233876034 API Calcs Rev1 Version 2

106
PIPING CALCULATIONS Name Code Sec Calculations Min Thik Pipe B31.3 304.1.2 PD (+C) P(d+2c) (+C) 2(SE+Py) 2[SE-P(1-y0] 570 7.2 New P = 2SE(t-c) D (This is "Design" Pressure per B 570 7.2 Old P = 2SE[t-(2xCRxYRS)-c] c=corrosion allowance D (This is "MAWP" per 570) Blanks B31.3 304.5.3 3P (+C) 16SE Fillet Welds B31.3 Leg = 1.414 x ThroaXmin (Required Leg) for socket/slip on Flange Throat = .707 x Legtc = .5tr or .7 tmin (Required Throat) for b Flanges B16.5 Max Hydro Press - Par 2.5 - 1.5 x system design press rounded to 25p Flanged Fittings B16.5 Annex D Tables 1A and 7 thru 27 - New/Cold, if info to calculate is unknown. Old/Corroded: 1.5 PD (+C) 2 SE B16.5 Annex D New/Cold: 1.5 Pcd (2S-1.2Pc) 1.5 PD (+C) 2SE B31.3 345.4.2 1.5 PST ST = Stress Value/test Temp S B16.5 Min Press =1.5 x 100% Flange Rating (Round to the next 25PSI) 1 Min for NPS 2 and under and 2 min for NPS 2.5 - 8 3 min 10 and Air Press Pipe B31.3 345 Pnuematic 1.1 x P B31.3 Castings: Table 302.3.3C / Piping: Table A-1A / A-1B (Add NDE See ta B16.5 6.1.1 Diameter = .35 dtm d=ID Meas Thk = .75tm Dist Appart = 1.75 d Tables 13-28 570 7.1.1 RL = Years Years Tension Tests SEC. IX QW.152 Turn Spec. Area = A=¶Ror Reduce Spec. Area = Width x Thickne Tensile Strength = Load / Ar Load = Area x Tensile Stre Must be 2X thickness for given material in T Sketch 1 - Branch thickness + fillet throat .D. tm = .D. tm = Pressure of Pipe (MAWP) Pressure of Pipe (MAWP) tm = dg 328.5.2 328.5.4 Allowable Press - Table 1A and Table 2 Min Thick - Table 1A and Flanged Fittings B31.3 574 304.1.2 11.2 tm = Use 7000 for S if Flanged Fittings t = Use 7000 for S if Valves Min Thk B31.3 574 304.1.2 11.2 t m= Use 7000 for S if Hydro Press Pipe Min press P T = S = StressValue/Designe Temp Hydro Press Fittings Joint Eff / Quality Factor Flanged Fittings Areas Below Min t A=¶R 2 tm =Min wall from charts Corrosion Rates tactual - trequired tinitial - tactual tprevious - tactual CR .7854 D 2 PWHT (LT)CR= (ST)CR=

description

nh

Transcript of 233876034 API Calcs Rev1 Version 2

Page 1: 233876034 API Calcs Rev1 Version 2

PIPING CALCULATIONS

Name Code Sec Calculations

Min Thik Pipe B31.3 304.1.2PD

(+C) P(d+2c)

(+C) 2(SE+Py) 2[SE-P(1-y0]

570 7.2 New P =2SE(t-c)

D (This is "Design" Pressure per B31.3)

570 7.2 Old P =2SE[t-(2xCRxYRS)-c]

c=corrosion allowance

D (This is "MAWP" per 570)

Blanks B31.3 304.5.33P

(+C) 16SE

Fillet Welds B31.3 Leg = 1.414 x Throat Xmin (Required Leg) for socket/slip on Flanges

Throat = .707 x Leg tc = .5tr or .7 tmin (Required Throat) for branch Conns.

Flanges B16.5 Max Hydro Press - Par 2.5 - 1.5 x system design press rounded to 25psi

Flanged Fittings B16.5 Annex D Tables 1A and 7 thru 27 - New/Cold, if info to calculate is unknown.

Flanged Fittings Old/Corroded: 1.5 PD

(+C) 2 SE

Flanged Fittings B16.5 Annex D New/Cold: 1.5 Pcd

(2S-1.2Pc)

1.5 PD(+C)

2SE

B31.3 345.4.21.5 PST ST = Stress Value/test Temp

S S = StressValue/Designe Temp

B16.5 Min Press =1.5 x 100% Flange Rating (Round to the next 25PSI)

1 Min for NPS 2 and under and 2 min for NPS 2.5 - 8 3 min 10 and up

Air Press Pipe B31.3 345 Pnuematic 1.1 x P

B31.3 Castings: Table 302.3.3C / Piping: Table A-1A / A-1B (Add NDE See table 302.3.4)

B16.5 6.1.1

Diameter = .35 dtm d=ID

Meas Thk = .75tm

Dist Appart = 1.75 dtm Tables 13-28

Corrosion Rates 570 7.1.1 RL =Years Years

Tension Tests SEC. IX QW.152

Turn Spec. Area = A=¶R2 or

Reduce Spec. Area = Width x Thickness Tensile Strength = Load / Area

Load = Area x Tensile Strength

B31.3 331.1.3

Must be 2X thickness for given material in Table 331.1.1 Sketch 1 - Branch thickness + fillet throat

O.D. tm = I.D. tm =

Pressure of Pipe (MAWP)

Pressure of Pipe (MAWP)

tm = dg

328.5.2 328.5.4

Allowable Press - Table 1A and Table 2 Min Thick - Table 1A and Tables 7-27

B31.3 574

304.1.2 11.2

tm = Use 7000 for S if unknown (Calculated)

t = Use 7000 for S if unknown (Calculated)

Valves Min Thk

B31.3 574

304.1.2 11.2

t m= Use 7000 for S if unknown (Calculated)

Hydro Press Pipe

Min press P T =

Hydro Press Fittings

Joint Eff / Quality Factor

Flanged Fittings Areas Below

Min t

A=¶R2

tm =Min wall from charts

tactual - trequired tinitial - tactual tprevious - tactual

CR

.7854 D2

PWHT (Branch

Connections)

(LT)CR= (ST)CR=

Page 2: 233876034 API Calcs Rev1 Version 2

B31.3 331.1.3 Sketch 2 - header thickness + fillet throat

Sketch 3 - greater or branch + fillet throat or repad + fillet throat

Sketch 4 - header thickness + repad thickness + fillet throat

Sketch 5 - same as sketch 1

PWHT (Branch

Connections)

Page 3: 233876034 API Calcs Rev1 Version 2

SPEC NO.-20 to 100 150 200

C-Mn-Si SA36 plate, sheet 58,000 36,000 14.5 14.5 14.5

C-Mn SA53 S/B smls. pipe 60,000 35,000 15.0 15.0 15.0

C-Si SA106 B smls. pipe 60,000 35,000 15.0 15.0 15.0

C SA179 smls. tube 47,000 26,000 11.8 11.8 11.8

SA193 B7 bolting (<2.5" 125,000 105,000 25.0 25.0 25.0

16Cr-12Ni-2Mo SA193 B8M2 bolting (<2") 95,000 75,000 18.8 18.8 18.8

C SA214 wld. tube 47,000 26,000 10.0 10.0 10.0

C-Si SA234 WPB fittings 60,000 35,000 15.0 15.0 15.0

18Cr-8Ni SA240 304 plate 75,000 30,000 18.8 18.8 15.7

18Cr-8Ni SA240 304H plate 75,000 30,000 18.8 18.8 15.7

18Cr-8Ni SA240 304L plate 70,000 25,000 16.7 16.7 14.3

16Cr-12Ni-2Mo SA240 316 plate 75,000 30,000 18.8 18.8 17.7

16Cr-12Ni-2Mo SA240 316L plate 70,000 25,000 16.7 16.7 14.1

C SA283 C plate 55,000 30,000 13.8 13.8 13.8

C SA285 C plate 55,000 30,000 13.8 13.8 13.8

18Cr-8Ni SA312 TP304L smls. pipe 70,000 25,000 16.3 16.3 14.3

16Cr-12Ni-2Mo SA312 TP316L smls. pipe 70,000 25,000 16.7 16.7 14.1

SA320 L7 bolting 125,000 105,000 25.0 25.0 25.0

C-Mn-Si SA333 6 smls. pipe 60,000 35,000 15.0 15.0 15.0

SA335 P11 smls. pipe 60,000 30,000 15.0 15.0 15.0

SA387 Gr12 Cl2 plate 65,000 40,000 16.3 16.3 16.3

C-Si SA515 70 plate 70,000 38,000 17.5 17.5 17.5

C-Si SA516 55 plate 55,000 30,000 13.8 13.8 13.8

C-Mn-Si SA516 60 plate 60,000 32,000 15.0 15.0 15.0

C-Mn-Si SA516 65 plate 65,000 35,000 16.3 16.3 16.3

C-Mn-Si SA516 70 plate 70,000 38,000 17.5 17.5 17.5

Aluminum

Al SB309 5083 plate 40,000 18,000 10.0 10.0

Hastelloy G30

40Ni-29Cr-15Fe-5Mo SB582 N06030 plate,sheet,st 85,000 35,000 21.3 21.3 20.0

40Ni-29Cr-15Fe-5Mo SB626 N06030 wld. tube 85,000 35,000 18.1 18.1 17.0

Hastelloy B2

65Ni-28Mo-2Fe SB333 N10665 plate 110,000 51,000 27.5 27.5 27.5

65Ni-28Mo-2Fe SB619 N10665 wld. pipe 110,000 51,000 23.4 23.4 23.4

65Ni-28Mo-2Fe SB622 N10665 smls pipe 110,000 51,000 27.5 27.5 27.5

Zirconium

95.2Zr+Cb SB550 R60705 bar 80,000 55,000 20.0 20.0 16.6

95.2Zr+Cb SB551 R60702 plate 55,000 30,000 13.0 13.0 11.0

95.2Zr+Cb SB551 R60705 plate 80,000 55,000 20.0 20.0 16.6

95.2Zr+Cb SB658 R60702 wld. & smls. 55,000 30,000 13.0 13.0 11.0

95.2Zr+Cb SB658 R60705 wld. & smls. 80,000 55,000 20.0 20.0 16.6

MAXIMUM ALLOWABLE STRESS, KSI, FOR METAL TEMP.

