200V.

    2.1 Topology Selection

    The voltage fed full bridge converter is shown on figure 2.1and consist of two identical inputs,

    where only one of them will be utilized at a time, why the converter can be viewed as having one

    input for simpler explanation, as do all the considered converters.

    2.1.1 The Modified Voltage Fed Full Bridge Converter

    The voltage fed full bridge converter uses four switches on the primary side. Figure2.2shows the

    typical waveforms of the converter. The switches is driven alternately in pairs,SW1andSW4, then

    SW2 and SW3. The transformer primary is subjected with the alternating voltageVpri that can

    either beVin, Vinor zero, depending on the state of the switches.The rectifier on the output is built as a double center-point bridge rectifier, which works similar

    1Technically the voltage fed converter is a Buck type converter

    13

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    22/70

    14 Chapter 2. DC-DC Converter Theory

    Figure 2.1: The modified voltage fed full bridge converter

    to the normal bridge rectifier. The difference lying in, two output voltages for similar loads can be

    produced, and the diodes having to block two times the peak voltage of the transformers secondary

    voltage.

    The switches placed on the output is for conducting power the opposite way trough the converter

    to the input off the ultracapacitors. This however has not been investigated properly, due to lack of

    time, therefor it has been cut from the agenda and will not be mentioned further in the report other

    than on diagrams.

    t1: At t0 the switches SW1 and SW4 are switched on, and the positive half-wave of the

    secondary voltage ofT1 andT2, is respectively conducted with the forward biased diodesD1 and

    D5. At the same time the negative half-wave of the secondary voltage ofT3 andT4 is conducted

    trough the forward biased diodesD8and D4.

    t2: Att1the currentIpri1and Ipri2has become zero. Primary voltage and secondary voltage

    of the transformers are zero,and the diodes D1D8 are conducting. The switches SW1 SW4 areoff.

    t3: Att3 the the negative half-wave of the secondary voltage ofT1 and T2 is applied, the

    diodesD3andD7is forward biased and the secondary voltage is conducted to the LC-filter and the

    load atVout2. The secondary voltage ofT1andT2will in the same time period be conducted via the

    forward biased diodesD6andD4to the LC-filter and the load atVout1. Because the current for one

    half-wave has to pass through two parallel diodes the the diodes losses will be low.

    t4: Att1the currentIpri1and Ipri2has become zero. Primary voltage and secondary voltage

    14

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    23/70

    2.1. Topology Selection 15

    Figure 2.2: Waveforms for the modified voltage fed full bridge converter

    of the transformers are zero, too. The diodes D1D8are conducting, and the switches SW1SW4are off.

    Theoretical the duty cycle of this converter can be chosen as one, leading to a duty cycle of 0,5

    for each switch pair. However in a practical solution, where transistors would be used, a delay,td

    is needed, because the transistors has a death time. This means that by using a duty cycle of 0,5 for

    the transistor and one transistor pair is switched on the moment the second pair is switched off a

    short circuit can happen.

    15

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    24/70

    16 Chapter 2. DC-DC Converter Theory

    2.1.2 The Modified Current Fed Full Bridge Converter

    Figure 2.3: Modified current fed full bridge converter

    The circuit of the current fed full bridge converter is shown in figure 2.3. At the input there

    is the filter inductanceL1. As will be shown in the following, a clamping circuit is needed. This

    active clamp circuit consists of the diode DCl and the capacitance with assumed constant voltage

    CCl and the switch SWCl . The maximum blocking voltage of the switchesS W1 SW4 is thevoltage of the clamping circuit. The transformersT1 T4 has the turn ratio n. The rectificationon the secondary side is realized with a double center-point full bridge rectifier consisting of the

    diodes D1D8 connected to a smoothing capacitor and the output voltage Vout1 andVout2. Figure

    2.4shows the waveforms and characteristic time instants of the current fed full bridge converter. In

    the following the converters operation between the time instants is described.

    t1: In the period before t0, all the switches have been conducting. At t0the switches SW1andSW4 are switched on, and the primary currents Ipri1 andIpri2 is impressed into the transformers

    and energy is transferred via the transformer to the secondary.

    t2: At t1 switches SW2 and SW3 are switched on, and all switches are conducting. The

    transformer current has become zero and will be zero until the time instantt2. The inductorIL1is

    rising due to the voltageVin1across the inductanceL1. Energy is stored in the inductanceL1.

    t3: Att2switchesSW1and SW4are switched off, and the primary currentsIpri1and Ipri2is

    16

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    25/70

    2.1. Topology Selection 17

    Figure 2.4: Modified current fed full bridge converter waveforms

    impressed into the transformers and energy is transferred via the transformer to the secondary.

    t4: Att3Att2switchesSW1andSW4are switched on, and all switches are conducting. Due

    to the symmetrical circuit of the converter the waveforms in the second half period are equal to thewaveforms shown above on figure2.4.

    On figure2.3 a clamp circuit is shown. The current fed full bridge converter needs this circuit

    for the energy stored in the transformers leakage inductance. Leakage inductance is the difference

    between the self-inductance and the mutual inductance of the primary and secondary windings. Its

    value is typically quite small, but very important in determining the characteristics and operation

    of the circuit. The leakage inductance contributes to a turn-off voltage spike seen by the switching

    17

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    26/70

    18 Chapter 2. DC-DC Converter Theory

    device and thereby contribute considerable to the switching loss of the switching devices.

    2.1.3 The Modified Current Fed Push-Pull Converter

    Figure 2.5 shows the modified current fed push-pull converter. The operating principle is faily

    simple; the switches is both kept in the on state in order for the magnetizing of the inductors to

    take place and is turned off, one after the other, so that the energy is transferred to the loads via

    the transformers. The modified current fed push-pull converters waveform transitions is shown on

    Figure 2.5: Modified current fed push-pull converter

    figure2.6and described in the following.t1: Att0 the switchesS W1 andS W2 is conducting and no power is delivered to the trans-

    former. Energy is stored in the input inductorsL1andL2while the output filter capacitors feeds the

    loads.

    t2: Att1switchSW2 is turned off and the primary currentsIpri1 and Ipri2 is impressed into

    the primary which is submitted to the reflected output voltage and energy is transferred to the load

    through the rectifier diodes.

