22 SONG Publi

download 22 SONG Publi

of 39

Transcript of 22 SONG Publi

  • 8/10/2019 22 SONG Publi

    1/39

    1

    Effect of pressure on chemical

    looping combustion of coal with an iron ore based oxygen carrierQilei

    Song*,

    Rui Xiao,

    Shuai Zhang,

    Wenguang Zheng,

    Yichao Yang , Laihong ShenThermal Engineering Research Institute

    School of Energy and EnvironmentSoutheast University, Nanjing 210096, China

    [email protected] ; [email protected] ; [email protected]* Presenter and Current address:

    Department of Chemical Engineering & BiotechnologyUniversity of Cambridge

    CB2 3RA [email protected]

    IFPLyon, France, 1719, March, 2010

  • 8/10/2019 22 SONG Publi

    2/39

    2

    Contents CLC at Southeast University, Nanjing, China

    Experiments design

    Pressurized steam coal gasification

    Effect of pressure on CLC with iron ore

    Long cycle performance at typical pressures

    Conclusion

  • 8/10/2019 22 SONG Publi

    3/39

    3

    Roadmap (CLC)

    Development of Oxygen carriers

    Commercialization

    Reactivity test with, TGA, FzD

    Reactivity test with solid fuels

    Performance in large reactor

    Performance in pilot scale reactor

    Technology Theory

    Industrial demonstration

    Science of Chemistry & Materials

    Kinetics study, thermodynamics

    Coal gasification,reaction kinetics

    Reactor design and modelling

    Scale up and optimization

    Scale up

    Concept

  • 8/10/2019 22 SONG Publi

    4/39

    4

    Chemical looping at Southeast University

    Nanjing, China Laboratory scale reactorTGA, PTGA, fixed bed, fluidized bed, Dual connected fluidized bed (gasifier + CLC), Pressurized fluidized/fixed bed,

    Larger scale and pilot scale reactor1kWth CLC combustor10kWth CLC combustor10kWth Chemical looping Hydrogen100 kWth Pressurized CLC Combustor

    Publications: 20

  • 8/10/2019 22 SONG Publi

    5/39

    5

    Chemical looping at Southeast University,

    Nanjing, China Oxygen carrier developmentNiO/NiAl 2O4, coprecipitation, coal, deactivation

    Low cost materialsNonmetal oxide: CaSO4/CaS , powder, anhydrite particleIron oxide, sinteredIron ore, Calcined, from Australia, Brazil, China, etc,

    IlmeniteIron oxide scale from steel industryIron Nickel ore

    Publications: 14

  • 8/10/2019 22 SONG Publi

    6/39

    6

    Low cost Calcium based CaSO4/CaS cycle

    A. Abad et al. Fuel 86 (2007) 10211035

    Effect of CaSO4/CH4 Ratio on Equilibrium Composition

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.201E-4

    1E-3

    0.01

    0.1

    1

    10

    (b)

    CO 2CO

    H2

    F r a c

    t i o n

    ( m o

    l , % )

    CaSO 4/CH 4 molar ratio

    (a)

    CH 4

    900o

    C

    CaSO 4/CH 4 molar ratio

    H2O

    F r a c

    t i o n

    ( m o

    l , % )

    CO

    H2

    H2S

    SO 2

    COS

    S 2

    Sulphur release??Song et al, Energy Fuels 2008 , 22 (6), 3661-3672. http://dx.doi.org/10.1021/ef800275aSong et al, Ind. Eng. Chem. Res. 2008 , 47 (21), 8148-8159. http://dx.doi.org/10.1021/ie8007264Song et al, Korean. J. Chem. Eng. 2009 , 26 (2), 592-602. http://dx.doi.org/10.1007/s11814-009-0101-2Song et al, Energy Convers. Manage 2008 , 49 (11), 3178-3187. http://dx.doi.org/10.1016/j.enconman.2008.05.020

    Song et al, Ind. Eng. Chem. Res. 2008 , 47 (13), 4349-4357. http://dx.doi.org/10.1021/ie800117aShen et al, Combust. Flame. 2008, 154(3), 489-506. http://dx.doi.org/10.1016/j.combustflame.2008.04.017