Nominal Composition

TYPE/ GRADE

PRODUCT FORM

MINIMUM TENSILE,

psiMINUMUM YIELD, psi

1Cr-1/5 Mo

1Cr-1/5 Mo

11/4 Cr-1/2 Mo-Si

1Cr-1/2 Mo

Page 4: 233876034 API Calcs Rev1 Version 2

250 300 400 500 600 650 700 750 800

14.5 14.5 14.5 14.5 14.5 14.5

15.0 15.0 15.0 15.0 15.0 15.0 14.4 13.0 10.8

15.0 15.0 15.0 15.0 15.0 15.0 14.4 13.0 10.8

11.8 11.8 11.8 11.8 11.8 11.8 11.5 10.6 9.2

25.0 25.0 25.0 25.0 25.0 25.0 25.0 23.6 21.0

18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8

10.0 10.0 10.0 10.0 10.0 10.0 9.8 9.1 7.8

15.0 15.0 15.0 15.0 15.0 15.0 14.4 13.0 10.8

15.7 14.1 12.9 12.1 11.4 11.2 11.1 10.8 10.6

15.7 14.1 12.9 12.1 11.4 11.2 11.1 10.8 10.6

14.3 12.8 11.7 10.9 10.3 10.1 10.0 9.8 9.7

17.7 15.6 14.3 13.3 12.6 12.3 12.1 11.9 11.7

14.1 12.7 11.7 10.9 10.4 10.2 10.0 9.8 9.6

13.8 13.8 13.8 13.8 13.8 13.8

13.8 13.8 13.8 13.8 13.8 13.8 13.3 12.1 10.0

14.3 12.8 11.7 10.9 10.3 10.1 10.0 9.8 9.7

14.1 12.7 11.7 10.9 10.4 10.2 10.0 9.8 9.6

25.0 25.0 25.0 25.0 25.0 25.0 25.0

15.0 15.0 15.0 15.0 15.0 15.0 14.4 13.0 10.8

15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.8 14.4

16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3

17.5 17.5 17.5 17.5 17.5 17.5 16.6 14.8 12.0

13.8 13.8 13.8 13.8 13.8 13.8 13.3 12.1 10.0

15.0 15.0 15.0 15.0 15.0 15.0 14.4 13.0 10.8

16.3 16.3 16.3 16.3 16.3 16.3 15.5 13.9 11.4

17.5 17.5 17.5 17.5 17.5 17.5 16.6 14.8 12.0

20.0 18.3 17.2 16.4 15.8 15.5 15.2 14.9 14.6

17.0 15.6 14.6 13.9 13.4 13.2 12.9 12.7 12.4

27.5 27.5 27.5 27.5 27.2 26.8 26.6 26.1 25.6

23.4 23.4 23.4 23.4 23.1 22.8 22.6 22.2 21.8

27.5 27.5 27.5 27.5 27.2 26.8 26.6 26.1 25.6

16.6 14.2 12.5 11.3 10.4 10.4 9.9

11.0 9.3 7.0 6.1 6.0 6.0 4.8

16.6 14.2 12.5 11.3 10.4 10.4 9.9

11.0 9.3 7.0 6.1 6.0 6.0 4.8

16.6 14.2 12.5 11.3 10.4 10.4 9.9

MAXIMUM ALLOWABLE STRESS, KSI, FOR METAL TEMP. OF ===>

Page 5: 233876034 API Calcs Rev1 Version 2

cont'd ==>

850 900 950 1000 1050 1100 1150 1200 1250

7.8 5

8.7 6.5 4.5 2.5

7.9 6.5

17.0 12.5 8.5 4.5

18.8 18.8 18.8 18.8

6.7 5.5 3.8 2.1

8.7 6.6 4.6 2.5

10.4 10.2 10.0 9.8 9.5 8.9 7.7 6.1 4.7

10.4 10.2 10.0 9.8 9.5 8.9 7.7 6.1 4.7

11.6 11.5 11.4 11.3 11.2 11.0 9.8 7.4 5.5

9.4

8.4 6.5

9.4

7.8 5 3.0 1.5

14 13.6 9.3 6.3 4.2 2.8 1.9 1.2

15.8 15.2 11.3 7.2 4.5 2.8 1.8 1.1

9.3 6.5 4.5 2.5

8.4 6.5 4.5 2.5

8.7 6.5 4.5 2.5

9.0 6.5 4.5 2.5

9.3 6.5 4.5 2.5

Page 6: 233876034 API Calcs Rev1 Version 2

1300 1350 1400 1450 1500

3.7 2.9. 2.3 1.8 1.4

3.7 2.9. 2.3 1.8 1.4

4.1 3.1 2.3 1.7 1.3

Page 7: 233876034 API Calcs Rev1 Version 2

Nominal NOMINAL WALL THICKNESS FOR:

Pipe Outside SCHED. SCHED. SCHED. SCHED. SCHED.

Size Diameter 5S 10S 10 20 30

1/8 0.405 - 0.049 - - -

1/4 0.540 - 0.065 - - -

3/8 0.675 - 0.065 - - -

1/2 0.840 0.065 0.083 - - -

3/4 1.050 0.065 0.083 - - -

1 1.315 0.065 0.109 - - -

1 1/4 1.660 0.065 0.109 - - -

1 1/2 1.900 0.065 0.109 - - -

2 2.375 0.065 0.109 - - -

2 1/2 2.875 0.083 0.120 - - -

3 3.50 0.083 0.120 - - -

3 1/2 4.00 0.083 0.120 - - -

4 4.50 0.083 0.120 - - -

5 5.563 0.109 0.134 - - -

6 6.625 0.109 0.134 - - -

8 8.625 0.109 0.148 - 0.250 0.277

10 10.75 0.134 0.165 - 0.250 0.307

12 12.75 0.156 0.180 - 0.250 0.330

14 O.D. 14.00 0.156 0.188 0.250 0.312 0.375

16 O.D. 16.00 0.165 0.188 0.250 0.312 0.375

18 O.D. 18.00 0.165 0.188 0.250 0.312 0.438

20 O.D. 20.00 0.188 0.218 0.250 0.375 0.500

22 O.D. 22.00 0.188 0.218 0.250 0.375 0.500

24 O.D. 24.00 0.218 0.250 0.250 0.375 0.562

26 O.D. 26.00 - - 0.312 0.500 -

28 O.D. 28.00 - - 0.312 0.500 0.625

Page 8: 233876034 API Calcs Rev1 Version 2

30 O.D. 30.00 0.250 0.312 0.312 0.500 0.625

32 O.D. 32.00 - - 0.312 0.500 0.625

34 O.D. 34.00 - - 0.312 0.500 0.625

36 O.D. 36.00 - - 0.312 0.500 -

42 O.D. 42.00 - - - - -

Page 9: 233876034 API Calcs Rev1 Version 2

NOMINAL WALL THICKNESS FOR: Nominal NOMINAL WALL THICKNESS FOR:

SCHED. SCHED. Pipe SCHED. EXTRA SCHED. SCHED. SCHED.

STD 40 Size 60 STRONG 80 100 120

0.068 0.068 1/8 - 0.095 0.095 - -

0.088 0.088 1/4 - 0.119 0.119 - -

0.091 0.091 3/8 - 0.126 0.126 - -

0.109 0.109 1/2 - 0.147 0.147 - -

0.113 0.113 3/4 - 0.154 0.154 - -

0.133 0.133 1 - 0.179 0.179 - -

0.140 0.140 1 1/4 - 0.191 0.191 - -

0.145 0.145 1 1/2 - 0.200 0.200 - -

0.154 0.154 2 - 0.218 0.218 - -

0.203 0.203 2 1/2 - 0.276 0.276 - -

0.216 0.216 3 - 0.300 0.300 - -

0.226 0.226 3 1/2 - 0.318 0.318 - -

0.237 0.237 4 - 0.337 0.337 - 0.438

0.258 0.258 5 - 0.375 0.375 - 0.500

0.280 0.280 6 - 0.432 0.432 - 0.562

0.322 0.322 8 0.406 0.500 0.500 0.594 0.719

0.365 0.365 10 0.500 0.500 0.594 0.719 0.844

0.375 0.406 12 0.562 0.500 0.688 0.844 1.000

0.375 0.438 14 O.D. 0.594 0.500 0.750 0.938 1.094

0.375 0.500 16 O.D. 0.656 0.500 0.844 1.031 1.219

0.375 0.562 18 O.D. 0.750 0.500 0.938 1.156 1.375

0.375 0.594 20 O.D. 0.812 0.500 1.031 1.281 1.500

0.375 - 22 O.D. 0.875 0.500 1.125 1.375 1.625

0.375 0.688 24 O.D. 0.969 0.500 1.218 1.531 1.812

0.375 - 26 O.D. - 0.500 - - -

0.375 - 28 O.D. - 0.500 - - -

Page 10: 233876034 API Calcs Rev1 Version 2

0.375 - 30 O.D. - 0.500 - - -

0.375 0.688 32 O.D. - 0.500 - - -

0.375 0.688 34 O.D. - 0.500 - - -

0.375 0.750 36 O.D. - 0.500 - - -

- - 42 O.D. - - - - -

Page 11: 233876034 API Calcs Rev1 Version 2

NOMINAL WALL THICKNESS FOR:

SCHED.SCHED. XX

140 160 STRONG

- - -

- - -

- - -

- 0.188 0.294

- 0.219 0.308

- 0.250 0.358

- 0.250 0.382

- 0.281 0.400

- 0.344 0.436

- 0.375 0.552

- 0.438 0.600

- - -

- 0.531 0.674

- 0.625 0.750

- 0.719 0.864

0.812 0.906 0.875

1.000 1.125 1.000

1.125 1.312 1.000

1.250 1.406 -

1.438 1.594 -

1.562 1.781 -

1.750 1.969 -

1.875 2.125 -

2.062 2.344 -

- - -

- - -

Page 12: 233876034 API Calcs Rev1 Version 2

- - -

- - -

- - -

- - -

- - -

Page 13: 233876034 API Calcs Rev1 Version 2

Length (ft) Size (in) Area (in2) Volume (in3) Gallons

0 1 0.864 0 00 2 3.356 0 00 4 10.79 0 00 6 28.9 0 00 8 50 0 00 10 78.9 0 00 12 113.1 0 00 14 137.9 0 00 16 182.7 0 00 18 233.7 0 00 20 291 0 00 22 355 0 00 24 425 0 00 26 501 0 0

TOTAL 0 gallons0 barrels

Page 14: 233876034 API Calcs Rev1 Version 2

APIRemaining Life Formula

SHELL:

T-Nom. 0.75 in.

T-Last. 0.65 in.

Age. 29 yrs.

Thk. Loss. 0.1 in.

Rem. CA 0.11 in.

T-Min. 0.542 in.

HEADS: Shell(ipy) Head(ipy)

T-Nom. 0.5 in. Corrosion Rate = 0.003 0.008 ins.

T-Last. 0.25 in. Remaining Life = 36.00 18.75 yrs.

Thk. Loss. 0.25 in.

Rem. CA. 0.15 in.

T-Min. 0.1 in.

Page 15: 233876034 API Calcs Rev1 Version 2

CALCULATE CORR RATE & TMIN DATE

Calculated by:2 Thickness Meas's when Corr Rate is Unknown

ENTERED DATA CALCULATED DATA

Earliest Latest Date Diff Corr Last UT

DATE ### ### Tmin Diff, yrs mils Rate - tmin

Meas 0.750 0.721 0.670 4.0 29 7.2 51

ENTERED DATA CALCULATED DATA

Earliest Latest Date Diff Corr Last UT

DATE ### ### Tmin Diff, yrs mils Rate - tmin

Meas 0.460 0.240 0.100 7.1 220 31.1 140

Meas

Meas

Meas

MeasMeasMeas 0.460 0.240 0.100 7.1 220 31.1 140Meas

CALCULATE TMIN DATE (or THICKNESS at a TMIN DATE)

Calculated by: One Thickness Meas. & a Known Corr Rate

ENTERED DATA CALC'D DATADate of Last Corr. Rate diff last Yrs to days to TMINMeas Meas Tmin (mils) ut & tm Tmin tmin DATE### 0.360 0.125 50.0 235 4.7 1716 05/30/01

Page 16: 233876034 API Calcs Rev1 Version 2

CALCULATED DATA

Yrs to Days to TMIN

Tmin Tmin DATE

7.0 2559 01/02/07

CALCULATED DATA

Yrs to Days to TMIN

Tmin Tmin DATE

4.5 1645 07/02/04

4.5 1645 07/02/04

Page 17: 233876034 API Calcs Rev1 Version 2

wherePt = minimum test gage pressureP = design gage pressureSt = stress value at test temperatureS = stress value at design temperature

see table A-1 for allowable stress values

P = 250St = 23300 NOTE!!!!!!S = 17800 1.31 = St/S Shall NOT exceed 6.5

Ptmin = 375 is (1.5 x P)Pt = 491 is corrected for temperature

Pt MUST be greater than Ptmin, unless this would cause an overstress condition at test tempverify with B16.5 for flanges, and B31.3 for pipe

ASME B31.3 345.4.2(b) Hydrotest Temperature Correction

S

SPP tt

×=

5.1

Page 18: 233876034 API Calcs Rev1 Version 2

Return to Menu

Pt MUST be greater than Ptmin, unless this would cause an overstress condition at test temp

Page 19: 233876034 API Calcs Rev1 Version 2

ASME B31.3 304.1.2(a) Straight Pipe Under Internal Pressure

Maximum Allowable internal pressure calcs according to B31.3

Material Information Process InformationOperating Pressure 1480 psig

Pipe OD 8.63 inches Relief Pressure 105 psigWall Thickness 0.409 inches Operating Temp. 160 F

Corrosion Allowance 0.000 inches

where: t= thicknessP= internal gauge pressureD= outside diameter of pipe

S= stress value for material (table A-1) 15 ksi (i.e. 17.5)E= quality factor (table 302.3.4) 1Y= coefficient (table 304.1.1) 0.4Di= inside diameter of pipe 7.807

minimum t= 0.409 inches minimum thickness for pressure specified

tmin= 0.409 inchesincluding corrosion allowance

max allowable WORKING pressurefor thickness specified w/out corr allowanceThickness 0.409

