279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

download 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

of 12

Transcript of 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    1/28

    Chapter 10

    10.1 Input:

    » a=exp(i*2*pi/3);

    » A=[1 1 1;1 a^2 a;1 a a^2];

    » I=[15*exp(0);20*exp(i*120*pi/180);30*exp(i*(-120)*pi/180)];

    The zero, positive and negative sequence currents are given by

    » IS=inv(A)*I

    I ao = -3.3333 - 2.8868i = 4.4096 ∠-139.11 0 A

    I a1 = -3.3333 + 2.8868i = 4.4096∠

    139.110

    AI a2 = 21.6667 + 0.0000i = 21.6667 ∠00 A

    10.2 Input:

    » a=exp(i*2*pi/3);

    » A=[1 1 1;1 a^2 a;1 a a^2];

    » VS=[50*exp(i*180*pi/180);100*exp(i*90*pi/180);50*exp(i*0)];

    Computation of phase to neutral voltages

    » VP=A*VS

    Van = 0.0000 + 100.00i = 100 ∠900 V

    V bn = 11.6000 – 6.7000i = 13.3975 ∠ –30 0 V

    Vcn = -161.600 – 93.300i = 186.6025 ∠ –150 0 V

    10.3 Assume that the neutral is un-earthed. Hence, there is no path for the zero sequence

    currents to flow. Therefore, there is no zero sequence component of voltages in the line

    voltages.

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    2/28

    If V c a is assumed to have an angle of 180 0, the phase angles of the other line voltages are

    calculated using the cosine law which yields the following

    V a b = 200 ∠70.53 0 V, V b c = 220 ∠-58.99 0 V, and V c a = 180 ∠180 0 V

    Input data:

    » a=exp(i*2*pi/3);

    » Vab=200*exp(i*70.53*pi/180);Vbc=220*exp(i*(-58.99)*pi/180);

    » Vca=180*exp(i*180*pi/180);

    Computation of symmetrical components of line voltages

    » Vab1=(Vab+a*Vbc+a^2*Vca)/3 = (8.7762e+001 +1.7896e+002i) V= 199.3220 ∠63.8767 0 V

    » Vab2=(Vab+a^2*Vbc+a*Vca)/3 = (-21.1011 + 9.6002i) V

    = 23.1823 ∠155.5361 0 V

    Computation of sequence components of voltages to neutral

    » Van1=i*Vab1 = (-1.7896e+002 +8.7762e+001i) V

    » Van2=-i*Vab2 = (9.6002 +21.1011i) V

    » Van0=0;

    Computation phase ‘a’ to neutral voltage

    » Van=Van1+Van2+Van0 = (-1.6936e+002 +1.0886e+002i)

    = 201.3313 ∠147.2675 0 V

    Computation of phase current in line ‘a’

    » Ian=Van/10 = -16.9361 +10.8863i = 20.1331 ∠147.2675 0 A

    Computation phase ‘b’ to neutral voltage

    » Vbn=a^2*Van1+a*Van2+Van0 = (1.4241e+002 +1.0887e+002i)

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    3/28

    = 179.2564 ∠37.3964 0 V

    Computation of phase current in line ‘b’

    » Ibn=Vbn/10 = 14.2411 +10.8867i = 17.9256 ∠37.3964 0 A

    Computation phase ‘c’ to neutral voltage

    » Vcn=a*Van1+a*2*Van2+Van0 = (-3.2672e+001 -2.0334e+002i)

    = 205.9470 ∠-99.1282 0 V

    Computation of phase current in line ‘c’

    » Icn=Vcn/10 = -3.2672 -20.3339i = 20.5947 ∠-99.1282 0 A

    10.4 Computation of phase sequence currents» Ian1=Van1/10 = (-17.8961 + 8.7762i) A

    » Ian2=Van2/10 = (0.9600 + 2.1101i) A

    » Ian0=Van0/10 = 0 A

    Computation of power from sequence voltages and currents

    » S=3*(Van0*conj(Ian0)+Van1*conj(Ian1)+Van2*conj(Ian2))

    = 1.2080e+004 W

    Verification by computing power fro line currents and resistance

    » (abs(Ian)^2+abs(Ibn)^2+abs(Icn)^2)*10 = 1.1508e+004

    The slight difference is due to round off error in computations

    10.5 When the neutral is grounded, it provides a return path for the line currents to flow.

    Thus if I n is the neutral and I a, I b, and I c are the line currents,

    I n = I a + I b + I c

    Also, I a0 =31

    (I a + I b + I c).