    18

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    27/70

    2.1. Topology Selection 19

    Figure 2.6: Modified current fed push-pull converter waveforms

    t3: Att2 the switches SW1 andS W2 is conducting and no power is delivered to the trans-

    former. Energy is stored in the input inductorsL1andL2while the output filter capacitors feeds the

    loads.

    t4: Att3 switchSW1is turned off and the primary currentsIpri1and Ipri2is impressed into

    the primary which is submitted to the reflected output voltage and energy is transferred to the load

    through the rectifier diodes.

    The advantages of this topology is that two input inductors results in less current stress, since

    the average current is half that in the current fed full bridge converter. The current ripple is also very

    low as the two induct ripples will cancel each other out totally at 0,5 duty cycle and less at higher

    19

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    28/70

    20 Chapter 2. DC-DC Converter Theory

    duty cycles.

    2.1.4 Conclusion Topology Selection

    The voltage fed full bridge converter is obviously the least desirable topology as the current ripple

    on the input source is considerable and would require large capacitors.

    The current fed full bridge converter is on the other hand interesting, as power is drawn contin-

    uously and the input current ripple theoretically is zero, as there never will be a DC voltage across

    the input inductor.

    But compared to the current fed push-pull converter, which also draws the power continuously,

    it has four switches that is conducting the power to the transformer. Where as the push-pull onlyhas two and the input current is halved by two inductors, which should lead to lower losses.

    The current fed push-pull converter is chosen as the most likely to fulfill topology the demands

    and yield the highest efficiency.

    2.1.5 CCM or DCM

    The push-pull converter is necessarily run in continuous conduction mode or CCM, because it is

    constructed with isolated transformers that contains a magnetizing inductance.[1] The current in

    the input inductorsIL1

    2 has to be above zero at all times, if not the magnetizing inductance willbe short circuit when all switchesS W1 SW4 are on. Which would result in a saturation of thetransformer cores.

    An overlap of the switching periods is needed as shown on figure2.6for the two switches. This

    means, that for the currentIL1to be large than zero, the switch duty cycle has to be large than 0,5.

    Otherwise, the energy buildup in the input inductors isnt possible.

    IL> 0 D >0, 5 (2.1)

    The magnetizing of the transformers cant be reset if If there isnt an overlap in the switchperiods. By removing the magnetizing of in the transformer cores, a better utilization is archived.

    Hence the flux is driven in both directions.

    20

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    29/70

    21

    Chapter 3

    DC-DC Converter Design

    Along with the design specification, all power and control elements are design to fulfill the require-

    ments given by the functional specification and the basic requirements of the respective components.

    In the following the power components and output filter are designed. After this the control scheme

    is discussed and designed accordingly, and to simplify and make the calculations more understand-

    able there is shown overview diagrams of the respective components/circuits in question. All power

    calculations is done as there where only one input to the converter, due to the fact that the two inputs

    is identical and functions separately.

    3.1 Power Calculation and Component Selection

    Figure 3.1: Diagram of the DC-DC converter

    The power components are designed according to the converters "worst case" losses. The losses

    21

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    30/70

    22 Chapter 3. DC-DC Converter Design

    should be worst at low input voltage, 30V and full output power, 2kW. With an expected efficiency

    of 93%, the input power for the converter will be:

    Input power= 2kW+ 7% = 2000W 1, 07 = 2140W (3.1)

    This means that atVin= 30V,Iin_maxwill be:

    Iin_max= 2140W

    30V = 71, 33A (3.2)

    and atVin= 60V,Iin_maxwill be:

    Iin_max= 2140W

    60V = 35, 67A (3.3)

    The duty cycle for boost topology converters has to be above 50%, so the duty cycle for this

    converter is chosen to 55% atVin_max. Which means that the peak primary voltage of the converter

    will be:

    Vpri peak (total of two primary windings in series) = Vin_max 1

    (1Dmin) (3.4)

    = 60V 1

    (1 0, 55) = 133, 3V (3.5)

    The peak primary voltage, Vpri for each transformer is then 133,3V

    2 = 66, 65V 67V, and withVout = 200Vthe transformer ratio will be:

    67V

    200V 1 : 3 (3.6)

    By assuming transformer ratio to be exact, 1:3 and by including output rectifier drop, the "real" pri-

    mary voltage can be calculated.(The calculation is still while assuming that the transformer leakage

    inductance is zero):

    Vpri_total = 2 (200V + 2V)

    3 = 135V (3.7)

    The transformer ratio of 1:3 is chosen because it will make it possible to make a better coupling,

    see subsection3.1.3transformer design. When otherwise a smaller ratio could give a lower primary

    voltage and shorter duty cycles, which again would giver lower losses in the switches. But it is

    expected that it is the leakage inductance from the transformer that will cause the high switching

    22

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    31/70

    3.1. Power Calculation and Component Selection 23

    losses, therefor it is most important to obtain a good coupling between the primary and secondary

    windings.WithVpri = 135V the duty cycle for the boost switches can be calculated, with the duty cycle

    formula for an boost topology:

    D= 1 VinVout

    (3.8)

    In this case the Vout is the primary voltageVpri of the transformer. AtVin_max the duty cycle will

    be:

    Dmin= 1 60V

    135V = 0, 56 (3.9)

    And atVin_minthe duty cycle will be:

    Dmax= 1 30V

    135V = 0, 78 (3.10)

    With the switching duty cycles determined, the overlap of the switches can be found by the wave-

    forms on figure3.2:The overlap of switch signals at 60V in can be be found to1, 06 1 = 0, 06of

    (a) (b)

    Figure 3.2: Switch PWM signals

    the duty cycle and atVin= 30V the overlap is1, 28 1 = 0, 28.

    3.1.1 Switch Design

    The chosen switch is a irfp90n20d Power MOSFET, witch is a 200V and 94A transistor in a TO-247

    housing.