P= 1572 psigMAX allowable pressurerelief case: as per para 302.2.4for current thickness 0.409

P= 2090 psig

t=P⋅D

2(S⋅E+P⋅Y )

Page 20: 233876034 API Calcs Rev1 Version 2

Return to Menu

S allowable stress in ksi according to B31.3 tablesTemp F 100carbon grB 201 1/4Cr 1/2mo 20

Esingle butt weld 0.8w/ radiographas 341.5.1 0.9100% x-ray 1double butt 0.85w/ radiographas 341.5.1 0.9100% x-ray 1

Y Coefficient from sec 304.1.1D/6 1.438

t 0.409if t<D/6 use tableotherwise use value from

minimum thickness for pressure specified formula 0.48

Material 900For lower

Ferritic 0.4Austenitic 0.4

Page 21: 233876034 API Calcs Rev1 Version 2

200 300 400 500 600 700 800 900 100020 20 20 18.9 17.3 16.5 10.8

18.7 18 17.5 17.2 16.7 15.6 15 12.8 6.3

Y calculated

950 1000 1050 1100 1150

0.5 0.7 0.7 0.7 0.70.4 0.4 0.4 0.5 0.7

Page 22: 233876034 API Calcs Rev1 Version 2

1100

2.8

Page 23: 233876034 API Calcs Rev1 Version 2

CALCULATE PIPING MAXIMUM PRESSUREChemical Plant & Petroleum Refinery Piping, ASME B31.3

Straight Pipe Under Internal Pressure, 304.1.2 - enter DATA IN BOXES FOR CALC'NP=2SEt/(D-2tY)Internal Design Pressure, psigt= 0.067 Pressure Design Thickness, inches

D= 20.00 Outside Diameter of Pipe, inchesSE= 15000 Allowable Stress, excluding quality or joint factors (E=1 if seamless pipe)Y= 0.40 Coefficient from Table 304.1.1, Y=0.4 for all Ferritic Steels up to 900° F

P= 101 psig, per ANSI B31.3, Para. 304.1.2

Page 24: 233876034 API Calcs Rev1 Version 2

Chemical Plant & Petroleum Refinery Piping, ASME B31.3

Thickness is UT 0.20 - 0.02 corrosion allowance

Page 25: 233876034 API Calcs Rev1 Version 2

CALCULATE PIPING MAXIMUM PRESSUREGas Transmission and Distribution Piping Systems, ANSI B31.8

P= (2St/D)x Internal Design Pressure, psigS= 35000 Specified minimum yield strengthD= 16.00 Nominal outside diameter, inchest= 0.18 Nominal wall thickness, inchesF= 0.60 Construction type design factor from Table 841.111, Construction Type B factor = 0.60, TYPE C = 0.50E= 1.00 Lonlgitudinal joint factor from Table 841.112, 1.00 for seamless pipeT= 1.00 Temperature derating factor from Table 841.113, for 250°F or less T=1.00

P= 473 psig per ANSI B31.8, para 841.1

CALCULATE PIPELINE INTERNAL DESIGN PRESSURE49 CFR, Part 195, para 195.106

Straight Pipe Under Internal Pressure, 304.1.2 - enter DATA IN BOXES FOR CALC'NP= (2St/D)x Internal design pressure in psigS= YIELD strength in psit= Nominal wall thickness of the pipe in inches

D= Nominal outside diameter of the pipe in inchesE= Seam joint factor, E=1 for all seamless pipeF= Design factor, F= 0.72, except for off-shore platforms

P= psig

Page 26: 233876034 API Calcs Rev1 Version 2

Gas Transmission and Distribution Piping Systems, ANSI B31.8

Construction type design factor from Table 841.111, Construction Type B factor = 0.60, TYPE C = 0.50

Page 27: 233876034 API Calcs Rev1 Version 2

Pipe Sleeve Minimum Thickness

P = 1900

10.75S = 20000E = 0.6

CA = 00.5941.000

e = 0.797

0.851 =s 29,524

1.5S = 30,000

Do =

ts =

ts, min =

Page 28: 233876034 API Calcs Rev1 Version 2

Pipe Sleeve Minimum Thickness

Pipe design pressure, psig

basic allowable stress for sleeve material at pipe design temperature from ASME B31.3 Table A-1, psiJoint Efficiency of the longitudinal welds (0.6 if no backing strip is used, 0.65 if a backing strip is usedcorrosion allowance, inchrun pipe thickness, insleeve thickness, in

minimum thickness of the sleeve, inch< 1.5 S

Outside diameter of pipe being sleeved + 1 (assume that sleeve thickness is 1/2" as initial guess and iterate as required), in

distance from the centerline of the sleeve to the centerline of the pipe (run pipe thickness + sleeve thickness)/2

Page 29: 233876034 API Calcs Rev1 Version 2

P = 500 Design Pressure or Hydrostatic test pressure (psi)S = 23670

E = 1 Quality factorc = 0 Corrosion allowance

8 ID of gasket (inches)

0.503 Minimum thickness allowed for the blind.

dg =

tm=

Allowable strss (psi) per ASME. ASME B31.3 allows 1/3 higher allowable stress obtained from B31.3 tables for short duration loads (i.e hydrotests)

Blind Thickness CalcuationsFrom ASME B31.3 Section 304.5.2

Fill in yellow portion

Note: For A36 Plate (most commonly used blind material), the allowable stress from B31.3 is 17.8 ksi. Can increase by 1/3 if they are used for short duration loads (hydrotests) to 23.67 ksi.

tm

Tm=d g√ 3⋅P16⋅S⋅E

+c

Page 30: 233876034 API Calcs Rev1 Version 2

PJP Pressure dia ID3-00 1 5246 6 4.8973-00 2 600 2 1.9393-00 3 3179 10 8.53-00 3 3179 8 6.8133-00 3 3179 6 5.1873-00 4 3210 12 10.753-00 5 4725 2 1.5033-00 6 600 2 1.9393-00 7 600 2 1.9393-00 8 600 2 1.9393-00 9 600 2 1.9393-00 10 4598 10 9.0623-00 10 4598 6 4.897

1/8 0.125 3-00 11 4598 10 9.0621/4 0.25 3-00 12 3837 10 9.0623/8 0.375 3-00 13 425 6 6.0651/2 0.5 3-00 14 1100 12 125/8 0.625 3-00 14 1100 6 6.0653/4 0.75 3-00 15 5400 8 8.6257/8 0.875 3-00 15 5400 4 4.5

3-00 15 5400 4 4.53-00 16 1100 12 11.9383-00 16 1100 8 7.9813-00 16 1100 6 6.0653-00 18 2258 6 6.6253-00 18 2258 4 4.53-00 193-00 20 3390 14 143-00 20 3390 10 10.753-00 21 104 4 4.53-00 21 104 2.5 2.8753-00 22 4638 3 3.53-00 23 3411 10 10.753-00 23 3411 3 3.53-00 23 3411 3 3.53-00 23 3411 2 2.3753-00 25 6240 6 6.6253-00 25 6240 3 3.53-00 26 3179 6 6.6253-00 27 90 36 363-00 27 90 16 163-00 27 90 3 3.53-00 30 400 3 3.53-00 30 1000 18 18

3132333435

Page 31: 233876034 API Calcs Rev1 Version 2

363738394041424344454647

Page 32: 233876034 API Calcs Rev1 Version 2

class Min Thick2500 0.998150 0.134

1500 1.3491500 1.0811500 0.823900 1.714

2500 0.291150 0.134150 0.134150 0.134150 0.134

1500 1.7291500 0.9351500 1.7291500 1.580300 0.352300 1.120300 0.566

1500 1.784300 0.931

1500 0.931300 1.114300 0.745300 0.566

1500 0.8861500 0.602

0.0001500 2.2941500 1.762150 0.129150 0.083

1500 0.6711500 1.7671500 0.575900 0.575300 0.390

2500 1.4732500 0.7782500 1.051150 0.961150 0.427150 0.093300 0.197300 1.602

0.0000.0000.0000.0000.000

Page 33: 233876034 API Calcs Rev1 Version 2

0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000

Page 34: 233876034 API Calcs Rev1 Version 2

PMG App 8.5 XOM Lap Patch

P = 260

9.125S = 20000E = 0.45

CA = 0.10.3220.500

e = 0.411

0.328 =s 21,249

1.5S = 30,000

Do =

ts =

ts, min =

σ=P ⋅Do

2(t s−CA)+

3⋅P ⋅Do⋅e

(t s−CA)2

t s=P ⋅Do2⋅S⋅E

+CA

0 .707

Page 35: 233876034 API Calcs Rev1 Version 2

PMG App 8.5 XOM Lap Patch

Pipe design pressure, psig

basic allowable stress for sleeve material at pipe design temperature from ASME B31.3 Table A-1, psiJoint Efficiency of the longitudinal welds (fillet-weld joint efficiency is 0.45) corrosion allowance, inchrun pipe thickness, insleeve thickness, in

minimum thickness of the sleeve, inch< 1.5 S

Outside diameter of pipe being sleeved + 1 (assume that sleeve thickness is 1/2" as initial guess and iterate as required), in

distance from the centerline of the sleeve to the centerline of the pipe (run pipe thickness + sleeve thickness)/2

Fill in yellow portion

σ=P ⋅Do

2(t s−CA)+

3⋅P ⋅Do⋅e

(t s−CA)2

t s=P ⋅Do2⋅S⋅E

+CA

0 .707

Page 36: 233876034 API Calcs Rev1 Version 2

Annular Space

1/8" (0.125") maximum gap

8.625 pipe OD10.75 shroud OD0.594 shroud thickness

0.4685 actual gap < 0.125" ?

Page 37: 233876034 API Calcs Rev1 Version 2

OD of Pipe being shrouded 14 inDesign Pressure 675 psigDesign Temperature 150 FAllowable Stress, Shroud 20,000 psi A106 Gr. CAllowable Stress, End Plate 20,000 psi A36Weld Efficiency 0.45 Fillet weldsOutside diameter 14 inCorrosion Allowance 0.1 in

Section 1

tmin= 0.610

Use Sch 40, 6" pipe 0.280 inches, t actual

Section 2 End Plate

tr = min req. thickness of shell = 0.610 ints= Actual thickness = 0.280 in

C= 0.718585 calculatedC= 0.718585 used

d= effected distance= -0.56 in

t = -0.030 Inches

Use Min. Thickness, t = 0.1875 InchesActual Corr. Allow. Shell = -0.230 InchesActual Corr. Allow. Ends = 0.318 Inches

tmin

d/2

t

Tmin=P⋅R

S⋅E+0 . 4 P+Ca

t=d √C⋅PS⋅E +Ca

c=0 . 33 trt s

cmin=0 .20

Page 38: 233876034 API Calcs Rev1 Version 2

Rectangular Shroud

Design Pressure 100 psigDesign Temperature 400 FAllowable Stress 20000 psiWeld Efficiency 0.55 Fillet welds

inCorrosion Allowance 0.1 in

d 10 inD 12 in

Zcalculated 1.4Zused 1.4

Tmin 0.748074

0.875

Patch on Pipe: Weld stress

Pressure inside Pipe 675 psigPipe diameter (OD) 14 in% of diam. for patch 50 %Length of patch 12 inWeld efficiencieny 0.45Mat. Allowable Stress 17500 psiSize fillet weld 0.375 in

Linear weld length 67.9823 inArea Patch 263.8938 in^2Force on patch 178128.3 lbsAllowable Stress 7875 psiWeld area 25.49336 in^2Weld stress 6987.243 psi

Stress / Allowable 88.72689 %

Is stress Less than Allowable?

Yes, area is sufficient.

d

D

Page 39: 233876034 API Calcs Rev1 Version 2

D

Page 40: 233876034 API Calcs Rev1 Version 2

NOTE: This calculation method is based upon the use of a two-piece clamp with two sets of ears 180 degrees apart.

