25_Audio Coding 2

download 25_Audio Coding 2

of 27

Transcript of 25_Audio Coding 2

  • 8/3/2019 25_Audio Coding 2

    1/27

    MULTIMEDIASYSTEMSLecture25

    SreerajK.P.

    Asst.Professor,

    DEC,RSET

  • 8/3/2019 25_Audio Coding 2

    2/27

    Polyphase

    filterimplementation

  • 8/3/2019 25_Audio Coding 2

    3/27

    Introduction

    Twoapproachestoanalysissynthesis

    filterdesign Directimplementationoffilterbanksintimedomain(throughFIRfilters)with

    overlappedfrequencydomain

    characteristics. requirefrequencydomainaliascorrectionby

    theproperdesignofadjacentfilterbank

    characteristics.

    WindowtheinputsamplesandtransformsthosethroughDCT/DST.

    requiretimedomainaliascorrection.

  • 8/3/2019 25_Audio Coding 2

    4/27

    TheoryofPolyphasefilters Designofamultibandfilterrequiresalias

    cancellationbetweenadjacentbandsand

    thatthefiltershapesbecontrolledsuchthatthetransitionbandsofadjacentfilters

    addtoproduceaflatresponse.

    Thiscanbeformedbyfirstdesigningalowpassprototypefilterwithacontrolled

    transitionbandfrequencyresponse.

    Thefilterbankcanthenbecomposedby

    multiplyingtheimpulseresponseoftheprototypelowpassfilterwithasinusoid

    havingfrequenciesequaltothecentre

    frequenciesofthedesiredfilters.

  • 8/3/2019 25_Audio Coding 2

    5/27

    TheoryofPolyphasefilters

    AbankofMfilterstobesynthesized

    isshown

  • 8/3/2019 25_Audio Coding 2

    6/27

    TheoryofPolyphasefilters

    Realbandpassfiltersarecomposed

    oftwocomplexfiltersFi(z)andGi(z)locatedrespectivelyatthepositive

    andnegativecentrefrequencies.

    IftheprototypelowpassfilterisaFIR

    filterwithimpulseresponseh(n)and

    z-transformH(z)then

  • 8/3/2019 25_Audio Coding 2

    7/27

    TheoryofPolyphasefilters

    Weobtainabandoffilerswith

    i=0,1.M-1andthecorrespondingcompositefiltersare

    whereai,bi,cianddiarecomplex

    constants

  • 8/3/2019 25_Audio Coding 2

    8/27

    TheoryofPolyphasefilters

    theanalysisandthesynthesisfilter

    banksisshownas

    Ifai=bi*

  • 8/3/2019 25_Audio Coding 2

    9/27

    TheoryofPolyphasefilters

    hi(n)containsoddnumberofhalf

    cyclesofsinusoidsin2Mpoints Iftheinputsamplesaregivenbyx(n),

    n=0,1,.,thenfilteredoutput

    L:lengthoffiltertap

    Substitutingequationhi(n)insi(n)weobtainDCT/DSToftheinputsamples,

    multipliedbytheprototypelowpass

    filtersimpulse.

  • 8/3/2019 25_Audio Coding 2

    10/27

    TheoryofPolyphasefilters Theresponseofeachbandiisa

    modulationoftheprototyperesponsewith

    acosinetermtoshiftthelowpassresponsetotheappropriateband.

    Hence,thesearecalledpolyphasefilters.

  • 8/3/2019 25_Audio Coding 2

    11/27

    TheoryofPolyphasefilters

    Theinputsamplesarefirstmultiplied

    bylowpassprototypefilterh(n). Blocksof2Mproductsofthe

    multiplicationsareaccumulatedwith

    thesignofalternateblocksnegated.

    These2Mvaluesarethenmultiplied

    byMsinusoidstogeneratetheM

    outputvalues.

  • 8/3/2019 25_Audio Coding 2

    12/27

    TheoryofPolyphasefilters

    A typical response of low-pass prototype analysis filter h(n)

    Windowing function c(n)

  • 8/3/2019 25_Audio Coding 2

    13/27

    PolyphaseanalysisfilterforMPEG-1audio

    Polyphase implementation of analysis filter bank

  • 8/3/2019 25_Audio Coding 2

    14/27

    PolyphaseanalysisfilterforMPEG-1audio

    Theaudiosignalisshiftedintoa512samplesXbuffer,32samplesata

    time.

    ThecontentofXbufferaremultipliedbytheC-windowfunctionc(n)andthe

    resultsarestoredintotheZ-buffer. TheZ-buffercontentsaredividedintoeight64-elementvectors(takingM=32),whicharesummedtoforma64-elementY-vector.

    TheY-vectoristransformedusingMDCTtoyieldthe32-subband

    samples.

    P l h th i filt f MPEG 1

  • 8/3/2019 25_Audio Coding 2

    15/27

    PolyphasesynthecsisfilterforMPEG-1

    audio

    Polyphase implementation of synthesis filter bank

    Pol phase s nthecsis filter for MPEG 1

  • 8/3/2019 25_Audio Coding 2

    16/27

    The32subbandsamplesaretransformed

    backtothe64elementVvector,usinginverseMDCT(IMDCT).