    23

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    32/70

    24 Chapter 3. DC-DC Converter Design

    MOSFET Conduction losses

    The conduction loss in a MOSFET can be determined by:

    Pcond= RDS(on) I2rms (3.11)

    With the duty cycle determined the switch current waveforms can be found to be:

    Figure 3.3: Switch current at 30V in

    From figure3.3the RMS current in the switches can be calculated:

    Irms_30V =

    (2 0, 28) 35, 67A2 + 0, 22 71, 33A2 = 42, 80A (3.12)

    The pspice simulation however shows that a relative large power is recycled through the clamp

    circuit and back to the boost switches:

    The simulations rms current atVin= 30V is calculated to:

    Irms_sim=

    0, 28 40, 20A2 + 0, 22 89, 00A2 + 0, 28 50, 01A2 = 53, 81A (3.13)

    This current will be used for the following calculations.

    The total MOSFET on-state losses (not including MOSFET in clamp circuit) are chosen to allow

    24

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    33/70

    3.1. Power Calculation and Component Selection 25

    Figure 3.4: Pspice simulation graph of the switch current at 30V in

    loss of 2,5% of converter power rating at minimum input voltage.

    Pper_switch = 0, 0125

    2000W = 25W (3.14)

    which yields an "on" resistance of:

    RDS(on)max=Pper_switch

    I2rms_sim=

    25W

    53, 81A2 = 8, 6m (3.15)

    The chosen MOSFET has a static on resistance, RDS(on)max, of23mwhich means the number of

    MOSFET needed in in parallel is:

    23m

    8, 6m

    = 2, 67

    3 (3.16)

    But as the temperature rises so does the MOSFETs "on" resistance. The expected operating tem-

    perature is 80C which gives anRDS(on) = 1, 5 23m = 34, 5maccording to figure3.5.

    WithRDS(on) = 34, 5mthe number of needed MOSFETs in parallel is:

    34, 5m

    8, 6m = 4, 012 4 (3.17)

    25

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    34/70

    26 Chapter 3. DC-DC Converter Design

    Figure 3.5: Normalized on resistance vs. temperature

    and the conduction losses per switch, can then be found by:

    Pcond. per switch =RDS(on)

    4(4 MOSFETs in parallel) I2rms_sim (3.18)

    (3.19)

    =

    34, 5m

    4 53, 81A2

    (3.20)(3.21)

    = 24, 97W (3.22)

    Total conduction losses:

    Pcond= 2 Pcond. per switch = 2 24, 97W = 49, 94W (3.23)

    MOSFET switching losses

    The loss in a MOSFET also consist of a switching loss. Figure3.6 shows a MOSFET and its

    "turn-on" and "turn-off" transition waveforms. The Miller charge capacitance,CDGholds the drain

    voltage until the full drain current, IDflows through the MOSFET, which results in switching losses

    at the "turn-on" and "turn-off" periods.

    The instantaneous power that is dissipated in the MOSFET during the "turn-on" and "turn-off"

    periods can be calculated as the gray area of the triangular shape times the switching frequency. The

    26

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    35/70

    3.1. Power Calculation and Component Selection 27

    (a) Magnified view of MOSFET turn-on and turn-off transition waveforms (b) MOSFET with its ef-

    fective terminal capacitance

    Figure 3.6: MOSFET and its turn-on/turn-off transition waveform

    switching losses is calculated with the following formulas:

    PSW =Pon+ Poff = (Pt2+ Pt3) + (Pt5+ Pt6) (3.24)

    The power loss in time periodt2can be found by:

    Pt2 =fsw 1

    2 VDS

    ID4(4 MOSFET)

    RG (CGS+ CDG) ln

    VG VT

    (VG

    VT)

    ID/4

    g

    (3.25)

    where RG is the gate resistor, first chosen to 5ohm but during testing of the converter, raised to

    13,3ohm due to of problems with electrical noise disturbances. (CGS+CDG), also known as the

    input capacitance, is stated in the data sheet to 6040pF. VG is the gate voltage and VT is the gate

    threshold voltage which should be between 3,0V and 5,0V. g is the forward transconductance and

    stated to 39s.

    Figure3.7shows the drain current ID, the blue graph, and voltage VDSas the purple/pink graph,

    27

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    36/70

    28 Chapter 3. DC-DC Converter Design

    across the MOSFETs. It can be seen that according to simulationsVDSis clamped to 160V at the

    turn-off period of the MOSFETs. As mentioned earlier the it is the leakage inductance of thetransformers that induceses the high voltage across the MOSFETs. The leakage inductance is set

    to 0,2% of the inductance of the primary transformer inductance, which is analog to the measured

    leakage inductance of the transformers, se appendixB.

    Figure 3.7: Pspice simulation graph of the switch current and voltage at 30V in

    The power losses int2can now be calculate as:

    Pt2 = 45kH z 1

    2 132, 60V 27, 04A

    4 13, 3 (3.26)

    (6040pF) ln

    15V 4V(15V 4V) 27,04A/439s

    (3.27)

    = 25, 7mW (3.28)

    The power losses in time periodt3can be calculated as:

    Pt3 = fsw 1

    2 VDS

    ID4(4 MOSFET)

    RG Q

    (VG VT) ID/4g(3.29)

    = 45kH z 12 132, 60V 27, 04A

    4 13, 3 87nC

    (15V 4) 27,04A/439s(3.30)

    = 2, 16W (3.31)

    The parameterQ is the gate to drain charge or the "Miller" charge stated to 87nC in the data sheet.