VariablesDesign Pressure (psig): Des_P 480Inside Diameter of Clamp (in): ID 11.626Cover Thickness (in): tc 1.125Ear Thickness (in): te 1Ear Width (in): We 2.562Clamp Length (in): Length 12.74

Pressure Force Acting Inside Bore (lb): Fp 35547.66Pressure Force Acting Between Ear Faces (lb): Fe 15667.14Distance from Bolt Centerline to Line of Action of Fp (in): Arm1 1.531Distance from Bolt Centerline to Line of Action of Fe (in): Arm2 0

Note Regarding Bolt Load (See Comment)

Bending Moment (in-lbs): M 54423.46Moment of Inertia of Cover (in^4): I 1.511631

Bending Stress at Cover Near Ear (psi): sigma 20251.77

Allowable Stress in Tension of the Cover (psi): Sall 16350Allowable Bending Stress of the Cover (psi): Sbend 24525

Is Cover Design Adequate? --- Yes

tc = C over Th icknesste = Ear Th icknessLength = C lam p LengthW e = Ear W idthF b = Bolt ForceF p = Pressure ForceArm 1= M om ent A rm D istance for F pArm 2= M om ent A rm D istance for F e

Length

tc

te

F b

F p

Arm 1

F e

Arm 2

W e

C15
This calculation assumes that the pressure force is equally distributed between 2 clamp ears.
C18
As a general rule, Arm2 can be assumed to be 1/2 of Arm1. This lever arm applies to the force between ears. The assumption here is that the clamp's peripheral seal is in line with the line of action of the bolts.
A20
Since the ears of the clamp are not gasketed and mate flat against each other, the actual bolt load applied to the clamp is of no consequence in these calculations, since the bending moment that is produced in the ear and at the discontinuity of the ear and cover is dictated by the combined forces due to the pressure load acting on the bore (Fp) and the pressure load acting on the face of the ear (Fe).
Page 41: 233876034 API Calcs Rev1 Version 2

NOTE: This calculation method is based upon the use of a two-piece clamp with two sets of ears 180 degrees apart.

tc = C over Th icknesste = Ear Th icknessLength = C lam p LengthW e = Ear W idthF b = Bolt ForceF p = Pressure ForceArm 1= M om ent A rm D istance for F pArm 2= M om ent A rm D istance for F e

Length

tc

te

F b

F p

Arm 1

F e

Arm 2

W e

Page 42: 233876034 API Calcs Rev1 Version 2

Calculat PSI From Weight in ounces

weight 0.5 oz Input0.03125 pounds

diamter 1.2 inches Inputarea 1.130973

pressure 0.02763107 psi Output0.764911 in WC Output

Page 43: 233876034 API Calcs Rev1 Version 2

Bolt Dia Bolt Pitch Bolt Area % Yield Elongation (inch/inch) Recommended Torque (ft-lbs)(inch) (thread/inch) (inch^2) 1st pass 2nd pass 3rd pass 1st pass 2nd pass0.75 10 0.334 40 0.0014 1490.75 16 0.373 40 0.0014 166

0.875 9 0.462 40 0.0014 2410.875 14 0.509 40 0.0014 265

1 8 0.606 40 0.0014 3611 12 0.663 40 0.0014 394

1.125 8 0.79 40 0.0014 5291.125 12 0.856 40 0.0014 5731.125 7 0.763 40 0.0014 5111.25 8 1 40 0.0014 7441.25 12 1.073 40 0.0014 7981.25 7 0.969 40 0.0014 721

1.375 8 1.233 40 0.0014 10091.375 12 1.315 40 0.0014 10761.375 6 1.155 40 0.0014 945

1.5 8 1.492 40 0.0007 0.00112 0.0014 666 10651.5 12 1.581 40 0.0007 0.00112 0.0014 706 11291.5 7 1.405 40 0.0007 0.00112 0.0014 627 1003

1.625 8 1.78 40 0.0007 0.00112 0.0014 861 13771.75 8 2.08 40 0.0007 0.00112 0.0014 1083 17331.75 5 1.9 40 0.0007 0.00112 0.0014 989 1583

1.875 8 2.41 40 0.0007 0.00112 0.0014 1344 21512 8 2.77 40 0.0007 0.00112 0.0014 1648 26372 4 2.5 40 0.0007 0.00112 0.0014 1488 2380

2.25 8 3.56 40 0.0007 0.00112 0.0014 2383 38132.252.5 8 4.44 40 0.0007 0.00112 0.0014 3302 52842.5 4 4 40 0.0007 0.00112 0.0014 2975 4760

2.75 8 5.43 40 0.0007 0.00112 0.0014 4019 64312.75 4 4.93 40 0.0007 0.00112 0.0014 3649 5839

3 8 6.51 50 0.000875 0.0014 0.00175 6571 105143 4 5.97 50 0.000875 0.0014 0.00175 6026 9642

3.25 8 7.69 50 0.000875 0.0014 0.00175 8409 134543.25 4 7.1 40 0.0007 0.00112 0.0014 6211 99383.5 8 8.96 40 0.0007 0.00112 0.0014 8441 135063.5 4 8.33 40 0.0007 0.00112 0.0014 7848 12556

3.75 8 10.34 40 0.0007 0.00112 0.0014 10437 166993.75 4 9.66 40 0.0007 0.00112 0.0014 9751 15601

4 8 11.81 40 0.0007 0.00112 0.0014 12715 203454 4 11.08 40 0.0007 0.00112 0.0014 11929 19087

14979.97upper is halfway between 3 and 3.25 8 thread at 50%YIELDlower is slightly lower than a 3 in 4 thread at 50% yield

area piR^23 7.068583

2.75 5.939574

14.2 7.1

Page 44: 233876034 API Calcs Rev1 Version 2

Recommended Torque (ft-lbs) K factor multyplier Yield vs elongation3rd pass yield %

0.17 105000 200.17 105000 300.17 105000 400.17 105000 500.17 105000 600.17 105000 50 0.00175 700.17 105000 800.17 1050000.17 1050000.17 1050000.17 1050000.17 1050000.17 1050000.17 1050000.17 105000

1332 0.17 1050001411 0.17 1050001254 0.17 1050001721 0.17 1050002166 0.17 1050001978 0.17 1050002689 0.17 1050003296 0.17 1050002975 0.17 1050004766 0.17 105000

0.17 1050006605 0.17 1050005950 0.17 1050008039 0.17 950007298 0.17 95000

13142 0.17 95000 pipe id 10.512052 0.17 95000 pressure 300016818 0.17 95000 thrust 259770.2 lbs12422 0.17 95000 bolt a 6.5 in^216882 0.17 95000 force/bolt 4995.58115695 0.17 9500020874 0.17 95000 rectangle19501 0.17 95000 circ 32.986725431 0.17 95000 t 0.37523859 0.17 95000 a 12.37001

stress 21000

Page 45: 233876034 API Calcs Rev1 Version 2

Yield vs elongationelongation inch/inch

0.00070.001050.0014

0.001750.0021

0.002450.0028

Page 46: 233876034 API Calcs Rev1 Version 2

Yeild Strength:For d=<2.5" For 2.5"<d=<4" 0.619048 5931

B7 = 105000 psi 95000 psiB7M = 80000 psiB16 = 105000 psi 95000 psi Enter Stud Type: B7

Other = 0 psi (leave zero value if not used) Enter % of Yield: 60

Bolt Dia Bolt Pitch Bolt Area % Yield Elongation (inch/inch) Recommended Torque (ft-lbs)(inch) (thread/inch) (inch^2) 1st pass 2nd pass 3rd pass 1st pass 2nd pass0.75 10 0.334 60 0.0021 2500.75 16 0.373 60 0.0021 279

0.875 9 0.462 60 0.0021 4030.875 14 0.509 60 0.0021 444

1 8 0.606 60 0.0021 6041 12 0.663 60 0.0021 661

1.125 8 0.79 60 0.0021 8871.125 12 0.856 60 0.0021 9611.125 7 0.763 60 0.0021 8561.25 8 1 60 0.0021 12471.25 12 1.073 60 0.0021 13381.25 7 0.969 60 0.0021 1208

1.375 8 1.233 60 0.0021 16911.375 12 1.315 60 0.00063 0.00126 0.0021 541 10821.375 6 1.155 60 0.0021 1584

1.5 8 1.492 60 0.00105 0.00168 0.0021 1116 17861.5 12 1.581 60 0.00105 0.00168 0.0021 1183 18921.5 7 1.405 60 0.00105 0.00168 0.0021 1051 1682

1.625 8 1.78 60 0.00105 0.00168 0.0021 1443 23081.75 8 2.08 60 0.00105 0.00168 0.0021 1815 29051.75 5 1.9 60 0.00105 0.00168 0.0021 1658 2653

1.875 8 2.41 60 0.00105 0.00168 0.0021 2254 36062 8 2.77 60 0.00105 0.00168 0.0021 2763 44212 4 2.5 60 0.00105 0.00168 0.0021 2494 3990

2.25 8 3.56 60 0.00105 0.00168 0.0021 3995 63922.25 602.5 8 4.44 60 0.00105 0.00168 0.0021 5536 88582.5 4 4 60 0.00105 0.00168 0.0021 4987 7980

2.75 8 5.43 60 0.00105 0.00168 0.0021 6738 107812.75 4 4.93 60 0.00105 0.00168 0.0021 6118 9789

3 8 6.51 60 0.00105 0.00168 0.0021 8813 141013 4 5.97 60 0.00105 0.00168 0.0021 8082 12931

3.25 8 7.69 60 0.00105 0.00168 0.0021 11278 180453.25 4 7.1 60 0.00105 0.00168 0.0021 10413 166603.5 8 8.96 60 0.00105 0.00168 0.0021 14151 226423.5 4 8.33 60 0.00105 0.00168 0.0021 13156 21050

3.75 8 10.34 60 0.00105 0.00168 0.0021 17497 279963.75 4 9.66 60 0.00105 0.00168 0.0021 16347 26154

4 8 11.81 60 0.00105 0.00168 0.0021 21317 341074 4 11.08 60 0.00105 0.00168 0.0021 19999 31999

20090.78upper is halfway between 3 and 3.25 8 thread at 50%YIELDlower is slightly lower than a 3 in 4 thread at 50% yield

area piR^23 7.068583

2.75 5.939574

Page 47: 233876034 API Calcs Rev1 Version 2

14.2 7.1

Page 48: 233876034 API Calcs Rev1 Version 2

K factor: 0.15 New hardware, well lubricated0.17 Hardware in good cond., well lubr.0.19 Hardware in fair cond., well lubr.0.21 Hardware in bad cond., well lubr.

% 0.25 Hardware in bad cond., unlubricated.

Recommended Torque (ft-lbs) K factor Bolt type multyplier Yield vs elongation3rd pass Enter K: 0.19 yield %

0.19 B7 105000 200.19 B7 105000 300.19 B7 105000 400.19 B7 105000 500.19 B7 105000 600.19 B7 105000 50 0.00175 700.19 B7 105000 80

1.625 0.19 B7 1050000.19 B7 105000

0.875 0.19 B7 1050000.19 B7 1050000.19 B7 1050000.19 B7 105000

1804 0.19 B7 1050000.19 B7 105000

2232 0.19 B7 1050002366 0.19 B7 1050002102 0.19 B7 1050002885 0.19 B7 1050003631 0.19 B7 1050003317 0.19 B7 105000

0 0.19 B7 1050005526 0.19 B7 1050004987 0.19 B7 1050007990 0.19 B7 105000

0.19 B7 10500011072 0.19 B7 1050009975 0.19 B7 105000

13477 0.19 B7 9500012236 0.19 B7 9500017626 0.19 B7 9500016164 0.19 B7 9500022556 0.19 B7 9500020825 0.19 B7 9500028302 0.19 B7 9500026312 0.19 B7 9500034994 0.19 B7 9500032693 0.19 B7 9500042634 0.19 B7 9500039999 0.19 B7 95000

Page 49: 233876034 API Calcs Rev1 Version 2

Yield vs elongationelongation inch/inch

0.00070.001050.0014

0.001750.0021

0.002450.0028

Page 50: 233876034 API Calcs Rev1 Version 2

Flow through an orifice

Q = flow in gpm Steam Flow Through Orifices Discharging To AtmosphereDo = diam of orifice in inches Steam Flow (lbs./hr.) when steam gauge pressure is:h = differential head at orifice in feet of liquid Orifice 5 10Dp = diam of pipe in inches Diam. psi psiC = discharge coefficient 1/32 0.47 0.58

