2.76 Microfab

download 2.76 Microfab

of 51

Transcript of 2.76 Microfab

  • 7/27/2019 2.76 Microfab

    1/51

    1/ 50

    Multi-scale Systems Design andManufacturing

    Characteristics of CommonMicrofabrication Processes

  • 7/27/2019 2.76 Microfab

    2/51

    2/ 50

    Content

    General ideas about MEMS and m-FAB Fundamental issues

    Case Studies

    Microengine, accelerometeretc

    Micro-Fabrication

    CVD/PVD

    Oxidation/Deposition

    Etching

    Lithography Shih -Chi Chen

    Nov 6, 2006

    http://mems.sandia.gov/scripts/images.asp

  • 7/27/2019 2.76 Microfab

    3/51

    3/ 50

    In the micro-scale

    Modeling

    Dominant

    Application

    Fysics

    Limiting

    Momentum

    Information

    Mass

    Flows

    Energy

    Motion

    Constraints

    Geometry

    Form

    Interfaces

    Performance

    Cost

    Processes

    Fabrication

    Rate

    Who?

    Where?

    What?

    Function

    Why?

    Machine

  • 7/27/2019 2.76 Microfab

    4/51

    4/ 50

    Design & manufacture of machines

    Marketresearch

    Conceptualdesign

    Design formanufacture

    Fabricationprocesses

    Assemblyprocesses

    Factory andmfg. systems

    Mil l

    In ject ion mold ing

    Photol i thography

    DRIE

    Forging

    Bol t ing

    Riveting

    Solder ing

    Welding

    OthersItems in dotted lines adaptedFrom 2.008 (Prof. JH Chun)

    Consumer

    Grinding

    Lathe

    Function Form Flows Physics

    1 2 3

    4

    5

    6

    Waterjet, Others

    )(InputfOutput

  • 7/27/2019 2.76 Microfab

    5/51

    5/ 50

    Fundamental IssuesFundamental reasons fabrication must be different

    at microscale Material properties, size vs. tool, tools

    Lithographic vs. Non-lithographic/ Macro vs. Micro

    Quality: resolution: optical vs. mechanical

    Rayleighs criterion: Resolution~1.2* / NA

    Rate & cost: batch vs. individual

    Flexibility: 2D based vs. 3D (need assembly/ material..etc)

    Metrology

    You cant make it if you cant measure it.

    Grain boundary

  • 7/27/2019 2.76 Microfab

    6/51

    MICRO-ELECTRO-MECHANICAL-SYSTEM

    MICRO- 10-6 m scale

    ELECTRO- Electrical circuits/device

    MECHANICAL- Mechanical structures/device

    Parasite on matured IC fabrication processes

    Miniaturization Engineering

    Different Manufacturing Methods

    Material

    By the end of this lecture, you will be able to

    Design basic m-FAB processes

    Select proper materials

    MEMS overview

  • 7/27/2019 2.76 Microfab

    7/51

    7/ 50

    What you need to know?

    MEMS Analysis

    Chemistry

    Micro-fluidic

    Electronics

    Optics

    Thermal Science

    Solid Mechanics

    Course 2 material

    Micro-Fab

    PDMS Cell Sorter Micro Mirror

    Micro-thermal actuator

  • 7/27/2019 2.76 Microfab

    8/51

    8/ 50

    A nm 0.1mm 10mm 1mm 100mm 10 m

    atomDNA

    virus bacteriadust

    hair

    MEMS

    People

    nanotechnology microsystems meso macrosystems

    Size matters: scales, miniaturizationhttp://w

    ww.icknowledge.com/

    1947~1999

    1 transistor42 x 106 transistors

    Courtesy:Sang-

    gookKim,

    MIT

  • 7/27/2019 2.76 Microfab

    9/51

    9/ 50

    Chronicles about MEMS

    1959: Richard Feyman says, There is plenty of room at the

    bottom.

    1969: Westinghouse creates the Resonant Gate FET.

    1970s:Bulk-etched silicon wafers used as pressure sensors.

    1982: Kurt Petersen published Silicon as a Structuralmaterial.

    1980s: Early experiments in surface- micromachinedpolysilicon. Micromachining leverages the micro-electronic industry in late 80s.

  • 7/27/2019 2.76 Microfab

    10/5110/ 50

    Why do we make things small?

    Cost Reduced

    Batch Fabrication

    Larger wafer in diameter

    Speed Increased

    Shorter distance between elements

    Reduce RC delay

    Rigidity Enhanced

    Very High Resonant Frequency

    Mostly Single Crystal Silicon. No Fatigue!