    That is, I n = 3 I a0

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    4/28

    10.6 Computation of generator 1 reactance

    » Xg1=0.12*(10.6/11)^2*(100/50) = 0.2229 pu

    Computation of generator 2 reactance

    » Xg2=0.10*(6.6/6.6)^2*(100/30) = 0.3333 pu

    Computation of transformer 1 reactance

    » Xt1=0.15*(220/220)^2*(100/75) = 0.2000 pu

    Computation of transformer 2 reactance

    » Xt2=0.15*(220/220)^2*(100/50) = 0.3000 pu

    Computation of transformer 3 reactance» Xt3=0.15*(220/220)^2*(100/30) = 0.5000 pu

    Computation of motor reactance

    » Xm=0.08*(10/11)^2*(100/25) = 0.2645 pu

    » Zbase=(220^2)/100 = 484 Ω

    Computation of line 1 impedance

    » Zl1=(50+i*100)/Zbase = (0.1033 + 0.2066i) pu

    Computation of line 2 impedance

    » Zl2=(25+i*50)/Zbase = (0.0517 + 0.1033i) pu

    Computation of line 3 impedance

    » Zl3=(45+i*60)/Zbase = (0.0930 + 0.1240i) pu

    Representation of the load as a parallel R- X combination

    » S=30*(0.8+i*0.6) = (24.0000 +18.0000i) MVA

    » Rload=(11/11)^2*100/real(S) = 4.1667 pu

    » Xload=(11/11)^2*100/imag(S) = 5.5556 pu

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    5/28

    The per unit single line diagram of the network is shown below:

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    6/28

    10.7 Here 0.Also.and,, b ====== cabcabcbbaa ZZZZZZZZZ Hence, the

    sequence impedance is given by

    [Z 012 ] =⎥

    012

    201

    120

    sss

    sss

    sss

    ZZZ

    ZZZ

    ZZZ

    (I)

    where

    ( ) ( )

    ( ) [ ]( ) ( )

    ( ) [ ]( ) ( )babacbas

    bababbas

    babbas

    ZZZaaZaZZaZZ

    ZZZaaZZaaZZZ

    ZZZZZZ

    −=++=++=

    −=++=++=

    +=++=

    31

    31

    31

    31

    31

    31

    231

    31

    222

    221

    0

    Substitution for the sequence impedances in (I) leads to

    [Z 012 ] =

    ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )⎥

    +−−−+−−−+

    =⎥

    bababa

    bababa

    bababa

    ZZZZZZ

    ZZZZZZ

    ZZZZZZ

    Z

    Z

    Z

    2

    2

    2

    31

    2

    1

    0

    10.8 Connection of the neutral point to ground provides a path for the zero sequence

    currents to flow. Staring from first principle, the sequence impedance matrix is written as

    [ ] [ ]( )

    ( )( )

    [ ]AZZ

    ZZ

    ZZ

    AZ⎥

    +

    +

    +

    = −

    gb

    gb

    ga

    00

    00

    001

    012

    On performing the indicated matrix multiplications leads to the final result

    [Z 012 ] =( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )⎥

    ++−−

    −++−−−++

    =⎥

    gbababa

    bagbaba

    babagba

    ZZZZZZZ

    ZZZZZZZZZZZZZZ

    Z

    ZZ

    32

    3232

    31

    2

    1

    0

    The expression for the neutral voltage is given by

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    7/28

    gan ZIV 30 ×=

    10.9 Assume a system base of 100 MVA. The voltage base for the various parts of the

    network is as per the transformation ratios of the transformers.

    Generator 1 per unit reactance: 5 .0;25.0 021 === X X X

    Generator 2 per unit reactance: 3333.0;25.0 021 === X X X

    Transformer 1-2 per unit reactance: 2 .0021 === X X X

    Transformer 1-5 per unit reactance: 1143.0021 === X X X

    Transformer 3-4 per unit reactance: 2 .0021 === X X X

    Transformer 6-4 per unit reactance: 3 .0021 === X X X

    Transmission line 2-3 per unit impedance:

    ( )( )

    5165.01722.0132

    10090302

    j j

    Z +=×+=

    Transmission line 5-6 per unit impedance:

    ( )( )

    1653.01033.0220

    10080502

    j j

    Z +=×+=

    Series representation of load

    ( ) ( )( )( ) ( )( ) ( )( )( ) ( ) pu2.110301040

    1030101000.1

    pu6.110301040

    1040101000.1

    0.300.40)6.08.0(50

    2626

    662

    2626

    662

    =×+×

    ××=

    =×+×

    ××=

    +=+×=

    X

    R

    j jS

    pu05.0= f Z

    Assembly of positive and negative sequence networks:

    The positive sequence network is shown in the figure below.