1/16 1.86 2.3If Q = 20 gpm 3/32 4.2 5.3dP = 80 psi 1/8 7.5 9.4Dp = 1 in 5/32 11.7 14.6Do = ? in 3/16 16.7 21C = 0.61 7/32 22.9 28.7SG = 1.8 1/4 29.8 37.4

Solve for h 102.5641 9/32 37.8 47.4 5/16 46.6 58.5

Assume Do/Dp < 0.33 11/32 56.4 70.7Do*Do = 0.164873 3/8 67.1 84.2Do = 0.406046 13/32 78.8 98.8So Do/Dp > 0.33 NG 7/16 91.4 115

15/32 105 131Use other formula 1/2 119 150Assume Do 0.38What is Q?Do/Dp exp 0.019775Do/Dp exp 0.140625Q= 17.2298

Finally, Assume Do = 0.25 inQ = 7.581595Therefore, use Do = 3/8"

Page 51: 233876034 API Calcs Rev1 Version 2

Steam Flow Through Orifices Discharging To AtmosphereSteam Flow (lbs./hr.) when steam gauge pressure is:

15 25 50 75 100 125 150 200 250psi psi psi psi psi psi psi psi psi0.7 0.94 1.53 2.12 2.7 3.3 3.9 5.1 6.32.8 3.8 6.1 8.5 10.8 13.2 15.6 20.3 25.16.3 8.45 13.8 19.1 24.4 29.7 35.1 45.7 56.4

11.2 15 24.5 34 43.4 52.9 62.4 81.3 10017.6 23.5 38.3 53.1 67.9 82.7 97.4 127 15625.3 33.8 55.1 76.4 97.7 119 140 183 22634.4 46 75 104 133 162 191 249 30745 60.1 98 136 173 212 250 325 401

56.9 76.1 124 172 220 268 316 412 50770.3 94 153 212 272 331 390 508 62785.1 114 185 257 329 400 472 615 758101 135 221 306 391 476 561 732 902119 159 259 359 459 559 659 859 1059138 184 300 416 532 648 764 996 1228158 211 344 478 611 744 877 1144 1410180 241 392 544 695 847 998 1301 1604

Page 52: 233876034 API Calcs Rev1 Version 2

Steam Flow Through Orifices Discharging To AtmosphereSteam Flow (lbs./hr.) when steam gauge pressure is:

300psi7.4

29.867

119186268365477603745901

10731259146016761907

Page 53: 233876034 API Calcs Rev1 Version 2

Schedule Schedule

Standard 400.125 0.405 0.068 6210.2 0.068 6210.20.25 0.54 0.088 3391.6 0.088 3391.6

0.375 0.675 0.091 1848.9 0.091 1848.90.5 0.84 0.109 1161.5 0.109 1161.5

0.75 1.05 0.113 661.8 0.113 661.81 1.315 0.133 408.4 0.133 408.4

1.25 1.66 0.140 236.0 0.140 236.01.5 1.9 0.145 173.4 0.145 173.42 2.375 0.154 105.2 0.154 105.2

2.5 2.875 0.203 73.7 0.203 73.73 3.5 0.216 47.7 0.216 47.7

3.5 4 0.226 35.7 0.226 35.74 4.5 0.237 27.7 0.237 27.75 5.563 0.258 17.6 0.258 17.66 6.625 0.280 12.2 0.280 12.28 8.625 0.322 7.1 0.322 7.1

10 10.75 0.365 4.5 0.365 4.512 12.75 0.375 3.1 0.406 3.214 14 0.375 2.6 0.438 2.616 16 0.375 1.9 0.500 2.018 18 0.375 1.5 0.562 1.620 20 0.375 1.2 0.594 1.322 22 0.375 1.0 - -24 24 0.375 0.8 0.688 0.926 26 0.375 0.7 - -28 28 0.375 0.6 - -30 30 0.375 0.5 - -32 32 0.375 0.5 0.688 0.534 34 0.375 0.4 0.688 0.436 36 0.375 0.4 0.750 0.442 42 0.375 0.3 - -

Capacity (GPM)

Nominal Pipe Size

Outside Diameter

(in)Velocity

(ft/s)Velocity

(ft/s)

Page 54: 233876034 API Calcs Rev1 Version 2

Schedule Schedule Schedule

XS 80 1200.095 9721.6 0.095 9721.6 - -0.119 4927.2 0.119 4927.2 - -0.126 2511.5 0.126 2511.5 - -0.147 1507.4 0.147 1507.4 - -0.154 816.2 0.154 816.2 - -0.179 490.7 0.179 490.7 - -0.191 275.1 0.191 275.1 - -0.200 199.7 0.200 199.7 - -0.218 119.5 0.218 119.5 - -0.276 83.3 0.276 83.3 - -0.300 53.4 0.300 53.4 - -0.318 39.7 0.318 39.7 - -0.337 30.7 0.337 30.7 0.438 34.20.375 19.4 0.375 19.4 0.500 21.60.432 13.5 0.432 13.5 0.562 14.90.500 7.7 0.500 7.7 0.719 8.70.500 4.7 0.594 4.9 0.844 5.50.500 3.3 0.688 3.5 1.000 3.90.500 2.7 0.750 2.9 1.094 3.20.500 2.0 0.844 2.2 1.219 2.40.500 1.6 0.938 1.7 1.375 1.90.500 1.2 1.031 1.4 1.500 1.60.500 1.0 1.125 1.2 1.625 1.30.500 0.8 1.218 1.0 1.812 1.10.500 0.7 - - - -0.500 0.6 - - - -0.500 0.5 - - - -0.500 0.5 - - - -0.500 0.4 - - - -0.500 0.4 - - - -0.500 0.3 - - - -

Capacity (GPM) 1,100

Velocity (ft/s)

Velocity (ft/s)

Velocity (ft/s)

Page 55: 233876034 API Calcs Rev1 Version 2

Schedule Schedule

160 XXS- - - -- - - -- - - -

0.188 2087.3 0.294 7076.40.219 1199.8 0.308 2385.80.250 676.5 0.358 1252.40.250 334.0 0.382 559.80.281 251.0 0.400 371.40.344 157.9 0.436 198.90.375 99.5 0.552 143.30.438 65.3 0.600 84.9

- - - -0.531 38.0 0.674 45.20.625 24.2 0.750 27.20.719 16.7 0.864 18.70.906 9.7 0.875 9.51.125 6.2 1.000 5.91.312 4.4 1.000 3.91.406 3.6 - -1.594 2.7 - -1.781 2.2 - -1.969 1.7 - -2.125 1.4 - -2.344 1.2 - -

- - - -- - - -- - - -- - - -- - - -- - - -- - - -

Velocity (ft/s)

Velocity (ft/s)

Page 56: 233876034 API Calcs Rev1 Version 2

Outside Diameter Standard 400.125 0.405 0.068 0.000395 0.068 0.0003950.25 0.54 0.088 0.000723 0.088 0.000723

0.375 0.675 0.091 0.001326 0.091 0.0013260.5 0.84 0.109 0.00211 0.109 0.00211

0.75 1.05 0.113 0.003703 0.113 0.0037031 1.315 0.133 0.006002 0.133 0.006002

1.25 1.66 0.14 0.010387 0.14 0.0103871.5 1.9 0.145 0.014138 0.145 0.0141382 2.375 0.154 0.023303 0.154 0.023303

2.5 2.875 0.203 0.033248 0.203 0.0332483 3.5 0.216 0.051338 0.216 0.051338

3.5 4 0.226 0.068659 0.226 0.0686594 4.5 0.237 0.088405 0.237 0.0884055 5.563 0.258 0.138929 0.258 0.1389296 6.625 0.28 0.200627 0.28 0.2006278 8.625 0.322 0.34741 0.322 0.34741

10 10.75 0.365 0.547599 0.365 0.54759912 12.75 0.375 0.785398 0.406 0.77730314 14 0.375 0.957545 0.438 0.9394216 16 0.375 1.268432 0.5 1.22718518 18 0.375 1.622952 0.532 1.56440520 20 0.375 2.021105 0.594 1.93017822 22 0.375 2.462891 - -24 24 0.375 2.948311 0.688 2.79168326 26 0.375 3.477364 - -28 28 0.375 4.05005 - -30 30 0.375 4.66637 - -32 32 0.375 5.326322 0.688 5.11506634 34 0.375 6.029908 0.688 5.80499436 36 0.375 6.777127 0.75 6.49180742 42 0.375 9.280584 - -

Nominal Pipe Size

X-Sect. Area

Sch. 60 (ft2)

X-Sect. Area

Sch. 40 (ft2)

Page 57: 233876034 API Calcs Rev1 Version 2

X Strong 80 1200.095 0.000252 0.095 0.000252 -0.119 0.000497 0.119 0.000497 -0.126 0.000976 0.126 0.000976 -0.147 0.001626 0.147 0.001626 -0.154 0.003003 0.154 0.003003 -0.179 0.004995 0.179 0.004995 -0.191 0.008908 0.191 0.008908 -

0.2 0.012272 0.2 0.012272 -0.218 0.020506 0.218 0.020506 -0.276 0.029432 0.276 0.029432 -

0.3 0.045869 0.3 0.045869 -0.318 0.061722 0.318 0.061722 -0.337 0.079839 0.337 0.079839 0.438 0.0716310.375 0.126345 0.375 0.126345 0.5 0.1135610.432 0.181019 0.432 0.181019 0.562 0.165048

0.5 0.317108 0.5 0.317108 0.719 0.2817230.5 0.518486 0.594 0.498683 0.844 0.4478940.5 0.753014 0.688 0.705592 1 0.6302960.5 0.921752 0.75 0.852212 1.094 0.7609820.5 1.227185 0.844 1.117193 1.219 1.0031710.5 1.57625 0.938 1.417989 1.375 1.2684320.5 1.96895 1.031 1.754993 1.5 1.576250.5 2.405282 1.125 2.127461 1.625 1.9174760.5 2.885247 1.218 2.536215 1.812 2.2644630.5 3.408846 - -0.5 3.976078 - -0.5 4.586943 - -0.5 5.241442 - -0.5 5.939574 - -0.5 6.681339 - -0.5 9.168433 - -

X-Sect. Area

Sch. XS (ft2)

X-Sect. Area

Sch. 80 (ft2)

X-Sect. Area

Sch. 120 (ft2)

Page 58: 233876034 API Calcs Rev1 Version 2

160 XX Strong- - -- - -- - -

0.188 0.001174 0.294 0.0003460.219 0.002043 0.308 0.0010270.25 0.003623 0.358 0.0019570.25 0.007339 0.382 0.004379

0.281 0.009764 0.4 0.00660.344 0.015522 0.436 0.0123210.375 0.024629 0.552 0.0171070.438 0.037554 0.6 0.028852

- - - #VALUE!0.531 0.064467 0.674 0.0541880.625 0.101458 0.75 0.0900370.719 0.146744 0.864 0.1307940.906 0.253165 0.875 0.2577941.125 0.394063 1 0.4175841.312 0.559246 1 0.6302961.406 0.682704 -1.594 0.895285 -1.781 1.13695 -1.969 1.407105 -2.125 1.718399 -2.344 2.034145 -

- -- -- -- -- -- -- -

X-Sect. Area

Sch. 160 (ft2)

X-Sect. Area

Sch. XXS (ft2)

Page 59: 233876034 API Calcs Rev1 Version 2

THERMOWELL VIBRATION AND STRESS ANALYSIS

TAG NUMBER: JOB NUMBER:

PROCESS DATA THERMOWELL DATA

Fluid Name: H/C Material:Fluid State: VAPOUR Selected [U] Dim:(IN)Flowrate: (LB/HR) 144000 Type of Shank:Temperature: (DEG F) 500 Well Tip O.D.: (IN)Pressure: (PSIG) 650 Well Constant: [Kf]Specific Gravity: 0.57 Material Constant [Km]Viscosity: (CP) 0.02 Natural Freq [Fn] =Density: (LB/FT3) 0.84 [Fn] at 1000F =Specific Vol (FT3/LB) 1.1905 Wake Frequency [Fw] =Pipe ID: (INCHES) 10 Ratio = Fw/Fn <0.8 =Velocity (FT/SEC) 87.26 Ratio at 1000F <0.8 =

Max [U](Stress) (IN) =Actual U Dim: (IN) 10 Max Velocity (FT/SEC)= Support Ring: YES Length at Max V (IN) =