    28

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    37/70

    3.1. Power Calculation and Component Selection 29

    The power losses in time periodt5can be calculated as:

    Pt5 = fsw 1

    2 VDS

    ID4(4 MOSFET)

    RG Q

    VT+ ID/4

    g

    (3.32)

    = 45kH z 12 160, 17V 52, 42A

    4 13, 3 87nC

    4V + 52,42A/439s

    (3.33)

    = 12, 60W (3.34)

    The power losses in time periodt6can be calculated as:

    Pt6 = fsw 1

    2 VDS ID

    4(4 MOSFET) RG (CGS+ CDG) lnVT+

    ID/4g

    VT

    (3.35)

    = 45kH z 12 160, 17V 52, 42A

    4 13, 3 (6040pF) ln

    4V + 52,42/439s

    4

    (3.36)

    = 4, 11W (3.37)

    The switching loss per switch is found to be:

    PSW = (0, 0257W+ 2, 16W+ 12, 60W+ 4, 11W) 2 = 37, 79W (3.38)

    and the total MOSFET loss is calculated as:

    PMOSFET =Pcond+ PSW = 49, 94W+ 37, 79 = 87, 73W (3.39)

    3.1.2 Input Inductor Design

    The input inductors are chosen in accordance with the requirement of the maximum input current.

    It is assumed that input from the fuel cell as well as the ultracapacitor module is a pure DC voltage

    source. As the switching frequency is 45kHz, the requirement of the maximum fuel cell input rippleharmonic being higher than 1kHz is not an issue.

    Copper loss calculation

    The chosen inductor has an inductance of65H and two windings, that is used in parallel which

    according to its data sheet gives an RDC_max of 8mohm. The inductance of65H gives an AC

    29

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    38/70

    30 Chapter 3. DC-DC Converter Design

    ripple of:

    IL=

    30V

    0, 78

    22s

    65H = 7, 92A (3.40)

    The inductor is capable of handling a RMS current of 36A, and is made by Falco for APC. The

    RMS current value is close to the maximum input current, but it is wanted by APC that the inductor

    is pushed as far as possible, as an extra experiment. With an RDC_max of 8mohm the theoretical

    winding loss can be calculated at 30V per inductor:

    PCU_DC_30V =I2L_rms RDC_max= 35, 67A2 0, 008 = 10, 18W (3.41)

    The above calculations does not take into consideration that the AC winding resistance at 45kHz

    will be significantly higher than at DC. The current through the inductor can roughly be considered

    as a DC part and an AC part at 45kHz(ignoring higher harmonics). TheIL_rms of the AC ripple

    current can be calculated as:

    IL_rms = IL

    2

    3=

    7, 92A

    2

    3= 2, 3A (3.42)

    The AC loss in the inductor is primarily caused by skin effect, which causes the resistance and

    copper loss to increase at high frequencies. High frequency currents do not penetrate to the center

    of the wire but crowds at the surface. The inside of the wire is not utilized and the effective wire

    cross sectional area is reduced. The length with which the effective cross sectional area is reduced

    is called the thepenetration depth or the skin depth, and the penetration depth of a copper wire is

    given by:

    = 75

    f mm=

    7545 103 Hz

    mm= 0, 35mm (3.43)

    This reduction of the conductor thickness h of the wire to, effectively increases the resistance

    by the same factor. Hence the conductor can be viewed as having an "ac resistance" given by:

    RAC= h

    RDC (3.44)

    This equation however was made by Dowell (1966) and it was developed for rectangular wires

    with the hight h. For round wires the equationh = dCU

    4 is applied.[3]

    RAC=dCU

    4

    RDC=

    2mm 40, 35mm

    0, 008 = 40, 5m (3.45)

    30

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    39/70

    3.1. Power Calculation and Component Selection 31

    The ac copper loss in the conductor is:

    PCU_AC_30V =I2AC_rms RAC= 2, 32 40, 5m = 0, 21W (3.46)

    A more exact winding copper loss can be found to be:

    PCU =PCU_DC_30V + PCU_AC_30V = 10, 18W+ 0, 21W = 10, 39W (3.47)

    Core loss calculations

    The power loss in the inductor also consists of a core loss, the core loss is often shown as a curve in

    the data sheet for the core material:

    Figure 3.8: Core loss density curve, Kool M

    Figure3.8shows the curve for the typical core loss per volume vs. flux density, for the material

    kool M with the permeability 26. One way of calculating the core loss is by knowing the fre-

    quency and the maximum flux density of the inductor, and then draw a straight line in the double

    logarithmic graph at the wanted frequency. Formula3.48is an approximation of core loss at the

    flux density of the inductor at a given frequency.

    Pfe = Pv(T ypical core loss) Vc(core volume) (3.48)

    31

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    40/70

    32 Chapter 3. DC-DC Converter Design

    The maximum flux density of the inductor is given by.

    B =VL Ts D

    2 NAc=

    60V 22s 0, 562 33 2, 29 104m2 = 34mT (3.49)

    whereTs D is the time period where the maximum voltage,VL is the applied voltage to theinductor.Acis the cross sectional area of the inductor core, and N is the number of winding turns.

    with the maximum flux density and frequency known, the core loss can be calculated. The data

    sheet uses US units, and 34mT is the same as 340 Gauss, as 1 Tesla equals 104 Gauss. At 340 Gauss

    and 45 kHz the typical core loss is read to 42 mW/cm3. The volume of the core is 28,68cm3

    according to the data sheet. The core loss can then be calculated:

    Pfe = 28, 68cm3 42mW/cm3 = 1, 21W (3.50)

    Total inductor loss

    The total inductor loss is:

    Pinductors = (Pfe+ Pcu) 2 = (1, 21W+ 10.44W) 2 = 23, 30W (3.51)

    3.1.3 Transformer Design

    The design of a transformer is an iterative process, where the major consideration is a tradeoff

    concerning where to dissipate the power loss, in the core or in the windings. The number of turns is

    the deciding factor in the ratio between the core loss and winding loss.

    The core size is chosen by request of APC, for similarity reasons with there currently used

    DC-DC converter, in the application that this DC-DC converter, in future prospect could replace.

    The core is an ETD49 with 3C90 as ferrite material. A ferrite core usually saturates at 300mT, the

    chosen material saturates 380mT at100C, but for the core loss point of view the flux density is

    chosen to 220mT, which gives a nice margin.