    Compatibility

    Integration with IC/electronics

    Capability of Arrays

    Avoidable Drawbacks

    Noise Amplification

    High Developing Cost

    Fundamental

    Limitations

  • 7/27/2019 2.76 Microfab

    11/5111/ 50

    Moores law (1964)Number of transistors per chip doubles every 1.5-2 years

    Information store on Si = 2^(Time-1962)

    Case Study: Accelerometers

    6.152J class note

  • 7/27/2019 2.76 Microfab

    12/5112/ 50

    Market for small-scale devices

    http://www.aero.org/publications/helvajian/helvajian-4.html

  • 7/27/2019 2.76 Microfab

    13/5113/ 50

    Integrated circuits (ICs)

    This picture comes from an excellent introductory discussion about IC fabrication at: icknowledge.com

    Start Finish

  • 7/27/2019 2.76 Microfab

    14/5114/ 50

    Integrated circuits: Example-Pentium 4TM

    Device characteristics

    # of transistors 42 000 000

    Line width: 0.18 m=>( 0.13 m)

    P4 die size: 224 mm2

    US dime size 248 mm2

    Source: icknowledge.com

  • 7/27/2019 2.76 Microfab

    15/5115/ 50

    Case Study: Thermal ink jetSuperheat ink 250oC

    Peak pressure 1.4 MPa

    Refills in 50ms

    San

    g-gookKim,

    MIT

  • 7/27/2019 2.76 Microfab

    16/5116/ 50

    Case Study: Accelerometers

    San

    g-gookKim,

    MIT

  • 7/27/2019 2.76 Microfab

    17/5117/ 50

    Case Study: Pressure sensors

    www.evgroup.com

    San

    g-gookKim,

    MIT

  • 7/27/2019 2.76 Microfab

    18/5118/ 50

    Case Study: Digital Micro Mirrors

    www.ti.com

  • 7/27/2019 2.76 Microfab

    19/5119/ 50

    Case Study: MIT Micro-turbine engine

    Great power-to-weight ratioGenerates power or thrust

    Real Gas Turbine Engine

    http://travel.howstuffworks.com/turbine.htm

  • 7/27/2019 2.76 Microfab

    20/5120/ 50

    Mehra, A, etc.,A six-wafer combustion system for a silicon microgas turbine engine, Microelectromechanical Systems, Journal

    of , Volume: 9 , Issue: 4 , Dec. 2000

    Mehra, A, etc.,Microfabrication of high-temperature silicon devicesusing wafer bonding and deep reactive ion etching,

    Microelectromechanical Systems, Journal of , Volume: 8 , Issue: 2 , June

    1999

    Case Study: MIT Micro-turbine engine

  • 7/27/2019 2.76 Microfab

    21/5121/ 50

    Micro-manufacturing

    Surface/bulk micro-machining

    Materials: Silicon

    Oxidation

    Thin film deposition

    Photolithography

    Etching

    Lift-off

    Wafer Bonding

    K. Pister, Berkeley

    Sandia National Lab

    DispenserPR

    Wafer

    Chuck

    Spin

    ICL, MITMIT MTL

  • 7/27/2019 2.76 Microfab

    22/5122/ 50

    MIT Microsystems Technology Lab

    MIT microfab facility (Building 39)

    ICL IC Fab Class 10

    TRL MEMS Class 100

    EMLmFluidics Class 1000

    Acid hood Wafer Stepper Coater

  • 7/27/2019 2.76 Microfab

    23/5123/ 50

    Clean rooms

  • 7/27/2019 2.76 Microfab

    24/5124/ 50

    Process matrix

  • 7/27/2019 2.76 Microfab

    25/5125/ 50

    Typical Materials

    Silicon (Si)

    Doped Si

    Poly silicon

    Silicon oxide

    Silicon nitride

    Glass, quartz

    Metals

    Al, Au, Ag, Ti, Pt,

    Polymers

    Photoresist

    Polyimide

    PDMS

    Ceramics

    PZT

    Polycrystalline Al

    (C. V. Thompson)

  • 7/27/2019 2.76 Microfab

    26/5126/ 50

    MEMS Fab Overview

    How do you make this?