NOTES:1. Ratio of Wake Frequency/Natural Frequency must not exceed 0.8.2. Enter [Kf] and [Km] from tables.3. Red requires entry4. Orange is optional

Page 60: 233876034 API Calcs Rev1 Version 2

ELEMENT Kf KfSIZE (IN) Tapered Straight0.25 2.08 1.370.375 2.45 1.80.5625 3.05 2.240.6875 3.44 2.53

304 SS 0.875 4.01 2.958

TAPERED TYPICAL MAX VELOCITY TABLE7

2.08 [U] DIM VAP VEL LIQ VEL(f/s)9840 4 192 99

319.80 7 70 60295.82 10 35 35

32.91 13 22 220.10 16 14 140.11

46.47 Material Constants678.36

8.00 (Km)Inconel 9250Aluminum 316Naval Brass 7280CS,304,316 9840Hast. B 9640Hast. C 9400Monel 8850C-1018 9310Titanium 9940

Page 61: 233876034 API Calcs Rev1 Version 2

FORMULAS - FROM ASME PERFORMANCE TEST CODE - TEMPERATURE MEASUREMENT

- - - - - - -

LIQUID VELOCITY (f/s) = 0.0509*W/(d2*density)

VAPOUR VELOCITY (f/s) = 0.051*W/(d2*density)

NATURAL FREQ(Fn) @70F = Kf/U^2*SQRT(E*Y) = Kf/U^2*9913.4

SQRT(E*Y) = SQRT(28500000/0.290) = 9913.4

WAKE FREQUENCY = 2.64*(VELOCITY/TIP OD)

MAX U DIM(STRESS)@1000F= 37.5/V*SQRT(SV(10000-0.116*P)/(1+R^2/(1-R^2)))

MAX VEL FOR SELECTED U = 0.8*TIP OD*Kf*9913.4/(2.64*U^2)

Page 62: 233876034 API Calcs Rev1 Version 2

91-9-20

-----

FROM POWER TEST CODE

Page 63: 233876034 API Calcs Rev1 Version 2

ASME Sect. VIII Div. 1 UG-27 (c) Return to Menu

(1) Circum. Stress (Long. Joints)

t=PR/SE-0.6P

t= Min. req'd Thickness of shell, in.P= internal design pressure 165R= inside radius of shell course under consideration, in. 0.375S = maximum allowable stress value, psi. at design temperature. 14500E = joint efficiency. See UW-12 for welded shells. See UG-53 for ligaments. 0.7

t= 0.006

or

(2) Longitudinal Stress (Circumferential Joints)

t=PR/2SE+0.4P

t= Min. req'd Thickness of shell, in.P= internal design pressure 165R= inside radius of shell course under consideration, in. 0.375S= maximum allowable stress value, psi. 14500E= joint efficiency 0.7

t= 0.003

The minumum thickness will be the greater thickness circumferential stress or longitudinal stress.

TMIN = >T = 0.006 "

stregnth values as in API 653 calculations.

THICKNESS OF SHELLS UNDER INTERNAL PRESSURE - ASME VIII, DIV 1, UG-27 & APP. 1& ELLIPSOIDAL HEADS, UG-32 & APP. 1

VESSEL: 7-E-3

P = 63 psi Design pressureHs = 120 in Static head of liquid in vesselSg = 1 Specific gravity of liquid

NOTE: The value of S is selected from the allowable stress tables and for the appropriste design temperature inSection 2D ot the ASME code. Do not use yield or tensile

Page 64: 233876034 API Calcs Rev1 Version 2

Ps = 4.3300015 psi Hydrostatic headSs = 13800 psi Maximum allowable stress, shellSh = 13800 psi Maximum allowable stress, headt s = 0.437 in Thickness shell, new or as inspected

Act. thickness used = 0.347 in Thickness shell, corrodedt h = 0.5 in Thickness head, new or as inspected

Act. thickness used = 0.41 in Thickness head, corrodedfa = 0 in Forming allowanceC = 0.09 in Corrosion allowance

Es = 0.85 Joint efficiency, shellEh = 0.85 Joint efficiency, headDo = 121 in OD for head

D = 120 in ID for head at skirt, new or as inspectedD = 120.18 in ID for head at skirt, corroded

Ro = 60.437 in Outside radius, shellR = 60 in Inside radius, shellR = 60.09 in Inside radius shell, corrodedK = 1 Factor for ellipsoidal heads, = 1.83 for 3:1, 1.0 for 2:1, .5 for 1:1

See App. 1-4, tbl. 1-4.1 for other K values.

UG-27 CALCULATIONS (using ID) FOR SHELL

Circumferential Stress (Longitudinal joints), corroded Longitudinal Stress (Circumferential joints), corrodedt = PR/(SE-.6P) = Use App. 1 in t = PR/(2SE+.4P) = Use App. 1inP = SEt/(R+.6t) = Use App. 1 psi P = SEt/(R-.4t) = Use App. 1psi

Circumferential Stress (Longitudinal joints), new Longitudinal Stress (Circumferential joints), newt = PR/(SE-.6P) = Use App. 1 in t = PR/(2SE+.4P) = Use App. 1inP = SEt/(R+.6t) = Use App. 1 psi P = SEt/(R-.4t) = Use App. 1psi

APPENDIX 1 CALCULATIONS (using OD) FOR SHELL

t = PRo/(SE+.4P) = Use App. 1 inP = SEt/(Ro+.4t) = Use App. 1 psi CorrodedP = SEt/(Ro+.4t) = Use App. 1 psi New

APPENDIX 1 CALCULATIONS FOR ELLIPSOIDAL HEADS

Using ID, corroded Using OD, corrodedt = PDK/(2SE-.2P) = #DIV/0! in t = PDoK/(2SE+2P(K-.1)) = #DIV/0! inP = 2SEt/(KD+.2t) = #DIV/0! psi P = 2SEt/(KDo-2t(K-.1)) = #DIV/0! psi

Using ID, new Using OD, newt = PDK/(2SE-.2P) = #DIV/0! in t = PDoK/(2SE+2P(K-.1)) = #DIV/0! inP = 2SEt/(KD+.2t) = 0 psi P = 2SEt/(KDo-2t(K-.1)) = 0 psi

MAXIMUM ALLOWABLE PRESSURE (MAP), SHELL MAXIMUM ALLOWABLE PRESSURE (MAP), HEAD

P = SEt/(R-.4t) - Ps = #VALUE! P = 2SEt/(KD+.2t)-Ps -4.33 psi

MAX ALLOWABLE WORKING PRES. (MAWP), SHELL MAX ALLOWABLE WORKING PRES. (MAWP), HEAD

P = SEt/(R-.4t) - Ps = #VALUE! psi P = 2SEt/(KD+.2t)-Ps #DIV/0! psi

DESIGN THICKNESS SHELL DESIGN THICKNESS HEAD

t = PRo/(SE+.4P)+C #VALUE! in t = PDoK/(2SE+2P(K-.1))+C+fa #DIV/0!

Page 65: 233876034 API Calcs Rev1 Version 2

Return to Menu

(1) Circum. Stress (Long. Joints)

P= SEt/R+0.6t

t= Min. req'd Thickness of shell, in. 0.14P= internal design pressureR= inside radius of shell course under consideration, in. 23.25S= maximum allowable stress value, psi. 48000E= joint efficiency 1

P= 289.12

or

(2) Longitudinal Stress (Circumferential Joints)

P=2SEt/R+0.2t

t= Min. req'd Thickness of shell, in. 0.14P= internal design pressureR= inside radius of shell course under consideration, in. 23.25S= maximum allowable stress value, psi. 48000E= joint efficiency 1

P= 577.37

The design pressure will be the lesser pressure of circumferential stress or longitudinal stress.

MAWP = <P = 289.1 psig

The value of S is selected from the allowable stress tables and for the appropriste design temperature in use yield or tensile

Page 66: 233876034 API Calcs Rev1 Version 2

Factor for ellipsoidal heads, = 1.83 for 3:1, 1.0 for 2:1, .5 for 1:1

Longitudinal Stress (Circumferential joints), corroded

Longitudinal Stress (Circumferential joints), new

MAX ALLOWABLE WORKING PRES. (MAWP), HEAD

in

Page 67: 233876034 API Calcs Rev1 Version 2

Thickness of cylindrical shells under external pressure. ASME Sect. VIII, paragraph UG-28.

Step 1. Enter known values.132 inches

Shell thickness, t = 0.25 inches

135 inches

Step 2. Calculate ratios. 528 1.023

Step 3. Determine factor A

Value of factor A = 0.00011

Step 4. Determine factor B

Value of factor B = 2000

Step 5. Maximum allowable external pressure using factor B.

5.05 psi

Step 6. Select modulus of elasticity, E. No factor B.

E = 2.90E+07

Step 7. Maximum allowable external pressure using modulus of elasticity.

Outside diameter, Do =

Section length between lines of support, L =

Do / t = L / Do =

Pa = (4B) / 3(Do/t) =

This work sheet calculates the allowable external pressure for a cylindrical vessel having a known outside diameter, wall thickness, and length between lines of support. It is assumed that external stiffeners are adequately designed.

Gather the following information and reference materials prior to using the worksheet.

1. Material designation for the vessel 2. Design temperature 3. Outside diameter 4. Vessel shell thickness 5. Section ll, Part D of the ASME Code opened to Subpart 3 (page 621)

Note: For definition of a line of support, see ASME Section VIII, paragraph UG-28(b).

a. Go to ASME Section II, Part D, Subpart 3, Figure G (page 622 & 623).b. Enter Figure G at the value of L / Do in Step 2 above. If L / Do is greater than 50, enter the chart at L / Do = 50. If L / Do is less than 0.05, enter the chart at L / Do = 0.05.c. Move horizontally to the line for the value of Do / t calculated above. From this point of intersection, move vertically downward to determine the value of factor A.d. Enter the value for factor A at cell B29 below. (scroll down)

a. Using the value of A from step 3, enter the applicable material chart in Section II, Part D, Subpart 3 for the material being considered. The material charts start on page 624.b. Move vertically upward to an intersection with the material/temperature line for the design temperature. If A falls to left of the material/temperature line, skip this step and scroll down to step 6. If A falls past the right end of a material/temperature line, use the horizontal projection of the end of the line as the point of intersection.c. From the point of intersection in step b, move horizontally to the right and read the value for B. Enter this value in cell B41 below. (scroll down)

If factor A falls to the left of the material/temperature line, Pa is calculated using the modulus of elasticity, E, at the design temperature. Select the modulus of elasticity and enter its value in cell B52 below.

Page 68: 233876034 API Calcs Rev1 Version 2

4.03 psiPa = (2AE) / 3(Do / t) =

Page 69: 233876034 API Calcs Rev1 Version 2

Note: For definition of a line of support, see ASME Section VIII, paragraph UG-28(b).

a. Go to ASME Section II, Part D, Subpart 3, Figure G (page 622 & 623).b. Enter Figure G at the value of L / Do in Step 2 above. If L / Do is greater than 50, enter the chart at L / Do = 50. If L / Do is less than 0.05, enter the chart at L / Do = 0.05.c. Move horizontally to the line for the value of Do / t calculated above. From this point of intersection, move vertically downward to determine the value of factor A.d. Enter the value for factor A at cell B29 below. (scroll down)

a. Using the value of A from step 3, enter the applicable material chart in Section II, Part D, Subpart 3 for the material being considered. The material charts start on page 624.b. Move vertically upward to an intersection with the material/temperature line for the design temperature. If A falls to left of the material/temperature line, skip this step and scroll down to step 6. If A falls past the right end of a material/temperature line, use the horizontal projection of the end of the line as the point of intersection.c. From the point of intersection in step b, move horizontally to the right and read the value for B. Enter this value in cell B41 below. (scroll down)

If factor A falls to the left of the material/temperature line, Pa is calculated using the modulus of elasticity, E, at the design temperature. Select the modulus of elasticity and enter its value in cell B52 below.