    Copper loss calculations

    The primary peak voltage is largest at Vin_max(60V). From the duty-cycle calculations in section

    3.1,the transformer voltage can be found to be:

    32

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    41/70

    3.1. Power Calculation and Component Selection 33

    Figure 3.9: Primary voltage in one switch cycle

    The peak primary voltage per transformer is found by:

    Vpri =135V

    2 = 67, 5V (3.52)

    The "on" time is calculated as:

    Ts(on)= 0, 44 Ts= 0, 44 22s= 9, 7s (3.53)

    and with the flux density decided, the number of primary turns can be found to be:

    Npri =VT(on) Ts(on)

    2 B Ac=

    67, 5V 9, 7S2 0, 22T 209 106m2 = 7, 12 7 (3.54)

    whereAcis the cross sectional area of the core and B is the flux density. As the transformer ratio is

    1:3, the secondary number of turns is given by:

    Nsec= 3 Npri = 3 7 = 21 (3.55)

    Winding is made with isolated copper wire, chosen with a diameter of 0,7mm. With the isolationhowever its more like 0,8mm. The winding chamber of an ETD49 coil former is 32,7mm wide.

    Which allows each layer to have 5 wires in parallel and 7 turns. By using several smaller wires

    in parallel, instead of one wire with a large diameter, more of the wire cross sectional area will be

    utilized, and the skin effect will be minimized. The transformer will be made with a total of 6 layers,

    three connected in parallel as the primary side and three in series as the secondary side.

    The fill factor Ku is the fraction of the core window area that is filled with copper, and is

    33

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    42/70

    34 Chapter 3. DC-DC Converter Design

    Figure 3.10: Winding chamber of an ETD49 coil former

    calculated as:

    Total copper area = Aw number of wires in parallel number of turns (3.56)= 0, 352 5 7 (3.57)= 80, 82mm2 (3.58)

    AW is the cross sectional area of the wires, or bare area, andWAis the winding window area. It is

    stated in the data sheet to be 273mm2.

    Ku=Total copper area

    WA=80, 82mm

    2

    273mm2 = 0, 30 (3.59)

    A fill factor of 30% is ok for this application, because of the use of round wires and extra isolation

    between the layers.

    The copper losses will be largest at atVIN= 30V, hence the highest current.

    Ipri_rms =

    Dtrafo

    Itrafo

    2(two parallel sets of transformer)

    2(3.60)

    =

    0, 22

    71, 33A2

    2= 16, 73A (3.61)

    with the transformer ratio this entails the secondary current to be:

    Isec_rms = Ipri_rms

    3 =

    16, 73A

    3 = 5, 58A (3.62)

    To calculate the copper loss it is necessary to know the resistance of the winding conductor. The

    34

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    43/70

    3.1. Power Calculation and Component Selection 35

    DC resistance can be expressed as:

    RDC= lb

    n

    Aw (3.63)

    Whereis the resistivity and equal to 0,023mmat 100C.lbis the average length of a turn andstated to be 0,085mm the ETD49 core. n is the number of turns andAw is the wire cross sectional

    area. The primary and secondary winding resistance is respectively calculated to:

    Rpri_DC= 0, 023mm 0, 085mm 7turns

    0, 35mm2 5wires 3layers = 2, 4m (3.64)

    Rsec_DC= 0, 023mm 0, 085mm

    21turns

    0, 35mm2 5wires = 21, 5m (3.65)

    However to calculate the power loss more accurately, the skin- and proximity effect, as discussed

    earlier, has to be taken into consideration. The copper loss can be calculated as the following:

    Pcu= Ppri+ Psec = I2pri_rms Rsec. DC FR_pri+ I2sec_rms Rsec_DC FR_sec(3.66)

    FRis the correction factor that can be found via figure3.11.As it can be seen the number of layers

    can have significant impact on the copper loss. There are ways of minimizing the proximity effect,

    and thereby the correction factor. One way is to interleave the windings, which means that thewindings should be wound alternately. In this way the MMF, magnetomotive force, induced by the

    winding currents are equalized, see figureA.1in appendixAfor an illustration, and the copper loss

    for the entire winding can be determined by figure ref3.11with M = 1[2].

    The factorcan be calculated as:

    =h

    (3.67)

    whereh = dcu

    4 is the hight of the wire and is the winding porosity or the fraction of the

    width of the winding chamber that is filled with copper. The penetration depth,was found to be

    0,35mm at 45kHz, for copper. The porosity can be determined by:

    =

    4 dcu

    nprilw

    =

    4 0, 7mm 5 7

    32, 7mm = 0, 66 (3.68)

    dcu is the diameter of the wires and npri is the number of turns in a layer. lw is the width of the

    winding chamber. As it is the same wire size used for the primary and secondary windings and it is

    the same number of turns per layer, the porosity is the same. The factor is then also the same for

    35

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    44/70

    36 Chapter 3. DC-DC Converter Design

    Figure 3.11: Correction factor for the transformer resistance as a function ofand number of layers M

    both windings, as the penetration depth of the primary windings is equal to the secondaries:

    = pri = sec=

    4 0, 7

    0, 35 = 1, 44 (3.69)

    In the graph3.11at = 1,44 the correction factor can be found to be 1,35 and the copper loss can

    be determined:

    Ppri = 16, 73

    2

    2, 4m 1, 35 = 0, 91W (3.70)

    Psec= 5, 582 21, 5m 1, 35 = 0, 90W (3.71)

    The total copper power loss per transformer is then:

    Pcu= 0, 91W+ 0, 91W = 1, 82W (3.72)

    36

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    45/70

    3.1. Power Calculation and Component Selection 37

    Core loss calculations

    The core loss is calculated with the same method as in formula3.48for the inductors. Figure3.12

    shows the graph for the core loss per volume vs. the flux density for 3C90.

    Figure 3.12: Core loss density curve, for 3C90

    A straight line is drawn at 45kHz. The volume of an ETD core is24000m3 and the flux density

    is chosen to 220mT. At 45kHz the core loss equals:

    Pfe= 24 106m3 230 103W/m3 = 5, 52W (3.73)

    At the expected operating temperature of the core of60 80C the loss will be slightly higheraccording to figure3.13that shows the power loss for several frequency/flux density combinations

    as a function of temperature, but impossible to with out an accurate graph for the given situation.