    Using only 2D layer addition

    and removal

    With available processes

    Micron-level size

    Silicon

  • 7/27/2019 2.76 Microfab

    27/5127/ 50

    MEMS Fab Overview

    W. Tang - Darpa

    Material system:

    Poly/ SiO2/ HF

    SiO2 / Poly/ XeF2

    SiO2/ SCS/ XeF2

    Al/ SCS/ SF6

    PR/ SiO2/ HF

  • 7/27/2019 2.76 Microfab

    28/5128/ 50

    Micro-Fabrication Overview

    DepositionOxidation or

    Deposition

    LithographyAdd resist

    Transfer pattern

    Remove resist

    EtchWet isotropic or

    Wet anisotropic or

    RIE

    Sacrificial Etch

    Wafers

    2D

    Devices

    Repeat as Necessary

    For typical processes

    Needed for previous

    example

  • 7/27/2019 2.76 Microfab

    29/51

    29/ 50

    Silicon Wafers

    http://www.msil.ab.psiweb.com/english/msilhist4-e.html

    Czochrolski method

    Molten Si bath

    Seed pulled at 2-5 cm/hr

  • 7/27/2019 2.76 Microfab

    30/51

    30/ 50

    Silicon Crystal Structure

  • 7/27/2019 2.76 Microfab

    31/51

    31/ 50

    Silicon Wafers

    Structural properties compared to Steel /

    Aluminum:Density sut E CTE

    Material g/cc Mpa GPa x 10-6

    Silicon 2.33 4000 130 4.2

    Steel [1020] 7.87 420 205 12

    Aluminum [6061 T6] 2.7 310 69 24

    Make Si into a conductor or insulator by doping

    Boron, phosphorous, arsenic, antimony

    Conductors Semi-conductors Insulators

    10-3W-cm 102W-cmResistance

  • 7/27/2019 2.76 Microfab

    32/51

    32/ 50

    Silicon-On-Insulator (SOI) Wafers

    Multi-layered Si / Oxide1. Start with Si wafer

    2. Grow oxide

    3. Bond 2nd Si wafer to oxide

    4. Grind top wafer to size

    5. Repeat if necessary

    Expensive~ $400 vs. $30

    Reduces process time

    Si Base Wafer

    Si Base Wafer

    Si Base Wafer

    2nd Si Wafer

    Si Base Wafer

    Oxide

    SOI

    /

  • 7/27/2019 2.76 Microfab

    33/51

    33/ 50

    Material Addition / Removal

    Additive Casting

    Molding

    Oxidation

    Deposition

    Physical

    EvaporationSputtering

    Chemical

    CVD Spin-on

    Subtractive

    Machining

    Grinding

    EtchingWet

    Dry

    MEMSwww.memspi.com

    O id i

  • 7/27/2019 2.76 Microfab

    34/51

    34/ 50

    Oxidation

    Forming Silicon Dioxide by oxidation

    O2 chamber @ 800-1200 oC (steam optional)

    Silicon reacts with O2 to grow oxide

    2 micron max film thickness

    Si Wafer

    O2 chamber

    Si Wafer

    O2 chamber

    Oxide

    3hr, 1000 C1m

    O id ti

  • 7/27/2019 2.76 Microfab

    35/51

    35/ 50

    Oxidation

    Forming Silicon Dioxide by oxidation

    Uses: insulation, masking, sacrificial layer

    Easy to grow and etch (HF)

    Good insulator/ diffusion barrier (Ex. B, P, As)

    High dielecytic breakdown field (500 V/mm); = 1016 ohm-cm Good Ge/ GaAs => higher mobility/direct bandgap, but no stable oxide

    => Cant make MOS device

    Si Wafer

    O2 chamber

    Si Wafer

    O2 chamber

    Oxide

    3hr, 1000 C 1m

    Ch i l V D iti

  • 7/27/2019 2.76 Microfab

    36/51

    36/ 50

    Chemical Vapor Deposition

    Gases react to deposit film on surfaces

    Example: Polysilicon at 580-650C

    24 2HSiHSi

    ICL, MIT

    Typical CVD Furnace:

    E ti

  • 7/27/2019 2.76 Microfab

    37/51

    37/ 50

    Evaporation

    Metal evaporated w/ electron beam

    Vacuum environment prevent oxidation, directionalvapor travel

    Can get shadowing:

    S. G. Kim, MIT

    S tt i

  • 7/27/2019 2.76 Microfab

    38/51

    38/ 50

    Sputtering

    Materials: Metals and dielectrics

    Requires high vaccuum

    Argon ions bombard material target

    Ejected material - ballistic path to wafers

    S. G. Kim, MIT

    D iti I

  • 7/27/2019 2.76 Microfab

    39/51

    39/ 50

    Deposition Issues

    Thermal compatibility

    Topographic compatibility

    Residual stresses

    Deposition over features

    Conformality:

    Conformal Non-conformal

    Non-conformal

    Ph t lith h

  • 7/27/2019 2.76 Microfab

    40/51

    40/ 50

    PhotolithographyPhotoresist (PR) used to transfer patterns

    Viscous PR spun onto wafer Dispense, then spin

    Speed controls thickness

    Thickness: 1 10mmRequires baking (~100C)

