2.DegreeOfFreedom1

download 2.DegreeOfFreedom1

of 15

Transcript of 2.DegreeOfFreedom1

  • 8/9/2019 2.DegreeOfFreedom1

    1/34

    © ME 3 1 METU ME1

  • 8/9/2019 2.DegreeOfFreedom1

    2/34

     • the degree-of a joint is the number of links

    connected at the oint minus one.

    Binary Joint Ternary Joint Quarternary Joint

    !!!! Do not confuse with the degree of freedom of a joint

    Note that the number of joints at that connection is equal to the.

    Degree of freedom of a joint is the number of independent

    parameters required to define the position of one link relative to the

    other connected by that joint.

    ©ME 3 1 METU ME

    2

  • 8/9/2019 2.DegreeOfFreedom1

    3/34

      echanisms

    ©ME 3 1 METU ME

    3

  • 8/9/2019 2.DegreeOfFreedom1

    4/34

      echanisms

    Degree of freedom of a

    mec an sm

    is the number of independent

    the position of every link in that

    mechanism.

    Readin Assi nment: u to a e 33 End of Cha ter 1 b October 13 ‘08

    ©ME 3 1 METU ME

     

    4

  • 8/9/2019 2.DegreeOfFreedom1

    5/34

    C

     b

    B c

    a

    A D

    θ

    B

     b

    C

    θ

    a

    φ

    ED

    e

    ©ME 3 1 METU ME

    5

  • 8/9/2019 2.DegreeOfFreedom1

    6/34

     • De ends on:

     – The degree of freedom of space

     –

     – The number of links and joints in the

    mechanism – The distribution of links and joints within the

    mechanism

    Does not de end onThe shape of the links

    ©ME 3 1 METU ME

    6

  • 8/9/2019 2.DegreeOfFreedom1

    7/34

     

    Let

      = Degree-of-freedom of space:= 3 for planar and spherical space

      = 6 for spatial space

      = Number of links in a mechanism (including the fixed link).

     j = Number of joints in the mechanism

    f = Degree-of-freedom of the ith joint

    F = Degree-of- freedom of the mechanism

    ©ME 3 1 METU ME

    7

  • 8/9/2019 2.DegreeOfFreedom1

    8/34

    Consider four links in plane motion

    For 4 links 4*3=12 parameters are needed

    For   links (with one link fixed):

     (  -ı) parameters are required. This is the number of parameters needed without joints (constraints)

    ©ME 3 1 METU ME

    8

  • 8/9/2019 2.DegreeOfFreedom1

    9/34

    With the oints shown: 

    Link 2 3Parameters

    Link 3 2 Parameters (Cylinder in slot joint has 2 Dof, constrains 1 Dof in plane motion).

    n arame er revo u e o n s as o , cons ra ns o n ane mo on

    Link5 1 Parameter (revolute Joints has 1 Dof, constrains 2 Dof in Plane motion)

    With these 3 joints 1+2+2 = 5 freedoms are constrained

     j j

    Therefore now we need (12-5) 7 parameters to determine the position of these 4 links

    If the joint freedom is f i, then that joint constrains   – f i freedoms. j joints will constrain:

    ∑ ∑= =

    −=−i i

    ii   f  j f 1 1

    )(   λ λ  freedoms

    ©ME 3 1 METU ME

    9

  • 8/9/2019 2.DegreeOfFreedom1

    10/34

      ,

    . .

     j

    F j f ii

    = − − −=

    ∑λ λ( ) ( ) 11

    or  j

    i

    i

    = − − +=1

    General Degree-of-freedom equation

    ©ME 3 1 METU ME

    10

  • 8/9/2019 2.DegreeOfFreedom1

    11/34

    - -

    ©ME 3 1 METU ME

    11

  • 8/9/2019 2.DegreeOfFreedom1

    12/34

    Schematic Drawing

    ©ME 3 1 METU ME

    12

  • 8/9/2019 2.DegreeOfFreedom1

    13/34

    Virtual Model

    ©ME 3 1 METU ME

    13

  • 8/9/2019 2.DegreeOfFreedom1

    14/34

    6

    4

    2

    3

    10

    9

    8

    7

    1

    12  13

    Inverted Slider-Crank Mechanism

    Drawn by: Eres SöylemezChecked b : Eres Sö lemez

    5

     

    Date September 15 2004METU

    ©ME 3 1 METU ME

    14

  • 8/9/2019 2.DegreeOfFreedom1

    15/34

    Example

    ©ME 3 1 METU ME

    15

  • 8/9/2019 2.DegreeOfFreedom1

    16/34

    ©ME 3 1 METU ME

    16

  • 8/9/2019 2.DegreeOfFreedom1

    17/34

    Example: Excavator 

    ©ME 3 1 METU ME

    17

  • 8/9/2019 2.DegreeOfFreedom1

    18/34

    ©ME 3 1 METU ME

    18

  • 8/9/2019 2.DegreeOfFreedom1

    19/34

    -

    ©ME 3 1 METU ME

    19

  • 8/9/2019 2.DegreeOfFreedom1

    20/34

    ©ME 3 1 METU ME

    20

  • 8/9/2019 2.DegreeOfFreedom1

    21/34

    Hinge

    1972

    ©ME 3 1 METU ME

    21

  • 8/9/2019 2.DegreeOfFreedom1

    22/34

    ©ME 3 1 METU ME

    22

  • 8/9/2019 2.DegreeOfFreedom1

    23/34

    Example:

      .The mechanism shown is an adjustable stroke pump. The mechanism is driven by an electric

    motor attached to the input crank to impart a translating motion to the piston. The adjustment

    on the amount of stroke of the um is made b a screw not shown which chan es the

     position of the pin A.

    5

    1C

    s

    P

    3

    Cs

    2RR

    ©ME 3 1 METU ME

    23

  • 8/9/2019 2.DegreeOfFreedom1

    24/34

    Example

    Three Gear Drive

    ©ME 3 1 METU ME

    24

  • 8/9/2019 2.DegreeOfFreedom1

    25/34

    Example

    Landing Gear door with controlled Kinematic Control

    ©ME 3 1 METU ME

    25

    E l

  • 8/9/2019 2.DegreeOfFreedom1

    26/34

    Example

    ©ME 3 1 METU ME

    26

  • 8/9/2019 2.DegreeOfFreedom1

    27/34

    ©ME 3 1 METU ME

    27

  • 8/9/2019 2.DegreeOfFreedom1

    28/34

      echanisms

    ©ME 3 1 METU ME

    28

  • 8/9/2019 2.DegreeOfFreedom1

    29/34

    ©ME 3 1 METU ME

    29

    Example

  • 8/9/2019 2.DegreeOfFreedom1

    30/34

    Example

    ©ME 3 1 METU ME

    30

  • 8/9/2019 2.DegreeOfFreedom1

    31/34

    Linked Multi-Segment Landing Gear Door for Aircraft

    ©ME 3 1 METU ME

    31

  • 8/9/2019 2.DegreeOfFreedom1

    32/34

    ©ME 3 1 METU ME

    32

  • 8/9/2019 2.DegreeOfFreedom1

    33/34

     

    ©ME 3 1 METU ME

    33

  • 8/9/2019 2.DegreeOfFreedom1

    34/34

    Example:

    Some spatial mechanisms

    ©ME 3 1 METU ME

    34