    The total theoretical power loss per transformer can be calculated as:

    Ptrafo = Pfe+ Pcu= 5, 52W+ 1, 82W = 7, 34W (3.74)

    For the total converter this equals a loss of:

    Ptransformers = 7, 34W 4 = 29, 36W (3.75)

    37

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    46/70

    38 Chapter 3. DC-DC Converter Design

    Figure 3.13: Core loss frequency/density curve vs. temperature, for 3C90

    3.1.4 Output Diode Rectification

    The chosen output diodes are fast recovery diodes of the type DSEI 30-06A, which are 600V and

    37A diodes in a TO247 house. The loss in one diode can be calculated by:

    PD = VD ID_avg (3.76)

    VD is the forward voltage drop of the diode the moment it starts to conduct and is found to be

    0,8V according to figure3.14,with the instantaneous value or peak value of the forward current.

    ID_avg is the average current the diode conducts during one switch period. Unfortunately there

    was not time to implement the bidirectional part of the DC-DC converter, so the IGBTs where

    replaced by diodes on the output. This means that there are two diodes conducting at a time, and

    four for each output in one switch cycle. The peak current in the diode can be calculated as:

    ID_peak = IoutDtrafo

    14

    (four diodes conducting in one switch cycle) (3.77)

    = 5A

    0, 221

    4 (3.78)

    = 5, 68A (3.79)

    38

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    47/70

    3.1. Power Calculation and Component Selection 39

    Figure 3.14: Forward current versus voltage drop

    The average current for one diode can be calculated as:

    ID_avg = Iout

    4 =

    5A

    4 = 1, 25A (3.80)

    and the forward conduction loss is found to be:

    PD= 1, 01V 1, 25A= 1, 26W (3.81)

    Which means that the total power loss in the rectifier diodes is given by:

    Prectifier = PD 8 = 1, 26W 8 = 10, 1W (3.82)

    3.1.5 Output Filter

    The chosen output capacitors are two 250V electrolytes with 1500F. One for the +200V output

    and the other for the -200V output. The current through one capacitor can be calculated as:

    IC_rms =

    I2rectifier_rms Irectifier_avg2 =

    (ID_rms 4)2 Iout2 (3.83)

    The rms current of one diode can be found by:

    ID_rms =

    (ID_peak)2 Dtrafo=

    5, 68A2 0, 22 = 2, 66A (3.84)

    39

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    48/70

    40 Chapter 3. DC-DC Converter Design

    The output capacitor current is then:

    IC_rms =

    (2, 66A 2)2 + (2, 66A 2)2 5A2 = 5, 62A (3.85)

    The capacitor has a typical ESR value of90mand the total loss in the capacitors can be found by:

    Poutput_capacitors = I2C_rms RC 2 = 5, 62A2 90m 2 = 5, 69W (3.86)

    3.1.6 Estimated Efficiency

    The total loss of the power components can be seen in the table3.1below.

    Component Type Power loss

    Input Inductors four 65Hand 36A rms 23,30W

    MOSFETs irfp90n20d POWER MOSFET 87,73W

    Transformers four ETD49 with 3C90 29,36W

    Output Rectifier eight DSEI 30-06A power diodes 10,10W

    Output Capacitors two 250V electrolytes with 1500F 5,69W

    Clamp Circuit MOSFET, Diodes, Capacitor and inductor ca 20W

    Total 176,18W

    Table 3.1: Loss in power components

    The loss for the clamp circuit is only an estimation, based on experience and a measurement

    of the average current that is transferred back through the circuit of 5A. With an approximately

    efficiency of 90% of the buck converter, an estimated guess is that the clamp loss is around 20W.

    The theoretical efficiency of the DC-DC converter can be calculated by:

    = Pout

    Pout+ Ptotal_loss 100 (3.87)

    =

    2000W

    2000W+ 176, 18W 100 (3.88)= 0, 92 (3.89)

    3.2 Control Design

    At the predefined input voltage, 30-60V, the output voltage of the converter has to be maintained

    constant at 200. To achieve this the converter needs a control system. Figure 3.15shows a simple

    40

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    49/70

    3.2. Control Design 41

    block diagram of the converter with a control system. The control system is fed with an error signal,

    e(t), that is the difference between a reference signal and the measured output voltage. From theerror signal the control system generates the PWM signals that control the switches in the converter.

    Besides keeping the output voltage constant, the control system has to take the requirements of the

    Figure 3.15: controller block diagram

    sources feeding the inputs into consideration. Current overprotection of the fuel cell input is needed,

    so until a "safe" voltage of the fuel cell input is archived, or a sudden load jump occurs, the needed

    power has to be drawn from the ultracapacitor input.

    Figure3.16shows a diagram of a control strategy based on the "feedforward" theory, where

    besides the measurement of the output voltage current sense signal is used. This particular control

    Figure 3.16: controller block diagram

    strategy is called "current mode control", because of the current feedback loop. The advantages of

    the current mode control is that you get a direct measurement, which makes it possible to implement

    the current overprotection for the fuel cell input. The diagram also shows a switch driver circuit,

    which is provided by APC. This driver circuit is isolated, which is needed for the ultracapacitor side

    switches and the clamp circuit MOSFET.

    As this part of the project has been delimited, because of continuing setbacks, the used control

    41

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    50/70

    42 Chapter 3. DC-DC Converter Design

    for the testing of the circuit is not a current mode control strategy. However a diagram of the initially

    intended control scheme can be viewed in appendixBalong with a few calculations.

    3.2.1 Constructed Control

    The control used for testing the converter is consist of a two digital waveform function generator,

    where it is possible to manually change the duty cycle of generated PWM signal. One is used for

    the clamp MOSFET that is regulated so the clamp volage is below 160V at all times.

    The other is used to generate two overlapping PWM signals via the circuit shown on figure ??

    The two PWM signals for the boost MOSFETs is generated by using a 90kHz PWM signal from

    Figure 3.17: Controller diagram

    the digital waveform function generator and using it as the the clock signal for the flip-flop and as

    input to the two NAND gates. The 90kHaz signal is delayed approximately by 100ns to the NAND

    gate inputs. This delay is necessary because there is a propagation delay of 14-16ns from the clk

    signal to the output occurs, in the flip-flop.