  • 8/10/2019 22 SONG Publi

    7/39

    7

    Chemical looping at Southeast University,

    Nanjing, China Numerical modelling and scale upSystem simulation: Aspen PlusMultiphase CFD modelling of Pressurized coal gasifierMultiphase CFD modelling of fuel reactor

    Multiphase CFD

    modelling of

    air

    reactor

    Multiphase CFD modelling of interconnected fluidized beds

    Shen, et al, Science in China Series E: Technological Sc, 2007 Xiang et al, Energy Fuels, 2008 Deng, et al, Energy Fuels, 2008

    Deng et al, Int. J. Greenhouse Gas Control 2009

    Publications: 8

  • 8/10/2019 22 SONG Publi

    8/39

    8

    Major Challenges of coal fueled CLC Low operating temperature (~1000 oC)

    Difficult to couple with advanced power generation system

    Low efficiency

    compared

    with

    traditional

    combustion

    Slow gasification rate, limiting stepPressurized Chemical Looping Combustion

    Combined Cycle (PCLCCC) may be a solution. Higher coal combustion efficiency

    Potential higher system efficiency for power generation, steam turbine + gas turbine

    Lower cost of CO2 capture Wolf, J. et al, Fuel 2005

    Garcia-Labiano et al, Energy Fuels 2006 Anthony, Ind. Eng. Chem. Res. 47 (6) (2008) 1747-1754.

  • 8/10/2019 22 SONG Publi

    9/39

    9

    Pressurized CLCCC Existing established technologies

    Pressurized Fluidized Bed Combustion Combined CycleR&D at Southeast University ~30 years

    1MWt PFBC test facility (SEU-PFBC)15 MWe PFBC-CC pilot power plant

    2MWt pressurized spout-fluid bed coal gasifier for2G PFBC-CC

    References:

    CFB technologySasol Gasification technologyFCC unit

    M. Y. Zhang, in: Proceedings of the 12th International Conference on Fluidized Bed Combustion, 1993 Xiao, et al, Fuel 86 (10 11) (2007) 1631-1640.

    J. C. van Dyk; et al, Int. J. Coal Geol. 65 (3-4) (2006) 243-253. Minchener, Fuel 84 (17) (2005) 2222-2235.

  • 8/10/2019 22 SONG Publi

    10/39

    10

    Pressurized CLCCCDeveloping Chemical looping Technology

    R&D at Southeast University, ~7 years

    1 kWth Chemical-looping combustor 10 kWth Chemical-looping combustor 0.1 MWth PCLC combustor

    References:10 kWth coal fueled CLC reactor in Chalmers, Sweden

    50 kWth pressurized CLC combustor, KIER10 kWth CLC combustor, ICB/CSIC150 kWth CLC, VUTAlstom, TOTAL, IFP, etc.

  • 8/10/2019 22 SONG Publi

    11/39

    11

    10 kWth Coal fueled CLC Combustor

    Lyngfelt, et al., 2008 Shen, et al., 2009

    Chalmers, Sweden Southeast, China

  • 8/10/2019 22 SONG Publi

    12/39

    12

    Pressurized CLCCombined Cycle

    Xiao et al, Energy Fuels, 2010, 24 (2), 14491463. http://dx.doi.org/10.1021/ef901070cMajor issue: Circulation of materials between two reactors, ref FCC

  • 8/10/2019 22 SONG Publi

    13/39

    13

    Development of Oxygen Carrier Cost of Oxygen carrier

    Deactivation by sulfur containing gases Thermal sintering

    Inevitable Loss with coal ash, Environmental problem

    Solutions 1: Reasonable cost, high stability materials

    Synthetic high reactivity particles, NiO/NiAl2O4

    Solutions 2: Low cost materials

    Natural metal oxide, i.e. ilmenite (FeTiO3Fe2TiO5) Calcium based sulfate sulfide (CaSO4/CaS) cycle. Sulfur? Oxide scales (residual materials) from steel industry.