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    8/28

    Thus, )3937.01133.0(21 j Z Z +==

    Computation of zero sequence network:

    Based on the types of transformer connections, the zero sequence network is

    shown below.

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    9/28

    From the diagram, it is seen that )4506.01595.0(0 j Z +=

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    10/28

    The network below depicts the inter-connection of the sequence networks for a

    SLG fault.

    Take the node 4 voltage (11 kV) as the fault voltage pu 0.1= f V (reference

    phasor) for fault calculations.

    ( ) pu j j j j Z Z Z Z

    V I

    f

    f a

    °−∠=−=

    ++++++=

    +++=

    5856.667412.06802.02946.0

    15.0)4506.01595.0()3937.01133.0()3937.01133.0(0.1

    30211

    Base current kA I Base 2486.510113

    101003

    6=

    ×××=

    021 aaa III ==

    Fault current pu pu I I aa °−∠=−∠×== 5856.662236.25856.667412.0330

    1

    kA°−∠=−∠×= 5856.666708.115856.662236.22486.5 0

    Computation of sequence voltages:

    » Va0=-Ia0*Z0 = (–0.3535 – 0.0242i) pu = 0.3542 ∠ –176.0837 ° pu

    » Va1=Vf-Ia1*Z1 = (0.6988 – 0.0389i) pu = 0.6999 ∠ –3.1862 ° pu

    » Va2=-Ia2*Z2 = (–0.3012 – 0.0389i) pu = 0.3037 ∠ –17.6410 ° pu

    Computation of line voltages:

    » A=[1 1 1;1 a^2 a;1 a a^2];

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    11/28

    » VS=[Va0;Va1;Va2];

    » Vabc=A*VS

    Vabc = =⎥

    ⎥⎥

    ⎢⎢

    c

    b

    a

    VV

    V

    ⎥⎥

    ⎢⎢

    °∠°−∠

    °∠

    =⎥

    ⎥⎥

    ⎢⎢

    + 122.09321.0395973.1221.0148

    66.5603-0.1112

    0.8807i0.5523-0.8514i-0.5523-

    0.1020i-0.0442

    Line voltage aV is also given by

    °−∠×=×= 5856.667412.015.01a f a I Z V = 0.1112 ∠ –66.5856 °

    The above verifies the computations.

    10.10 (i) 2LL fault:

    The interconnection of the sequence networks is drawn below:

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    12/28

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    13/28

    » Zf=0.05;

    Computation of sequence currents:

    » Ia1=Vf/(Z1+Z2+Zf) = (0.3971 - 1.1305i) = 1.1982 ∠ –70.6445 ° pu

    » Ia2=-Ia1 = (–0.3971 + 1.1305i) = 1.1982 ∠109.3555 ° pu

    Computation of sequence voltages

    » Va0=0;

    » Va1=Vf–Ia1*Z1 = (0.5099 – 0.0283i) pu

    » Va2=-Ia2*Z2 = (0.4901 + 0.0283i) pu

    Computation of phase voltages:

    » VS=[Va0;Va1;Va2];

    » Vabc=A*VS

    Vabc = =⎥

    ⎥⎥

    ⎢⎢

    c

    b

    a

    VV

    V

    ⎥⎥

    ⎢⎢

    °∠°−∠

    °∠

    =⎥

    ⎥⎥

    ⎢⎢

    +−−

    177.81670.4514178.20580.5492

    01.0000

    0.0172i0.45100.0172i-0.5490

    1.0000

    Computation of line voltages

    » Vab=Vabc(1) –Vabc(2) = (1.5490 + 0.0172i) = 1.5490 ∠0.6361 ° pu

    » Vbc=Vabc(2) –Vabc(3) = (–0.0979 – 0.0344i) = 0.1038 ∠ –160.6445 ° pu

    » Vca=Vabc(3) –Vabc(1) = (–1.4510 + 0.0172i) = 1.4511 ∠179.3210 ° pu

    Computation of line currents

    » Ib=–i*sqrt(3)*Ia1 = (–1.9581 – 0.6878i) = 2.0754 ∠ –160.6445 ° pu

    » Ic=-Ib = (1.9581 + 0.6878i) = 2.0754 ∠19.3555 ° pu

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    14/28

    Verification of computations

    » Vbc=Zf*Ib = (–0.0979 – 0.0344i) = 0.1038 ∠ –160.6445 ° pu

    Computation of actual line currents

    » IBase*abs(Ib) = 10.8929 kA

    (ii) 2LG fault

    The inter-connected sequence networks are shown below:

    Computation of sequence currents

    » Ia1=Vf/((Z1+Zf)+(Z2+Zf)*(Z0+Zf)/(Z2+Z0+2*Zf)) = (0.5939 –1.4048i) pu

    » Ia2=–((Z0+Zf)/(Z2+Z0+2*Zf))*Ia1 = (–0.3050 + 0.7624i) pu

    » Ia0=–((Z2+Zf)/(Z2+Z0+2*Zf))*Ia1 = (–0.2889 + 0.6424i) pu

    » Ia0+Ia1+Ia2 = 0; which verifies the computations

    » IS=[Ia0;Ia1;Ia2];

    » Iabc=A*IS

    Iabc = =⎥

    c

    b

    a

    I

    I

    I

    ++−

    1.7420i1.4435

    0.1851i2.3101

    0.0000i0.0000

    » 3*Ia0 = (–0.8666 + 1.9271i) pu

    » Iabc(2)+Iabc(3) = (–0.8666 + 1.9271i)

    Since 03 acb III =+ , the computations are again verified.

    Computation of sequence voltages

    » Va0=–Ia0*Z0 = (0.3355 + 0.0277i) pu

    » Va1=1.0–Ia1*Z1 = (0.3797 – 0.0747i) pu

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    15/28

    » Va2=-Ia2*Z2 = (0.3347 + 0.0337i) pu

    Computation of phase voltages

    » VS=[Va0;Va1;Va2];

    » Vabc=A*VS

    Vabc = =⎥

    c

    b

    a

    V

    V

    V

    °∠°∠°−∠

    =⎥

    ++−

    3532.500.1131

    4195.1750.1159

    7226.01.0500

    0.0871i0.0722

    0.0093i0.1155

    0.0132i1.0499

    pu

    Computation of line voltages

    » Vab=Vabc(1) –Vabc(2) = (1.1654 – 0.0225i) = 1.1656 ∠ –1.1058 ° pu

    » Vbc=Vabc(2) –Vabc(3) = (–0.1877 – 0.0778i) = 0.2032 ∠ –157.4722 ° pu

    » Vca=Vabc(3) –Vabc(1) = (–0.9777 + 0.1003i) = 0.9829 ∠174.1404 ° pu

    Computation of actual line currents

    » IBase*abs(Iabc)

    kA

    I

    I

    I

    c

    b

    a

    ⎥⎥

    ⎢⎢

    °∠°∠°−∠

    =⎥⎥

    ⎢⎢

    3532.5011.8743

    4195.17512.1637

    9638.750.0000

    (iii) Three phase fault

    The sequence networks for a three-phase fault are drawn below.

    Computation of sequence currents

    » Ia1=Vf/(Z1+Zf) = (0.8989 – 2.1672i) = 2.3462 ∠ –67.4722 ° pu

    » Ia=Ia1;

    Computation of actual current

    » IBase*abs(Ia) = 12.3142 ∠ –67.4722 ° kA

    » angleIb=angleIa+(angle(a^2)*180/pi) = ∠ –187.4722 °

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    16/28

    » angleIc=angleIa+(angle(a)*180/pi) = ∠52.5278 °

    Computation of voltages

    » Va=Zf*Ia = (0.0449 – 0.1084i) = 0.1173 ∠ –67.4722 ° pu

    » angleVb=angleVa+angle(a^2)*180/pi = ∠ –187.4722 °

    » angleVc=angleVa+angle(a)*180/pi = ∠52.5278 °

    10.11 Input data from problem 10.9

    » Ia1=0.2946–i*0.6802;Ia2=Ia1;Ia0=Ia1;

    » Va0=-0.3535–i*0.0242;

    » Va1=0.6988–i*0.0389;

    » Va2=-0.3012–i*0.0389;

    » a=exp(i*2*pi/3);

    » A=[1 1 1;1 a^2 a;1 a a^2];

    Computation of positive and negative sequence currents flowing in the circuit on the

    generator side

    » Ia1g=((1.6+i*1.2)/(i*0.125+(0.0646+i*0.3551)+1.6+i*1.2))*Ia1

    = (0.1625 – 0.6054i) pu

    » Ia2g=Ia1g;

    Computation of zero sequence current flowing from node 5

    » Ia05=((1.6+i*1.2)/(i*0.1143+(0.1033+i*0.1653)+i*0.3+1.6+i*1.2))*Ia0

    = (0.1459 – 0.5839i) pu

    Computation of positive and negative sequence currents flowing from node 5.