    The flip-flops output Q is used for the upper NAND gate and the inverted output Qis used for

    the lower NAND gate. Basically the flip-flop decides when the NAND gates can produce a value

    on the output. By controlling the duty cycle of the 90kHz signal the duty cycle of the PWM signal

    for the bosst switches can be regulated.

    42

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    51/70

    43

    Chapter 4

    Implementation, Measurements and

    Performance

    In this chapter the construction, and the basic consideration concerning layout of the converter is

    explained. Hereafter the measurements that have been performed on the converter is described.

    4.1 Layout of the DC-DC Converter

    Figure4.1shows how the layout was done. Due to internal as well as external procedures of acquir-

    ing the control print, it was decided to make the power board as seen on figure 4.1.It is constructed

    on a plexiglas board with the dimensions of40cm 41cm, some of the connection is done with solidwire and others, where more power is expected, is done with copper foil. The individual connector

    size was determined by a rule of thumb saying; 15A per1mm2.

    The DC-DC converter is constructed between to heat sinks that was found in APCs "junk"

    collection. On each heat sink there is room for 16 semiconductors in either TO220 or TO247

    housing. The boost MOSFETs is placed so the heat dissipation is evenly distributed between the

    sinks, meaning that switch 1 and 3 is on one sink and switch 2 and 4 on the other sink. The thermal

    resistance of the heat sink is not known but it should not be a problem keeping the temperature

    below the maximum of the individual component, as some forced air cooling also will be applied, to

    simulated a more realistic environment. The clamp MOSFET, for each input, and its two associated

    diodes is also placed on the heat sink accordingly. On the further most side to the right of the

    converter the output diodes is placed.

    The input supply can be seen on the left side of the board and directly after the input connections

    43

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    52/70

    44 Chapter 4. Implementation, Measurements and Performance

    Figure 4.1: Picture of the DC-DC converter

    the HAL sensor is placed which measures the input current. It is however not used in the testing

    as the intended controller wasnt available. The input inductors are the big red ones right after the

    HAL sensor and the smaller inductors that can be seen is the clamp inductors. The four transformers

    is placed approximately in the middle of the board. To the right, the two output capacitors is seen

    and behind them, two ventilators is placed to produced airflow for cooling.

    The driver circuit used for the MOSFETs is galvanic isolated and designed by APC. They need

    a 15V supply and the PWM signals to operate. The 15V is supplied by a external DC source.

    4.1.1 Layout Considerations

    The drivers for the MOSFETs should be placed as close to the MOSFETs as possible. This should

    be done to minimize the inductance in the driver circuit. The inductance in the wires to the MOS-

    FETs could self-oscillation with the input capacitance in the MOSFETs. To prevent this the MOS-

    FETs is supplied with individual gate resistors which should dampen the effect if it should arise.

    The clamp loop have to be as small as possible otherwise it will induce further inductance in the

    circuit, which again will raise the voltage across the MOSFETs.

    44

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    53/70

    4.2. Efficiency of the converter 45

    4.2 Efficiency of the converter

    The control circuit described in section3.2.1constructed control, is used to test the converter effi-

    ciency. As mention earlier, total duty cycle, of the push-pull MOSFETs, regulation wasnt possible,

    due to limitation of the duty cycle the digital waveform function generator could deliver. Which

    means that some of the measurement couldnt be performed. The most important measurement was

    however at low input voltage where it wasnt a problem to regulated the duty cycle. See figures 4.2

    for the efficiency measurements. It can be seen that the measured efficiency isnt quite as high as

    (a) Operating efficiency at Vin= 30V (b) Operating efficiency at Vin= 45V

    (c) Operating efficiency at Vin= 50-58V

    Figure 4.2: Operating efficiency of the converter

    the expected 0,93. The extra losses can be explained, due to higher peak voltages across the boost

    MOSFETs than expected. This is probably because of the inductance in the clamp circuit.

    45

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    54/70

    46 Chapter 5. Discussion, Conclusion and Future Work

    Chapter 5

    Discussion, Conclusion and Future Work

    A prototype was successfully constructed and a efficiency of 91% was archived at the worst case

    scenario. This was archived even without a proper regulation control. The highest efficiency was

    unfortunately not disclosed in the testing, due to lack of a proper regulation.

    The prototype converter does however live up to its demand of converting the alternating input

    voltage, 30V-60V to a constant output voltage, 200Vat a powerlevel of 2kW with an efficiency of91%. The measurements at high input voltage could not be performed due to instrumental limitation,

    but I am confident that with the correct control scheme the converter would perform as expected.

    With the high efficiency there are some perspective in the topology. It has the potential to

    become a real contender for an fuel cell/ultracapacitor application.

    With further investigations the efficiency could be even higher. a few ideas for improving the

    converter is listed below:

    A proper design of cooling

    Professional circuit boards in multiple layers

    Implementation of a real regulation

    46

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    55/70

    BIBLIOGRAPHY 47

    Bibliography

    [1] Wilson C.P de Aragao Filho and Ivo Barbi. A comparison between two current-fed push-pull

    dc-dc converters - analysis, design and experimentation. 1996.

    [2] Robert W. Erickson and Dragan Maksimovic. Fundamentals of Power Electronics. 2001. Sec-

    ond Editiion.

    [3] A. Hansen and H. Havemann. Hjspndingskontaktregulatorer af forward-converter typen.

    http://www.answers.com/topic/maxwell-s-equations.

    [4] Claudio Rossi. Application of supercapacitors in fuel cells based ups, 2005.

    [5] Adrian Schneuwly. Properties and apllications of supercapacitors from state-of-the-art to future

    trends, 2000.

    [6] Raphael Waeber, 2006. Director Sales and Marketing Boostcap Euorpe.

    47

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    56/70

    48 Chapter A.

    Appendix A

    A.1 Magnetomotive force in the transformers

    There are ways of minimizing the proximity effect, and thereby the correction factor. One way is

    to interleave the windings, which means that the windings should be wound alternately. In this way

    the MMF, magnetomotive force, induced by the winding currents are equalized, see figureA.1for

    an illustration.