DoPa internal

P external

tt

L

Page 70: 233876034 API Calcs Rev1 Version 2

Calculation for Clamp Evaluation for Maximum Localized External Pressures(Thin tube under uniform lateral external pressure, Roark's Formulas for Stress, Sixth Edition)Define Given Parameters

L 1.25 in Length of shellE 2.90E+07 Modulusr 4.326 in Radiust ? in Wall Thicknessv 0.3 unitless Poisson's Ratio (for Steel)

Define Maximum External Pressure Equation

(Formula 19, Table 35 -- Formulas for elastic stability of shells)

Define Constants:A=0.807*E/(L*r) A= 4327878

B= 1.327015 unitless

C= 18.71428

Then

Define Constant K:

K= 2.49E+25

Define Maximum External Pressure in terms of Wall Thickness

Then

ThicknessMax Externalt (in)Pressure (psi)0.35 1618530.30 1100920.25 697910.20 399510.15 194620.10 7062

lbs/in2

qmax=0.807*(E*t2)/(L*r)*( ((1/(1-v2))3 * t2/r2)1/4

lbs/in4

B=(1/(1-v2))3

C=r2 in2

qmax=(A4B/C *t10 )1/4

K= (A4B/C)lbs4/in18

qmax=(K*t10)1/4

Page 71: 233876034 API Calcs Rev1 Version 2
Page 72: 233876034 API Calcs Rev1 Version 2

Vessel Volume CalculatorHorizontal Cylindrical TanksAll Units are in feet

Diameter, D 18T/T Length, L 100 K1 0.555556

b 5 Ze 1H1 18 Zc 1

f(Ze) 0.9999768For elliptical 2:1 heads, b = 1/4D f(Zc) 1.0019362

Volume 27193 cubic feet203415 gallons

4843 barrels

Vertical Cylindrical TanksAll Units are in feet

Diameter, D 18b 5

H1 5 K1 0.5555555556H2 5 Ze 1H3 100 f(Ze) 0.9999768

For elliptical 2:1 heads, b = 1/4D

Volume 27143 cubic feet203046 gallons

4834 barrels

H/D L/D As/At |0.8500 0.7141 0.9059

Liq Height (H) = 51.00 in *********** **************** ***********

Diameter (D) = 60.00 in Drum Area (At) = 19.63

Chord Length (L) = 42.85 in Chord Area (As) = 17.79

Vessel Length (TT) = 228.00 in Liquid Volume = 337.97 Not toScale

Estimated EstimatedPart. Head Vols Full Head Vols

Dished Only 12.65 cu ft 13.47 cu ft Dished OnlyASME flanged & dished 18.97 cu ft 20.20 cu ft ASME flanged & dished

H1

b

Liquid Level

D

Liquid Level

Liquid Level

Liquid Level

Page 73: 233876034 API Calcs Rev1 Version 2

Ellipsoidal 30.64 cu ft 32.63 cu ft 2:1 Ellipsoidal Hemispherical 61.29 cu ft 65.25 cu ft Hemispherical

5C-31 Liquid VolumeGallons 2757.264Pounds 22968.01

Page 74: 233876034 API Calcs Rev1 Version 2

INCHES FROM228 inches BTOM OF DRM

Horizontal Drum 60________ inches

Liquid 51inches

Not toScale

Two Heads + partial Drum Vol. = cubic feet

12.65 + 337.97 = 350.6218.97 + 337.97 = 356.95

L

D

Liquid Level

H1b

b

H3

H2

Page 75: 233876034 API Calcs Rev1 Version 2

30.64 + 337.97 = 368.6261.29 + 337.97 = 399.26

1 cubic feet = 7.48 gallons

0 50 1000

5000

10000

15000

20000

25000

30000

35000

5C-31 LEVEL VERSUS VOLUME

5C-31 LEVEL (in)

VO

LU

ME

(G

AL

S)

0 10 200

250050007500

100001250015000175002000022500250002750030000325003500037500400004250045000475005000052500550005750060000

5C-31 LEVEL VERSUS WEIGHT

5C-31 LEVEL (in)

WE

IGH

T (

LB

S)

Page 76: 233876034 API Calcs Rev1 Version 2

0 10 200

250050007500

100001250015000175002000022500250002750030000325003500037500400004250045000475005000052500550005750060000

5C-31 LEVEL VERSUS WEIGHT

5C-31 LEVEL (in)

WE

IGH

T (

LB

S)

Page 77: 233876034 API Calcs Rev1 Version 2

INCHES FROMLIQ VOL LIQ VOLBTOM OF DRMCU. FT. GALS

0 0 05 58 432

10 163 1218

15 297 222420 454 339525 628 469930 817 611035 1017 760940 1227 917845 1444 1080150 1667 1246555 1893 1415760 2121 15864

Page 78: 233876034 API Calcs Rev1 Version 2

0 50 1000

5000

10000

15000

20000

25000

30000

35000

5C-31 LEVEL VERSUS VOLUME

5C-31 LEVEL (in)

VO

LU

ME

(G

AL

S)

0 10 200

250050007500

100001250015000175002000022500250002750030000325003500037500400004250045000475005000052500550005750060000

5C-31 LEVEL VERSUS WEIGHT

5C-31 LEVEL (in)

WE

IGH

T (

LB

S)

Page 79: 233876034 API Calcs Rev1 Version 2

0 10 200

250050007500

100001250015000175002000022500250002750030000325003500037500400004250045000475005000052500550005750060000

5C-31 LEVEL VERSUS WEIGHT

5C-31 LEVEL (in)

WE

IGH

T (

LB

S)

Page 80: 233876034 API Calcs Rev1 Version 2

MANWAY NOZZLE CALCULATIONS5C45 Deprop

C 0.3 C = factor for attachment method, 0.3 for bolted flat headP 375 P = design pressure; 210 psi for pressure case, 0 psi for gasket seating caseS 15000 S = allowable stress of manway cover material; 15,000 psi for SA-181E 1 E = Joint Efficiency; 1 (no welds)

m 3 m = gasket factor; 3 for Monel/TeflonAm 10.505 Am = larger of Wm1 /Sb or Wm2/Sa

Sa 23000 Sa = allowable bolt stress at ambient temp.; 23,000 psi for SA-193 B7

Sb 23000 Sb = allowable bolt stress at operating temperature.; 23,000 psi for SA193 B7y 10000 y = gasket seating stress ( on surface of gasket); 10,000 for Monel/Teflon spiral wound

Bolt D 24.75 Bolt D-bolt circle dia.Rf OD 21 Raised face OD

G ID 18.688 Gasket ID: d = diameter of effective gasket reaction point1.064 Root dia. of bolt

1. Determine required manway thickness1a. Calculate effective gasket width (b), reaction diameter (G or d) and moment arm (hg) per Table 2.5.2

b 0.380 b = 0.5 x (N/2)1/2N 1.156 N=(Rf OD-G ID)/2: Distance of id of gasket to OD of flange G 20.240 G = Rf - 2b: diameter of effective gasket reaction point (same as d)

hg 2.255 hg = (Bolt D - G)/2: hg = gasket moment arm; distance from bolts to effective gasket reaction point1b. Calculate Bolt Load (W) for pressure condition

W ### W = Wm1 = 0.785G2P + (2b x 3.14GmP)Wm1 ### Wm1 = (0.785 x (20.24) 2 x 210) + (2 x 0.380 x 3.14 x 20.24 x 3 x 210)

1c. Calculate Bolt Load (W) for gasket seating conditionAb 21.329 Ab = available root area of bolts: 24 x 3.14 x (1.064/2)2

Wm2 ### Wm2 = 3.14 x 0.380 x 20.24 x 10,000 = 241,626 lbWm1/Sb 7.607 Wm1 / Sb = 97,961.5 /23,000 = 4.26 in2 Wm2/Sa 10.505 Wm2 / Sa = 241,626 / 23,000 = 10.51 in2

W ### W = (Am + Ab) x Sa/2 = (10.51 + 21.34) x 23,000/2 = 366,275 lb1d. Calculate required flange thickness for pressure

t 2.354 t = d(CP/SE + 1.9Whg/SEd3)1/2:= required thickness for pressure1e. Calculate required thickness for gasket seating

t 2.2731 t = 20.24 x [(0 + 1.9 x 366,275 x 2.26/(15,000 x 1 x 20.243 )] 1/2t = 2.276" = required thickness for gasket seating, this is the controlling thickness

Page 81: 233876034 API Calcs Rev1 Version 2

= d(CP/SE + 1.9Whg/SEd3)1/2

y = gasket seating stress ( on surface of gasket); 10,000 for Monel/Teflon spiral wound Where: t = required manway thickness; calculated for both design pressure and gasket seating conditions; use higher value

hg = (Bolt D - G)/2: hg = gasket moment arm; distance from bolts to effective gasket reaction point

t = 20.24 x [(0 + 1.9 x 366,275 x 2.26/(15,000 x 1 x 20.243 )] 1/2t = 2.276" = required thickness for gasket seating, this is the controlling thickness

tmin =>

Page 82: 233876034 API Calcs Rev1 Version 2

Where: t = required manway thickness; calculated for both design pressure and gasket seating conditions; use higher value

Page 83: 233876034 API Calcs Rev1 Version 2

t = (.885PL)/(SE-0.1P where t = minimum required thickness of head, inchesL = inside spherical or crown radius, inchesP = internal design pressure, psiE = joint efficiencyS = maximum allowable stress value, psi

Enter values: P = 35 psiL = 146 inchesS = 13800 psiE = 1

Calculated thickness, t = 0.328 inches

Thickness calculation for torispherical head. Based on ASME Section VIII, paragraph UG-32(e)

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 84: 233876034 API Calcs Rev1 Version 2

Based on ASME Section VIII, paragraph UG-32(e)

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 85: 233876034 API Calcs Rev1 Version 2

t = (PL)/(2SE-0.2P) where t = minimum required thickness of head, inchesL = inside spherical or crown radius, inchesP = internal design pressure, psiE = joint efficiencyS = maximum allowable stress value, psi

Enter values: P = 4500 psiL = 6.8 inchesS = 30000 psiE = 1

Calculated thickness, t = 0.518 inches

t is less than 0.365L or P is less than 0.665SE; therefore, code formula is valid.

Thickness calculation for hemispherical heads. Based on ASME Section VIII, paragraph UG-32(f)

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 86: 233876034 API Calcs Rev1 Version 2

Based on ASME Section VIII, paragraph UG-32(f)

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 87: 233876034 API Calcs Rev1 Version 2

CALCULATION FOR THICKNESS OF BOLTED, FLAT UNSTAYED CIRCULAR HEADS, COVERS, AND BLIND FLANGES

Enter values:Bolt circle diameter 48.625 inchesNominal bolt size 0.75 inchesNumber of bolts 52Gasket Factor, m = 3.75Seating stress, y = 9000 psiGasket O.D., Go = 47.375 inchesGasket I. D., Gi 46.375 inchesSealing Face O.D., Fo = 47.375 inchesSealing Face I.D., Fi = 44.5 inchesDesign pressure, P= 115 psi

20000 psi

17500 psi

Calculated values:Bolt area, single bolt 0.334

Total bolt area 17.368

G = 46.88 inches

N = 0.50 inches

0.25

b = 0.25

Initial bolt load for seating gasket 3.14bGy = 331340 lbs.

230212 lbs.

2.191 inches

0.8865659 inches

2.191 inches

Allowable bolt stress at ambient temperature, Sb =

Allowable stress for head at design temp, S =

A = in2

Ab = in2

Diameter at location of gasket load reaction

Width used to determine basic seating width, bo

Basic seating width, table 2-5.2, Appedix 2, ASME Sect. VIII bo =

Effective gasket seating width, table 2-5.2, App. 2 ASME Sect VIII

Wm2 =

Bolt load required for operating conditions Wm1 = .785G2P + 6.28bGmP =

Head thickness based on operating conditions

t1 =

Head thickness based on gasket seating t2 =

Operating conditions govern therefore use t1

NOTE:

1. This program calculates the minimum required thickness for bolted, flat unstayed circular heads, covers, and blind flanges of the type shown in Fig. UG-34, sketch (j) and sketch (k) of Part UG-34 in the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

2. Enter the decimal equivalent of fractions in all dimensions.

3. Gasket Factor, m, and Seating Stress, y, for a given gasket material are obtained from table 2-5.1 in Appendix 2 of the ASME Code or table UA-49.1 in the Lamons Gasket Handbook.