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    17/28

    Ia15=((0.1722+i*0.5165+i*0.4)/(i*0.1143+0.1033+i*0.1653+i*0.3+0.1722+i*0.5165

    +i*0.4))*Ia1g = (0.0983 – 0.3715i) pu

    » Ia25=Ia15;

    Computation of phase currents flowing from node 5

    » IS5=[Ia05;Ia15;Ia25];

    » Iabc5=A*IS5

    Iabc5 =

    °−∠

    °−∠°−∠

    =

    −−

    =

    3481.772177.0

    3481.772177.0

    5286.753703.1

    0.2124i0.0477

    0.2124i0.0477

    1.3268i0.3424

    c

    b

    a

    I

    I

    I

    pu

    Computation of sequence voltages at node 5

    » Va15=1.0+Ia15*(0.1033+i*0.1653+i*0.3) = (1.1830 + 0.0073i) pu

    » Va25=Ia25*(0.1033+i*0.1653+i*0.3) = (0.1830 + 0.0073i) pu

    » Va05=(0.1033+i*0.1653+i*0.3)*Ia05 = (0.2867 + 0.0076i)

    Computation of phase voltages at node 5» VS5=[Va05;Va15;Va25];

    » Vabc5=A*VS5

    Vabc5 =⎥

    °∠°−∠

    °∠=⎥

    +−−−

    +=⎥

    5805.1149526.0

    5927.1149522.0

    7721.06529.1

    0.8663i0.3963

    0.8658i0.3963

    0.0223i1.6527

    c

    b

    a

    V

    V

    V

    pu

    Computation of line voltages at node 5

    » Vab=Vabc5(1) –Vabc5(2) = (2.0490 + 0.8881i) = 2.2332 ∠23.4324 ° pu

    » Vbc=Vabc5(2) –Vabc5(3) = (–0.0000 – 1.7321i) = 1.7321 ∠ –90.0000 ° pu

    » Vca=Vabc5(3) –Vabc5(1) = (–2.0490 + 0.8440i) = 2.2160 ∠157.6129 ° pu

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    18/28

    10.12 Computation of positive sequence impedance

    » Zp=(0.1722+i*0.9165)*(0.1033+i*0.5796)/(0.1722+i*0.9165+0.1033+i*0.5796)

    = (0.0646 + 0.3551i) pu

    » Z1=i*0.125*(Zp+1.6+i*1.2)/(i*0.125+Zp+1.6+i*1.2)

    = (0.0046 + 0.1203i) pu

    The positive sequence network for a 3-phase fault at node-1 is shown in the

    figure below.

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    19/28

    Computation of base current

    » IBase=100*10^6/(sqrt(3)*6.6*10^3) = 8.7477 kA

    » Zf=0.05;

    Computation of voltage (pre-fault) at node-1

    » Vnode=1.0+(1.0/(1.6+i*1.2))*Zp = (1.1324 + 0.1226i) = 1.1390 ∠6.1815 °

    Set the fault voltage Vf equal to the magnitude of voltage at node-1, that is,

    Vf = 1.1390 ∠0°

    » Vf=abs(Vnode);

    Computation of positive sequence current

    » Ia1=Vf/(Z1+Zf) = (3.5650 – 7.8479i) = 8.6197 ∠ –65.5699 ° pu

    » Ia=Ia1;

    Computation of actual current

    » IBase*abs(Ia) = 75.403 kA

    » angleIb=angleIa+(angle(a^2)*180/pi) = ∠ –185.5699 °

    » angleIc=angleIa+(angle(a)*180/pi) = ∠ 54.4301 °

    Computation of voltages

    » Va=Zf*Ia = (0.1782 – 0.3924i) = 0.4310 ∠ –65.5699 ° pu

    » angleVb=angleVa+angle(a^2)*180/pi = ∠ –185.5699 °

    » angleVc=angleVa+angle(a)*180/pi = ∠54.4301 °

    10.13 Input data:

    » Zl2=i*0.2+0.1722+i*0.5165+i*0.2;