    Leion, H. et al. Int. J. Greenhouse Gas Control 2008Chuang et al. Combust. Flame 2008

    Song et al. Energy Fuels 2008

  • 8/10/2019 22 SONG Publi

    14/39

    14

    Purpose Coal fueled PCLCCC system (Concept) Effect of Pressure on steam coal gasification Effect of Pressure on CLC of coal with iron ore Long term performance of oxygen carrier under

    typical pressures

    Application of Lowcost iron ore based oxygen carrier in Pressurized CLC

  • 8/10/2019 22 SONG Publi

    15/39

    15

    Reactions StepsNormal coal fueled CLC concept (In situ gasification in the presence of oxygen carrier)(1) Coal pyrolysis and gasification:

    Coal > Char + Pyrolysis gases and volatilesChar+H 2O+CO2 CO + H2 + CO2

    (2) Oxidation of gases with oxygen carrier3Fe 2O3+H2=2Fe 3O4+H2O

    3Fe 2O3+CO=2Fe3O4+CO2

    (3) Regeneration of oxygen carrier: Air reactor4 Fe3O4 + O2= 6 Fe2O3

    Fuelreactor

  • 8/10/2019 22 SONG Publi

    16/39

    16

    Experimental setup

    coal feeding unit, water/gas feeding and steam generator units, reactor, temperature control unit, back pressure regulator, steam cooler, filters, and gas analysis system.

  • 8/10/2019 22 SONG Publi

    17/39

    17

    Materials

    Proximate and Ultimate Analyses of Coal Samples

    26.990.911.161.744.1664.7625.8742.8629.871.4XuzhouQ HSadNadO ad aH adC adAshFCadVadMad

    Heatvalue

    (MJ/kg)ultimate analysis (ad, wt%)

    proximate analysis (ad,wt%)

    sample

    Chemical Analysis of the Natural Iron Ore Samples (CVRD, Brazil)

    2.010.040.010.88004.1890.75Received

    0000.910.000.004.3194.79Calcined

    IgPSAl2O3MgOCaOSiO2Fe2O3Iron ore

  • 8/10/2019 22 SONG Publi

    18/39

    18

    Operating Condition

    1000 mL/min (S.D.)Oxidation gas flow rate

    5% O2/N 2Oxidation1000 mL/mininert gas flow rateN2Inert gas1000 mL/min (S.D.)Total gas flow rate

    87% H2O/N 2Gasification gas0.4 gFuel mass0.125 0.180 mmCoal particle sizeXuzhou Bituminous Coal, ChinaFuel

    30 mmheight40 gMass0.09 0.125 mmOxygen carrier particle size 970

    C

    Reaction temperature0.1MPa 0.6MPaPressureCalcined CVRD iron ore, BrazilOxygen carrierOperation ParametersSpecies

  • 8/10/2019 22 SONG Publi

    19/39

    19

    Characterization analysis

    Received

    Calcined1100 oC 6h, air

    Phase:Hematite(Fe2O3)

    Quartz (SiO2)

    0 10 20 30 40 50 60 70 80 900

    1000

    20003000

    4000

    50000

    2000

    4000

    6000

    8000

    Fresh, as received

    B

    B A

    A

    A

    A A A A

    A A

    A

    A A A

    CD

    C

    2 (degree)

    Calcined at 1100 oC, 6h

    B AB B

    B

    A A A A A A

    A

    A A

    A A

    I n t e n s i

    t y ( c o u n

    t s )

    A: Hematite, Fe2O

    3

    B: Quartz,. SiO2

    C: Dolomite, CaMg(CO3)

    2

    D: Goethite, FeO(OH)

    A

  • 8/10/2019 22 SONG Publi

    20/39

    20

    Steam Coal Gasification Over Quartz

    0.1 MPa 0.5 MPa

    CO2 and H2 (Excess steam)Unsteady flow: pulse pump & pressure fluctuationPeaks emerge later at higher pressure 1>5 min

    0 10 20 30 40 50 60 70 80 900

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24

    0 2 4 6 8 100

    4

    812

    16

    20

    C o n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO CO 2

    CH 4 H2

    C o n c e n

    t r a t i o n

    ( % )

    Time (min)

    0 10 20 30 40 50 60 70 80 900

    2

    4

    68

    10

    12

    14

    1618

    20

    22

    0 2 4 6 8 100

    4

    812

    16

    20

    C o n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO CO 2 CH

    4 H2

    C o n c e n

    t r a t i o n

    ( % )

    Time (min)

  • 8/10/2019 22 SONG Publi

    21/39

    21

    Gas Composition (dry basis)