    DispenserPR

    Wafer

    Chuck

    Spin Xrpm

    7mm Positive Thick Resist1. Dispense, Spin 3500rpm

    2. Pre-bake 90C 60min

    3. UV mask expose 15 sec

    4. Develop in aqueous

    solution

    5. Post-bake 90C 30min

    Ph t lith h

  • 7/27/2019 2.76 Microfab

    41/51

    41/ 50

    PhotolithographyExpose PR to UV light thru mask

    Properties change in exposed regions

    Masks: laser etched or print-transferred chrome

    Positive resist destroy bonds, soluble

    Negative resist crosslinking, less soluble

    PositiveMask

    PRSubstrate

    UV light

    SubstrateExpose

    PR Reaction

    Develop

    NegativeWe use:

    M t i l R l Et hi

  • 7/27/2019 2.76 Microfab

    42/51

    42/ 50

    Material Removal - Etching

    Bulk micromachining remove Si substrate

    Surface micromachining add / remove films

    Masks for etch surface:

    Photoresist

    oxide, nitride

    Isotropic vs. anisotropic

    Wet vs. dry etch

    Deep Reactive Ion Etching

    http://www.ti.

    com/dlp/resources/library

    K. Pister,

    Berkeley

    M t i l R l Et hi

  • 7/27/2019 2.76 Microfab

    43/51

    43/ 50

    Material Removal - Etching

    Williams, et al., J. MEMS Vol 5, no 4 1996

    W t D Et hi

  • 7/27/2019 2.76 Microfab

    44/51

    44/ 50

    Wet vs. Dry Etching

    Wet etch

    Chemical reaction

    Low res

    Low cost

    Hard to control direction

    Limited 2D geometries

    1 10s of microns/min

    Dry etch

    Reactive ion etching (RIE)

    High res

    High cost

    Very directional

    Unlimited 2D geometries

    0.1 10 microns/min

    I t i A i t i Et hi

  • 7/27/2019 2.76 Microfab

    45/51

    45/ 50

    Isotropic vs. Anisotropic EtchingIsotropic same etch rate in all directions

    Etch depth / surface uniformity problems

    Diffusion dependent

    Etch silicon wafer and deposited films

    Anisotropic crystal plane dependent

    Etch ratios more than 100:1

    silicon wafers only

    Crystal planes:

    54.7 Si

    Adapted from: S.M. Sze, Semiconductor Devices S. G. Kim, MIT

    Deep Reactive Ion Etching

  • 7/27/2019 2.76 Microfab

    46/51

    46/ 50

    Deep Reactive Ion Etching

    Alternating RIE - polymer deposition

    Protection of side walls during material removal

    CHF3/Ar forms Teflon-like layer

    Issues: Scalloping and tapering

    Milanovic et al, IEEE TED,

    Jan. 2001.

    Reverse Resist and Lift Off

  • 7/27/2019 2.76 Microfab

    47/51

    47/ 50

    Reverse Resist and Lift-Off

    Limited thickness need non-conformal film

    Limited deposition methods PR compatibility

    Not typically used in semiconductor industry

    Substrate

    PR1. Apply and pattern reverse resist

    Need negative sidewalls

    Positive resist negative image

    2. Deposit desired film

    Evaporation

    Typically metal

    3. Dissolve photoresist, lift-off film

    Process:

    Wafer Bonding

  • 7/27/2019 2.76 Microfab

    48/51

    48/ 50

    Wafer Bonding

    Combine complexshapes from multiplewafers

    Si-Si wafers Low temp (450C) Fusion high temp (1000C) Adhesive epoxy, PR

    Si-Glass wafers Anodic low temp, high voltage(700V)

    M. Schmidt, 2000

    MIT

    Microengine

    Project

    Fusion bonded

    wafer stack

    Exercise 1: Design a micro structure

  • 7/27/2019 2.76 Microfab

    49/51

    49/ 50

    Exercise 1: Design a micro-structure

    Reverse engineer the m-FAB processes for thestructure shown below.

    Hint:

    Start with SOI wafers

    Thickness=100mm Thickness=1mm

    Exercise 2: Design a Micromotor

  • 7/27/2019 2.76 Microfab

    50/51

    50/ 50

    Exercise 2: Design a Micromotor

    Design the m-FAB processes & Select the materialsfor a micro-motor with cross-section view below

    Beerschwingert et al. 1994

    Conclusion

  • 7/27/2019 2.76 Microfab

    51/51

    Conclusion

    Micro-fabrication is DIFFICULT: Many of themare still vibrant fields of research

    Micro-fabrication is EXPENSIVE at developingstage: ~18k/ year @MIT

    NEXT:

    Micro-actuation/sensing/metrology