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    20/28

    » Zl1=i*0.1143+0.1033+i*0.1653+i*0.3;

    » Zlo=1.6+i*1.2;Zg=i*0.125;

    » IBase=8.7477;Zf=0.05; Va=0.1782–i*0.3924;

    Ia = (3.5650 – 7.8480i);

    Parallel combination of lines 1 and 2

    » Zp=Zl1*Zl2/(Zl1+Zl2) = (0.0646 + 0.3551i);

    Component of current in the load side of the network

    » Ialo=(Zg/(Zg+Zp+Zlo))*Ia = (0.4258 – 0.1620i) pu

    = 3.9853 ∠ –20.8347 ° KAComponent of current in the generator side

    » Iag=((Zp+Zlo)/(Zg+Zp+Zlo))*Ia = (3.1392 – 7.6860i) pu

    = 72.6266 ∠ –67.7833 0 KA

    Voltage at node-4

    » Van4=Va+Ialo*Zp = (0.2632 – 0.2517i) = 0.3642 ∠ –43.7142 ° pu

    Computation of current in line-1

    » Ial1=(Zl2/(Zl1+Zl2))*Ialo = (0.2606 – 0.1003i) pu

    = 2.4430 ∠ –21.0420 ° KA

    Computation of current in line-2

    » Ial2=(Zl1/(Zl1+Zl2))*Ialo = (0.1651 – 0.0618i) pu

    = 1.5423 ∠ –20.5063 KA

    Computation of voltage at node-2

    » Van2=Va+Ial2*(i*0.2) = (0.1906 – 0.3594i) = 0.4068 ∠ –62.0658 ° pu

    Computation of voltage at node-3

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    21/28

    » Van3=Va+Ial2*(i*0.2+0.1722+i*0.5165) = (0.2509 – 0.2847i) pu

    = 0.3795 ∠ –48.6134 ° pu

    The computations are verified by computing the voltage at node-4 via the line-2 circuit as

    under

    » Van4=Va+Ial2*Zl2 = (0.2632 – 0.2517i) = 0.3642 ∠ –43.7142 ° pu

    Computation of voltage at node-5

    » Van5=Va+Ial1*(i*0.1143) =(0.1897 – 0.3626i) = 0.4092 ∠ –62.3883 ° pu

    Computation of voltage at node-6

    » Van6=Va+Ial1*(i*0.1143+0.1033+i*0.1653) = (0.2332 – 0.3299i)

    = 0.4040 ∠-54.7471 ° pu

    10.14 Computation of positive sequence network (reference figs.(a) and (b))

    » Z14=0.1722+i*0.9165;

    » Z4F=0.0517+i*0.3826;

    » ZF1=0.0517+i*0.1970;

    » ZFs=Z4F*ZF1/(Z14+Z4F+ZF1) = (0.0107 + 0.0506i) pu

    » Z1s=ZF1*Z14/(Z14+Z4F+ZF1) = (0.0321 + 0.1206i) pu

    » Z4s=Z14*Z4F/(Z14+Z4F+ZF1) = (0.0325 + 0.2344i) pu

    » Z1=ZFs+(Z1s+i*0.125)*(Z4s+1.6+i*1.2)/(Z1s+Z4s+i*0.125+1.6+i*1.2)

    = (0.0557 + 0.2737i)

    » Z2=Z1;

    Computation of zero sequence network

    » Z0=(Z4F+1.6+i*1.2)*(ZF1)/(Z4F+ZF1+1.6+i*1.2) = (0.0559 + 0.1807i)

    Computation of fault and ground impedances

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    22/28

    » Zf=5*100/(220^2) = 0.0103 pu

    » Zg=10*100/(220^2) = 0.0207 pu

    The interconnection of the sequence networks is shown below

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    23/28

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    24/28

    Computation of sequence fault currents

    » Vf=1.0;

    » Ia1=Vf/((Z1+Zf)+(Z2+Zf)*(Z0+Zf+3*Zg)/(Z2+Z0+2*Zf+3*Zg))