    Coal: Chinese Xuzhou coalMass: 0.4 g, 0.125 0.180 mmGasification agent: 87% H2O/N 2Flow rate:1000 mL/minT: 970 degrees

    1.Thermodynamics

    2. Kinetics:Higher [H

    2O]

    Diffusion within micropore

  • 8/10/2019 22 SONG Publi

    22/39

    22

    Chemical looping combustion with iron ore

    0.1 MPa reduction Oxidation

    High CO2 obtained Volatiles: residence time short, not completely burnedCO release at later reduction period

    Some CO2 release during oxidation

    0 10 20 30 40 50 60 70 80 900

    2

    46

    8

    10

    12

    14

    16

    18

    20

    22

    24

    26

    C o n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO CO

    2

    CH4

    H2

    0 5 10 15 20 25 30 35 400

    1

    2

    3

    4

    5

    C o n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO

    CO 2 O

    2

  • 8/10/2019 22 SONG Publi

    23/39

    23

    0.5 MPa reduction and oxidation

    Lower CH 4 and CO, higher CO 2 in later periodMore CO 2 release during oxidation

    Pressure enhance unburned char combustion

    0 10 20 30 40 50 60 70 80 90

    02468

    1012141618202224

    26283032

    C o n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO CO

    2

    CH 4 H2

    0 5 10 15 20 25 30 35 400

    1

    2

    3

    4

    5

    C o

    n c e n

    t r a

    t i o n

    ( % )

    Time (min)

    CO CO 2 O

    2

    Chemical looping combustion with iron ore

  • 8/10/2019 22 SONG Publi

    24/39

    24

    Gas composition and CO2 yield

    CO2 increases from ~80% to ~92%CO decreases from 15% to ~5%CH4 fairly change but decrease at higher pressureH2 negligible and not detected at higher pressures

    CO2 yield

    0.1 0.2 0.3 0.4 0.5 0.60

    10

    20

    30

    40

    5060

    70

    80

    90

    100

    G a s c o m p o s i

    t i o n (

    V o

    l . % )

    Pressure (MPa)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    10

    20

    30

    40

    5060

    70

    80

    90

    100

    Gasification over Quartz sand

    C O

    2 C a p

    t u r e y i e

    l d ( % )

    Pressure (MPa)

    Reduction of Iron ore

  • 8/10/2019 22 SONG Publi

    25/39

    25

    Effect of Pressure on Carbon Conversion

    Carbon Conversion is low: need long residence timeLower than gasification: Thermodynamics

    Pressure suppresses pyrolysisbut enhance char gasification

    dXc/dt~XcXc

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    10

    2030

    40

    50

    60

    70

    80

    90

    100

    C a r b o n

    C o n v e r s

    i o n ( %

    )

    Pressure (MPa)

    Gasification over Quartz Reduction period Oxidation period Total

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.1 MPa

    0.3 MPa 0.4 MPa 0.6 MPa

    C a r b o n

    c o n v e r s

    i o n r a

    t e r C

    ( 1 / m i n )

    Carbon conversion XC

  • 8/10/2019 22 SONG Publi

    26/39

    26

    Char Gasification over oxygen carrier:

    apparent kinetics

    OH2

    OH1

    C

    C

    2

    2

    1

    1

    1

    pk

    pk dt

    dX

    X r C

    +=

    =

    0.0 0.1 0.2 0.3 0.4 0.5 0.60.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    A p p a r e n

    t g a s i

    f i c a

    t i o n r a

    t e r

    C ( 1 / m i n )

    Partial pressure of steam pH2O (MPa)

    Experimental Model prediction

    A simple Langmuir Hinshelwood model excluding the effect of product inhibition provided a reasonable illustration of the effect of pressure on carbon conversion rate.However, excessive steam partial pressure results in negative effect.