    TheV-vectorispushedintoaFIFOwhichstoresthelast16Vvectors.

    AU-vectoriscreatedfromthealternate32componentblocksandawindow(calledD-window)isappliedtoUtoproducetheW-vector,whichisdividedinto16vectors,

    eachhaving32values. These16vectorsareaddedtogethertoobtain32sampleoutput.

    PolyphasesynthecsisfilterforMPEG-1audio

  • 8/3/2019 25_Audio Coding 2

    17/27

    PsychoacousticModels

  • 8/3/2019 25_Audio Coding 2

    18/27

    Psychoacousticmodelclassification

    Model 1: iscomputationallysimple.

    hashighaccuracyathighbitrate.

    Model 2: iscomputationallycomplex.

    hashighaccuracyatlowbitrate.

  • 8/3/2019 25_Audio Coding 2

    19/27

    Psychoacousticmodelclassification

    Essentialphilosophiesofboththe

    models:

    ComputeFourierpowerspectrumofthe

    signal.(512pointFFTforlayer1&2/

    1024pointFFTforlayer3).

    Mapthespectrumintocriticalbanddomain.

    Distinguishbetweenthetonalandnon-

    tonalcomponents. Calculatethemaskingfunction.

    Mapthesefunctionsbacktothesub-

    banddomain.

    P h i d l I

  • 8/3/2019 25_Audio Coding 2

    20/27

    PsychoacousticmodelI Theauditoryspectrumisapproximatedbyalistoftonalandnon-tonalcomponents.

    Tonalcomponentsareselectedbyidentifyingthemaximainthespectrumwhoseheightisgreatestintheneighbourhood.

    Alltheremainingspectrallinesareusedfor

    calculatingthenon-tonalcomponents.Theyaregroupedintocriticalbands.Withineachcriticalband,anon-tonalcomponentisrepresented.

    Then,thelistoftonalandnoisecomponentsaredecimatedbyeliminatingthosecomponentswhicharebelowtheauditorythresholdorarelessthanonehalfofacriticalbandwidthfromaneighbouringcomponent.

    P h i d l I

  • 8/3/2019 25_Audio Coding 2

    21/27

    PsychoacousticmodelI Tocomputethemaskingeffectofatonalor

    non-tonalcomponentontheneighbouring

    spectralfrequencies,thestrengthofthecomponentissummedwithtwoterms

    calledthemaskingindexandthemasking

    function.

    Maskingindex:Anattenuationtermwhich

    dependsonthecriticalbandrateofthe

    componentandwhetheritistonalornon-tonal.

    Maskingfunction:Anattenuationfactorwhich

    dependson

    Displacementofthecomponentfromneighbouring

    frequency.

    Thecomponentsignalstrength.

    P h i d l I

  • 8/3/2019 25_Audio Coding 2

    22/27

    PsychoacousticmodelI

    Tonal masking index

    Non- tonal masking index

    P h ti d l I

  • 8/3/2019 25_Audio Coding 2

    23/27

    PsychoacousticmodelI

    P h ti d l I

  • 8/3/2019 25_Audio Coding 2

    24/27

    PsychoacousticmodelI

    P h ti d l I

  • 8/3/2019 25_Audio Coding 2

    25/27

    PsychoacousticmodelI Foratonalcomponentj,atcritical

    bandratez(j),themaskingthreshold

    LTtm(j,i)atcriticalbandratez(i)is

    givenby

    LTtm(j,i)=Xtm(j)+avtm(z(j))+vf[z(i)z(j),Xtm(j)] Xtm(j):thestrengthoftonalcomponentat

    frequencyj

    avtm(j):thetonalmaskingindexatthecritical

    bandratez(j),

    vf(i,j):themaskingfunction

    irepresentingdisplacement

    jrepresentingsignalstrength.

    P h ti d l I

  • 8/3/2019 25_Audio Coding 2

    26/27

    PsychoacousticmodelI Fornon-tonalcomponentsthemaskingindexcanbecalculatedas:

    LTnm(j,i)=Xnm(j)+avnm(j)+vf[z(i)-z(j),Xnm(j)] Theglobalmaskingthresholdsarecomputedforallspectralfrequenciesbyaddingthemaskingthresholdscomputed

    above,foralltheneighbouringtonal&non-tonalcomponents,withthethresholdofhearing.

    Theminimummaskingthresholdfunctionis

    determinedforeachsub-bandfromtheminimumofalltheglobalmaskingthresholdscontributingtothatsub-band.

    Signaltomaskratio(SMR)iscomputed.

  • 8/3/2019 25_Audio Coding 2

    27/27

    PsychoacousticmodelII

    Itdoesnotmakeadistinctionbetweenthe

    tonalandnon-tonalcomponents. Spectraldataistransformedintoa

    partitiondomain.

    1024pointFFTcomputationisused.

    Tonalityisdecidedbytheunpredictability

    ofthespectrumwithtime.