    = (0.7345 – 2.3521i) pu

    » Ia2=-((Z0+Zf+3*Zg)/(Z2+Z0+2*Zf+3*Zg))*Ia1 = (–0.0989 + 1.1002i) pu

    » Ia0=-((Z2+Zf)/(Z2+Z0+2*Zf+3*Zg))*Ia1 = (–0.6356 + 1.2519i)Verification of computations

    » Ia0+Ia1+Ia2 = 0

    Computation of line fault currents

    » IS=[Ia0;Ia1;Ia2];

    » Iabc=A*IS

    Iabc =⎥

    °∠°∠

    °∠=⎥

    ++

    +=⎥

    9268.513.3023

    6605.1634.1093

    00.0000

    2.5996i2.0364

    1.1560i3.9433-

    0.0000i0.0000

    c

    b

    a

    I

    I

    I

    Computation of fault sequence voltages

    » Va0=-Z0*Ia0 = (0.2617 + 0.0449i) pu

    » Va1=Ea-Z1*Ia1 = (0.3153 – 0.0699i) pu

    » Va2=-Z2*Ia2 = (0.3067 – 0.0343i) pu

    Computation of voltages at fault point

    » VS=[Va0;Va1;Va2];

    » Vabc=A*VS

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    25/28

    Vabc =⎥

    −∠=⎥

    ++

    −=⎥

    0

    0

    0

    9696.990.1061

    8273.1310.1202

    8380.30.8856

    1045001840

    0895008010

    0593088360

    i..-

    i..-

    i..

    V

    V

    V

    c

    b

    a

    Computation of line voltages

    » Vab=Vabc(1) –Vabc(2) = (0.9638 – 0.1488i) = 0.9752 ∠ –8.7779 ° pu

    » Vbc=Vabc(2) –Vabc(3) = (–0.0618 – 0.0149i) = 0.0635 ∠ –166.4276 ° pu

    » Vca=Vabc(3) –Vabc(1) = (–0.9020 + 0.1637i) = 0.9167 ∠169.7115 ° pu

    If Z g is set equal to ∞ , it is seen from the interconnected sequence network that the zero

    sequence network is on open circuit. Therefore, there will be no zero sequence currents

    and the boundary conditions are similar to a double line fault.

    10.15 Computation of positive sequence network (reference figs.(a) and (b))

    » Z1F=i*0.2+(0.1722+i*0.5165)/4 = (0.0430 + 0.3291i) pu

    » Z4F=i*0.2+3*(0.1722+i*0.5165)/4 = (0.1291 + 0.5874i) pu

    » Z14=i*0.1143+0.1033+i*0.1653+i*0.3 = (0.1033 + 0.5796i) pu

    » Z1s=Z14*Z1F/(Z1F+Z4F+Z14) = (0.0159 + 0.1275i) pu

    » ZFs=Z1F*Z4F/(Z1F+Z4F+Z14) = (0.0215 + 0.1295i) pu

    » Z4s=Z4F*Z14/(Z1F+Z4F+Z14) = (0.0487 + 0.2276i) pu

    » Z1=ZFs+(i*0.125+Z1s)*(1.6+i*1.2+Z4s)/(i*0.125+Z1s+1.6+i*1.2+Z4s)

    = (0.0539 + 0.3605i) pu

    » Z2=Z1;

    Computation of fault impedance

    » Zf=5*100/(132^2) = 0.0287 pu

    The inter-connection of the sequence networks is as under

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    26/28

    » Vf=1.0;

    Computation of sequence fault currents

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    27/28

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 10 Symmetrical Components Unsymmetrical Fault Analyses

    28/28

    » Ic=–Ib = (2.3195 + 0.4390i) = 2.3606 ∠10.7185 ° pu

    » Zf*Ib = (–0.0666 – 0.0126i) (II)

    Comparing (I) and (II) shows that Vbc = Zf*Ib which verifies the computations.

    In case Zf is set equal to zero, it is a dead short circuit between two lines. The fault

    currents and voltages at the fault point can be determined by following the procedure

    outlined above by setting Zf = 0.

    A couple of problems in the book for this chapter had a few errors. Herewith, pleasefind the errata:

    Problem As printed in book Correction______________

    10.3 V ab = 200∠0° V ab = 200V bc = 220∠120 ° V bc= 220V ca = 180∠ –60 ° V bc= 180

    Add the text at the end of the problem:[Note: Assume V ca = V ca ∠120 °, use thecosine law for the triangle to calculate the

    phase angles of the other line voltages]

    10.9 SLG occurs at node 3 SLG occurs at node 4___________________________________________________________________-