  • 8/10/2019 22 SONG Publi

    27/39

    27

    Effect of pressure on oxygen carrier Conversion

    Oxidation reflects the extent of previous reductionIncreasing pressure, reduction conversion higher!Higher pressure has negative detrimental effect,

    Thermodynamics: pressure of products (CO 2, H 2O) increase

    0 10 20 30 40

    0.980

    0.982

    0.984

    0.986

    0.988

    0.990

    0.992

    0.994

    0.996

    0.998

    1.000

    1.002N2

    M a s s - b a s e

    d c o n v e r s

    i o n

    Time (min)

    0.1 MPa 0.2 MPa 0.3 MPa 0.4 MPa 0.5 MPa 0.6 MPa

    5% O 2/N2, 1000 mL/min

    (a) 0.1 0.2 0.3 0.4 0.5 0.60.000.050.100.15

    0.200.250.300.350.400.450.500.550.600.650.700.750.80

    X

    ( - )

    Pressure (MPa)

  • 8/10/2019 22 SONG Publi

    28/39

    28

    0.1 MPa 0.5 MPaPurer CO 2 after 10 cycles

    Activation during the redox cyclesNo appreciable deactivation

    Effect of pressure on gas composition

    long cycles

    0 2 4 6 8 10 12 14 16 18 200

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    A c u m u l a

    t i v e g a s c o m p o s i

    t i o n

    ( v o

    l . % )

    Number of cycles

    CO

    CO 2 CH 4 H2

    (a)0 2 4 6 8 10 12 14 16 18 20

    0

    20

    40

    60

    80

    100

    A c u m u

    l a t i v e g a s c o m p o s

    i t i o n

    ( v o

    l . % )

    Number of cycles

    CO CO

    2

    CH 4 H

    2

    (b)

  • 8/10/2019 22 SONG Publi

    29/39

    29

    Effect of pressure on oxygen carrier Conversion:

    Cyclic performance

    0 2 4 6 8 10 12 14 16 18 200.0

    0.2

    0.4

    0.6

    0.8

    1.0

    OC conversion at 0.1 MPa OC conversion at 0.5 MPa

    V a r i a t i o n o

    f O C c o n v e r s

    i o n

    X ( -

    )

    Number of Cycles

  • 8/10/2019 22 SONG Publi

    30/39

    30

    XRD analysis

    0.1 MPa 0.5 MPa

    H: hematite, M: magnetite, Q: Quartz, C: CaSi, possible

    Activation with cyclesNo evident formation between iron and coal ash

    0 10 20 30 40 50 60 70 80 90

    Q HHH

    H

    HQHH

    H Q

    H

    H H H

    H

    HH

    H

    M

    2 de ree

    (a) Calcined

    MH

    Q Q

    HM

    M

    H

    HM

    Q

    H

    H

    M

    M H

    M

    (b) 0.1MPa-5red

    C

    HMHM MHMQ

    H

    Q

    Q

    H MH

    QM

    (c) 0.1MPa-10red

    Q

    QC

    HMH

    MHM

    H

    HM

    H

    M

    M

    (e) 0.1MPa-20red

    (d) 0.1MPa-15red

    H MQM C H

    Q

    Q H

    H HQ

    Q MM

    H

    MMH

    Q

    0 10 20 30 40 50 60 70 80 90

    Q

    Q HHH

    H

    HQHH

    H Q

    H

    H H H

    H

    H H

    H

    M

    2 (degree)

    (a) Calcined

    MQQ

    CMH

    Q

    MM M

    H

    HM

    Q

    H

    H

    M

    M

    H

    M

    (b) 0.5MPa-5red

    M MQ

    C

    M

    H

    MHM MHM

    Q

    H

    Q

    Q

    H MH

    MM

    (c) 0.5MPa-10red

    Q

    MMQ Q

    C

    QH

    MH

    MHM

    H

    H MH

    M

    M

    (e) 0.5MPa-20red

    (d) 0.5MPa-15red

    M MQ

    CM

    QH

    H H

    Q

    H M MH

    M

    MHQ

  • 8/10/2019 22 SONG Publi

    31/39

    31

    SEM Atmospheric Pressure

    5red 10red 15red 20red

    Particles maintain structureMore small grains formed after 10 cyclesSlight cracking after 20 cycles

  • 8/10/2019 22 SONG Publi

    32/39

    32

    SEM Elevated pressure of 0.5 MPa

    5red 10red 15red 20red

    Particles maintain structure Activation after 5 cyclesSlight sintering and cracking after 20 cycles