4. The basic gasket seating width, bO, in cell C24 must be selected from table 2-5.2 in Appendix 2 of the ASME Code or table UA-49.2 in the Lamons Gasket Handbook and manually entered at the cell location.

5. All formulas and tables in the Lamons Handbook are taken from Appendix 2 of the ASME Boiler and Pressure Vessel Code, Section Vlll, Division 1.

Page 88: 233876034 API Calcs Rev1 Version 2

CALCULATION FOR THICKNESS OF BOLTED, FLAT UNSTAYED CIRCULAR HEADS, COVERS, AND BLIND FLANGES

16.57

11.51

16.567

Bolt area req'd for seating

Am2 = Wm2/Sb = in2

Bolt area req'd for operating Am1 = Wm1/Sb = in2

Bolt area selected

in2

NOTE:

1. This program calculates the minimum required thickness for bolted, flat unstayed circular heads, covers, and blind flanges of the type shown in Fig. UG-34, sketch (j) and sketch (k) of Part UG-34 in the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

2. Enter the decimal equivalent of fractions in all dimensions.

3. Gasket Factor, m, and Seating Stress, y, for a given gasket material are obtained from table 2-5.1 in Appendix 2 of the ASME Code or table UA-49.1 in the Lamons Gasket Handbook.

4. The basic gasket seating width, bO, in cell C24 must be selected from table 2-5.2 in Appendix 2 of the ASME Code or table UA-49.2 in the Lamons Gasket Handbook and manually entered at the cell location.

5. All formulas and tables in the Lamons Handbook are taken from Appendix 2 of the ASME Boiler and Pressure Vessel Code, Section Vlll, Division 1.

Page 89: 233876034 API Calcs Rev1 Version 2

t=(PD)/(2SE - 0.2P) where t = minimum required thickness of head, inchesD = inside diameter of head at skirt, inchesP = internal design pressure, psiE = joint efficiencyS = maximum allowable stress value, psi

Enter values: P = 220 psiD = 120 inchesS = 13750 psiE = 0.92

Calculated thickness, t = 1.045 inches

Thickness calculation for ellipsoidal head. Based on ASME Section VIII, paragraph UG-32(d)

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 90: 233876034 API Calcs Rev1 Version 2

Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal, torispherical, or hemispherical.

Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. These are also commonly refered to as 2:1 elliptical heads.

Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.06 times the inside crown radius.

It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.

The calculations below are for pressure on the concave side.

Page 91: 233876034 API Calcs Rev1 Version 2

Step 1. Enter known values.169 inches

Shell thickness t = 0.3125 inchesExternal pressure P = 15 psi

2.45E+07 psi

2.3940 inches

Step 2. Factor B calculated

B = 5107

Step 3. Determine factor A

Factor A = 0.0004

Step 4. Determine the required moment of inertia.

12.15

Step 5. Calculated value of factor A for factor B below chart.

A = 0.00042

Step 6. Required moment of inertia using A from step 5.

12.67

Shell O.D. Do =

Modulus of elasticity for material E =Cross sectional area of stiffener, A s = in2

L s =

I s = in4

I s = in4

This worksheet calculates the required moment of inertia for a stiffening ring attached to a cylindrical shell under external pressure. The calculated moment of inertia can be compared to the moment of inertia of a corroded or damaged stiffening.The calculation is performed in accordance to ASME Sect. VIII, paragraph UG-29.

Information and reference material needed to perform this calculation include: * ASME Section II, Part D, Subpart 3 * modulus of elasticity, E, for stiffening ring material at design temperature * outside diameter of shell * shell thickness * distance between lines of support (see ASME Sect. VIII, paragraph UG-28(b)) * cross sectional area of existing stiffening ring

L s is defined as one half the distance from the stiffener center line to the next line of support above plus one half the distance from the stiffener center line to the next line of support below. (ASME VIII, UG-29)

a. Open ASME Section II, Part D, Subpart 3 to the applicable chart for the stiffener material under consideration. The charts begin on page 624.b. Enter the right hand side of the applicable chart at the value of B determined in step 2 above.c. Move left horizontally to the material/temperature line for the design metal temperature. For values of B falling below the left end of the chart, go to step 5.d. At the point of intersection, move down vertically for the value of A. Enter that value in cell B38 below.

Page 92: 233876034 API Calcs Rev1 Version 2

This worksheet calculates the required moment of inertia for a stiffening ring attached to a cylindrical shell under external pressure. The calculated moment of inertia can be compared to the moment of inertia of a corroded or damaged stiffening.The calculation is performed in accordance to ASME Sect. VIII, paragraph UG-29.

Information and reference material needed to perform this calculation include: * ASME Section II, Part D, Subpart 3 * modulus of elasticity, E, for stiffening ring material at design temperature * outside diameter of shell * shell thickness * distance between lines of support (see ASME Sect. VIII, paragraph UG-28(b)) * cross sectional area of existing stiffening ring

L s is defined as one half the distance from the stiffener center line to the next line of support above plus one half the distance from the stiffener center line to the next line of support below. (ASME VIII, UG-29)

Page 93: 233876034 API Calcs Rev1 Version 2

Given values:

Design pressure 40 psi 96 in.

Design temperature 480 0.375 in.

Corrosion allowance 0.125 in. 0.216 in.

15000 psi 3.5 in.

13800 psiCalculated values:

0.164 in. 1.00

0.005 in. 0.574

Area available in shell 0.542 or 0.183

0.396 or 0.23

0 Total available area = 0.770

Available area is equal to or greater than area required. Reinforcement is adequate.

Inside diameter of vessel,

O FNominal thickness of shell, t =Nominal thickness of nozzle wall, tn =

Allowable stress for nozzle mat'l Sn =

Finished diameter of opening, d =

Allowable stress for shell mat'l Sv =

required shell thickness

strength reduction factor, fr1 =

Required nozzle thickness

Reinforcing area required, A = in2

A1 = A1 =Area available in nozzle projecting outward A2 = A2 =

Area available in nozzle projecting inward A3 = in2

Reinforcement requirement for openings in shells without reinforcing elements. Reference ASME Sect. VIII, paragraph UG-37. The following constraints apply to the use of this work sheet: 1) only circular openings in straight cylindrical shells, 2) axis of opening is perpindicular to shell axis, and 3) axis of opening intersects shell axis.

Page 94: 233876034 API Calcs Rev1 Version 2

Shell joint efficiency 0.85

n

y

0

1.00

0.542

0.23

Available area is equal to or greater than area required. Reinforcement is adequate.

Nozzle inserted through shell, y or nNozzle abutting shell, y or n

Distance nozzle projects beyond inner wall, h =

strength recuction factor, fr2 =

Use larger value, A1 =

Use smaller value, A2 =

SCROLL DOWN

Reinforcement requirement for openings in shells without reinforcing elements. Reference ASME Sect. VIII, paragraph UG-37. The following constraints apply to the use of this work sheet: 1) only circular openings in straight cylindrical shells, 2) axis of opening is perpindicular to shell axis, and 3) axis of opening intersects shell axis.

Page 95: 233876034 API Calcs Rev1 Version 2

REINFORCED OPENINGS: SEE ASME VIII, UG 37.1

VESSEL: 20 E 5NOZZLE: 10"

VESSEL PARAMETERS (at Nozzle Location)P = 1975 psi Design pressureR = 4.3125 in Outside RadiusS = 20000 psi Allowable stress value in tensionE = 1 Joint efficiency, Table UW-12t = 0.6 in Nom. thickness vessel wall, new or as measuredt = 0.5375 in Nom. thickness vessel wall, corroded

tr = PR/(SE-.6P) = 0.3963 in Req. thickness based on circ. stress

NOZZLE PARAMETERSO. D. = 3.62 in Nozzle outside diameter

d = 2.62 in Finished diam. of circ. opening (noz. ID, as is)d = 2.745 in Finished diam. of circ. opening (noz. ID corroded)

tn = 0.5 in Nominal nozzle wall thickness, new (or as inspected)tn = 0.4375 in Nominal nozzle wall thickness, corroded

trn = PRn/(Sn-.6P) = 0.1286 in Req. thickness of seamless nozzle wallF = 1 Correction factor = 1 for all; integrally reinforced openings (see fig UG-37)

E1 = 1 = 1, for opening in plate, see UW-12 if any part passing through weldsh noz = 0 in dist. nozzle projects beyond inner surface of vessel

h = 0 in dist. noz. projects (use for calcs, no reinforcement element)h = 0 in dist. noz. projects (use for calcs, with reinforcement element)

weld leg = 0.5 in Outward nozzle leg weld (in)weld leg = 0.5 in Inward nozzle leg weld (in)

ALLOWABLE STRESS & CORROSION ALLOWANCESn = 21300 psi Allowable stress in nozzle @ temperatureSv = 20000 psi Allowable stress in vessel @ temperatureSp = 0 psi Allowable stress in reinforcing element plate @ temperature

c = 0.0625 in Corrosion allowance

STRENGTH REDUCTION FACTORS

N For nozzle abutting vessel wall (Enter Y for yes, or N for no)fr1 = 1.00 = Sn/Sv for nozzle through vessel wallfr2 = 1.00 = Sn/Svfr3 = 0.00 = (lesser of Sn or Sp)/Svfr4 = 0.00 = Sp/Sv

AREA CALCULATIONS - NO REINFORCING ELEMENT, CORRODED

A41 = 0.25000 in^2 A2 = 0.83011 in^2 " * " Denotes value used in A43 = 0.00000 in^2 A2 = 0.67567 in^2 * area calculations for A1, A2

A1 = 0.38770 in^2 * A3 = 0.00000 in^2A1 = 0.29307 in^2 A = 1.08773 in^2

A1+A2+A3+A41+A43= 1.31337 >= A, Opening adequately reinforced.

AREA CALCULATIONS - WITH REINFORCING ELEMENT ADDED, CORRODED

Dp = 0 in Outside diam. of reinforcing element

Page 96: 233876034 API Calcs Rev1 Version 2

te = 0 in Thickness reinforcing elementA = 1.08773 in^2 A3 = 0.00000 in ^2

A1 = 0.38770 in^2 * A41 = 0.00000 in ^2A1 = 0.29307 in^2 A42 = 0.00000 in ^2A2 = 0.83011 in^2 A43 = 0.00000 in ^2A2 = 0.67567 in^2 A5 = 0.00000 in ^2

A1+A2+A3+A41+A42+A43+A5 = Zero input - reinforcement not specified

Page 97: 233876034 API Calcs Rev1 Version 2

Correction factor = 1 for all; integrally reinforced openings (see fig UG-37) = 1, for opening in plate, see UW-12 if any part passing through welds

dist. noz. projects (use for calcs, with reinforcement element)

Page 98: 233876034 API Calcs Rev1 Version 2
Page 99: 233876034 API Calcs Rev1 Version 2
Page 100: 233876034 API Calcs Rev1 Version 2
Page 101: 233876034 API Calcs Rev1 Version 2

Minimum Thickness For Welded Tank Shell, API 653

Date: 4/20/2023 F.I. No.

Where: t = minumum acceptable thickness in inchesD = nominal diameter of tank in feetH = liquid height from bottom of corroded area or floor in feetC = course number ( C=1 for bottom course )G = specific gravity relative to water (G = 1.0 for water)S = maximum allowable stress in psi. Use smaller of 0.8Y or 0.426T for bottom and 2nd course. Use smaller of 0.88Y or 0.472T for all other courses.Y = minimum yield strerength in psiT = minimum tensile sttrength in psiE = joint efficiency Use E=0.7 if original E is unknown. Use E=1.0 when away from welds by 1 inch or 2t.

Calculation based on this formula: t = (2.6 D H G)/S E from 2.3.3.1 of API 653

Enter Values D= 38 ft. H= 24 ft.

C= 1 Y= 13000 psi 0.8Y = 10400 psi 0.88Y = 11440 T= 21000 psi 0.426T = 8946 psi 0.472T = 9912 G= 1 E= 0.7

Value of S selected, S= 8946 psi

Calculated minimum thickness, t = 0.379 in.

Page 102: 233876034 API Calcs Rev1 Version 2

le stress in psi. Use smaller of 0.8Y or 0.426T for bottom and 2nd course.

Use E=0.7 if original E is unknown. Use E=1.0 when away from welds by 1 inch or 2t.

psipsi