    (a) (b)

    Figure A.1: Behavior of the MMF in a transformer

    48

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    57/70

    49

    Appendix B

    B.1 Leakage inductance in the transformers

    The primary and leakage inductance of the transformers was measured with a instrument called

    "LCR meter(LCR-819)" from GW instek. The transformers quality factor Q is also measured. The

    leakage inductance was measured with the secondary side short circuited:

    T1:

    Lpri = 0, 205mH (B.1)

    Q = 129, 8 (B.2)

    leakage inductance = 0, 00021mH 0, 21H (B.3)

    T2:

    Lpri = 0, 197mH (B.4)

    Q = 134, 2 (B.5)

    leakage inductance = 0, 00016mH 0, 16H (B.6)

    T3:

    Lpri = 0, 209mH (B.7)

    Q = 120, 5 (B.8)

    leakage inductance = 0, 00018mH 0, 18H (B.9)

    49

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    58/70

    50 Chapter B.

    T4:

    Lpri = 0, 218mH (B.10)

    Q = 118, 5 (B.11)

    leakage inductance = 0, 00016mH 0, 16H (B.12)

    50

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    59/70

    51

    Appendix C

    C.1 Control design

    Figure C.1: Control block diagram

    Equivalent output filter

    To make it easier to calculate and simulate the control close loop, some estimation will be done.

    Selected: Cout = 1500tF.

    The input choke dos not configure in the equivalent model, because it can be calculated as a short

    circuit, becausediL/dt duC/dt. The choke will have a phase correction at plus 90 degrees, butit will be at a frequency more than one decade above the f0 fore the converter close loop.

    51

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    60/70

    52 Chapter C.

    Calculation of the equivalent output resistanceReq

    The output voltage of the PI regulator P I1 makes the limit for the switch current (I). The ratio

    betweenVPI1 anddIinis given by equationC.1:

    dVPI1 =dIin_puls GIsense (C.1)

    dVPI1 : voltage change at the output of the PI regulator

    dIin_puls: current change at the secondary side of the converter(rectifier)

    GIsense: Current feedback gain: 1/2000 x 75 x 2 = 75m times (will be

    FordIin_puls@ 1V change atP I1:

    dIin_puls = dVPI1GIsense

    = 1

    75dot103 = 13, 33A (C.2)

    dIout_puls = dIin_puls Ntransformer= 13, 33 1

    3= 4, 44A (C.3)

    The maximum middle output currentdIout_avg , can now be calculated. Note that the max duty

    cycle is atVinmax.

    dIout_avg =dIout_puls Dtrafo_max= 4, 44 0, 44 1, 96A (C.4)

    Maximum average output current @ 1V change atP I1.

    The equivalent output resistance can now be calculated asdVPI1 divided by the dIout_avg @

    dVPI1 :

    Req =dVPI1dVPI1

    = 1V

    1, 96A= 510m (C.5)

    The voltage sense gain can be calculated asUrefdivided byUout:

    GIsense4, 02V

    400V 10, 05mgg (C.6)

    52

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    61/70

    C.1. Control design 53

    Calculation of output characteristic

    Req = Xc= 1

    2 f0_out CoutGIsense, atAout = 0db (C.7)

    (C.8)f0_out =

    1

    2 Req CoutGIsense=

    1

    2 510m 1500F 10, 05mgg = 2, 09Hz (C.9)

    simulation of output characteristic

    Figure C.2: Simulation model for the output characteristic

    f0for the control loop must be at least one decade below the switch frequency, to minimize the

    phase correction from the switch frequency. The control loop dont have to be quick, Thereforef0

    is selected to be 50Hz, to gain higher stability.

    The PI regulator gain will be calculated so that the close loop gain is one atf0. In that way will

    the phase margin be90 45. This will make a phase margin at 45r minus the phase correctionfrom other filters witch can be let out, because they are designed to have a f3dbmore than one decade

    abovef0for the close loop. Calculation of gain for high frequency(A(f )):

    (A(f )) =Aout(f0) 3db 37, 6db 3db= 34, 6db 53, 7times (C.10)

    Calculation of R1 and R2:

    A(f ) = R1R2

    , selected:R1= 1k (C.11)

    (C.12)R2=

    R1A(f ) =

    1k

    53, 7= 18, 6 18, 2 (C.13)

    53

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    62/70

    54 Chapter C.

    Figure C.3: Bodeplot of the output characteristic

    Calculation ofC1:

    R1= Xc(f0) =1

    2 dotf0 C1 (C.14) (C.15)

    C1=1

    2 dotf0 R1=1

    2 dot159Hz 1k= 0, 1F (C.16)

    To eliminate high frequency noise, is the high frequency gain reduced by C2. C2 is calculated, so

    that the cross over frequency is more than one decade higher than f0. This inshore that it has less

    than 3 degrees influence at the close loop phase margin.

    Calculation ofC2: The high frequency cross over frequency is selected to be more than 10 x f0:

    (f3bd_high) = 1

    2 dot10n 1k = 15, 9Hz (C.17)

    54

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    63/70

    C.1. Control design 55

    Figure C.4: Close loop bodeplot

    Slope compensation

    It is not necessary to add slope compensation due to that the duty cycle cant be above 50%.

    Control diagrams

    55

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    64/70

    56 Chapter C.

    Figure C.5: Control sheet 1

    56

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    65/70

    C.1. Control design 57

    Figure C.6: Control sheet 2

    57

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    66/70

    58 Chapter C.

    Figure C.7: Control sheet 3

    58

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    67/70

    C.1. Control design 59

    Figure C.8: Control sheet 4

    59

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    68/70

    60 Chapter C.

    Figure C.9: Control sheet 5

    60

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    69/70

    C.1. Control design 61

    Figure C.10: Control sheet 6

    61

  • 7/17/2019 2kW Dual Input DC DC Converter for Fuell Cells and Ultracapa

    70/70

    62 Chapter D.

    Appendix D

    D.1 Pspice diagram of the converter

    Control diagrams