  • 8/10/2019 22 SONG Publi

    33/39

    33

    Pore size distribution

    Maintain mesopore structureMore porous with cyclesSlight sintering at elevated pressure

    1 10 100 10000.0

    1.0x10 -52.0x10 -53.0x10 -54.0x10 -55.0x10 -56.0x10 -57.0x10 -58.0x10 -59.0x10 -51.0x10 -41.1x10 -4

    P o r e

    V o

    l u m e

    d V / d D

    ( c m

    3 / g n m

    )

    Pore Diameter dP (nm)

    Calcined 0.1MPa-5red 0.1MPa-10red 0.1MPa-15red 0.1MPa-20red

    (a)

    1 10 100 10000.0

    1.0x10-5

    2.0x10 -53.0x10 -54.0x10 -55.0x10 -56.0x10 -5

    7.0x10 -58.0x10 -59.0x10 -51.0x10 -41.1x10 -4

    P o r e

    V o

    l u m e

    d V / d D

    ( c m

    3 / g n m

    )

    Pore Diameter d P (nm)

    Calcined 0.5MPa-5red 0.5MPa-10red 0.5MPa-15red 0.5MPa-20red

    (b)

  • 8/10/2019 22 SONG Publi

    34/39

    34

    ConclusionHigh CO2 Concentration could be obtained at relative high pressures;

    The elevated pressure suppresses the pyrolysis of volatiles while it interestingly

    enhances coal char gasification and reduction with iron ore in steam;

    Excessive steam partial pressure may have a detrimental effect on the coal

    gasification and the reduction of oxygen carrier by gasification gases;

    Oxygen carrier maintains mesoporous structure after cycles; Crystalline Phases

    do not change, no appreciable interaction of iron ore and coal ash;

    Reactivity increased with cycles and stabilized after 510 cycles; No significant

    deactivation within 20 cycles; Iron ore based oxygen carriers is promising

    Limited experiments shows High temperature, high pressure CLC is promising

    Accepted by Combust ion & Flame, Energy & Fuels

    Xiao et al, Combusti on Flame, in press, http://dx.doi.org/10.1016/j.combustflame.2010.01.007Xiao et al, Energy Fuels, 2010, 24 (2), 14491463. http://dx.doi.org/10.1021/ef901070c

  • 8/10/2019 22 SONG Publi

    35/39

    35

    Further work at SoutheastHigher pressures (20 30 atm) in PTGA

    Longterm cycles of reduction and oxidation (50 100 cycles)

    Modification of iron ore to reactive particles with active additives and inert support

    Test of other low cost oxygen carriers, e.g. ilmenite

    Sulfur and ash interaction with oxygen carriers

    Kinetics study at elevated pressures

    Multiphase CFD modelling of CLC process

    Design of Novel CLC Reactors , 100 kWth PCLC combustor under

    construction.

  • 8/10/2019 22 SONG Publi

    36/39

    36

    CLC at Combustion groupUniversity of Cambridge

    Dr. John Dennis

    Dr. Stuart ScottTypical research topics related to Chemical looping:

    Chemical looping combustion of solid fuels

    Chemical looping Hydrogen from coal with steam iron process

    Zero Emission Coal Alliance (ZECA) for H2 production and CO2

    capture, Calcium looping sorbents

    Kinetics and modelling of Chemical looping process

    Multiphase DEM

    CFD

    modelling

    of

    Chemical

    looping

    process

    A k l dg t

  • 8/10/2019 22 SONG Publi

    37/39

    37

    Acknowledgements

    National Natural Science Foundation of China (Grant Nos. 50606006, 90610016)

    HighTech Research and Development Program of China (2009AA05Z312 )

    National Basic Research Development Program of China (2010CB732206) Prof. Laihong Shen, SEU

    Prof. Rui Xiao, SEU

    Dr. John Dennis, University of Cambridge Dr. Henrik Leion, Chalmers University of Technology

    Dr. H. J. Ryu, KIER

    Many other researchers who have helped and are helping us on CLC.

    China Scholarship Council

    Conference Grant from Queens College and Shell Fund

  • 8/10/2019 22 SONG Publi

    38/39

    38

    Thank you for your attention! Questions?

  • 8/10/2019 22 SONG Publi

    39/39

    39

    Welcome to Southeast University!

    Photos from SEU