21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and...

download 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

of 26

Transcript of 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and...

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    1/60

    Adva nces in Colloid and Interfac e Science, 56 (1995) 141-200 141

    Elsev ier Science B.V.

    00232 A

    T H E O R E T I C A L D E S C R I P T I O N S O F M E M B R A N E

    F I L T R A T I O N O F C O L L O I D S A N D F I N E P A R T I C L E S :

    A N A S S E S S M E N T A N D R E V I E W

    W .

    R I C H A R D B O W E N * , F R A N K

    J E N N E R

    Biochemical Engineering Group, Department of Chemical Engineering,

    University College of Swansea, University of Wales, Swansea, SA2 8PP, UK

    C O N T E N T S

    A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    1. I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    1.1 T h e o r y of U l t r a f i l t r a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    1.2 Co n c e n t r a t i o n Po l a r i z a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . 144

    2. Ge l -Po la r i z a t i o n Mode l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    2.1 L i m i t a t i o n s of t h e Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    2 .2 Mode l Deve l opmen t s wi th Var i ab l e Phys i c a l P roper t i e s . . . . . . . . . 148

    3. O s m o t i c P r e s s u r e Mode l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    4. Re s i s t a n c e Mod e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    4.1 G e l - Po l a r i z a t i o n - R e s i s t a n c e Model . . . . . . . . . . . . . . . . . . . . . 160

    4.2 Bo u n d a r y L a y e r R e s i s t a n c e Model . . . . . . . . . . . . . . . . . . . . . 162

    5. A l t e r n a t i v e Mo de l s for Colloidal F i l t r a t i o n . . . . . . . . . . . . . . . . . . . 164

    5 .1 Ine r t i a l Migra t i on Mode l s

    tubular-pinch effect) . . . . . . . . . . . . . .

    165

    5.2 S h e a r - I n d u c e d Hy d r o d y n a m i c Co n v e c t i o n Mode l . . . . . . . . . . . . . 170

    5.3 S he a r - I n d u c e d Hy d r o d y n a m i c Di f fu s ion Mode l . . . . . . . . . . . . . . 172

    5.4 E r o s i o n Mo de l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    5.4.1 Sc ou r Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    5.4.2 T u r b u l e n t Bu r s t Model . . . . . . . . . . . . . . . . . . . . . . . . 179

    5.5 Fr i c t i o n Force Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    5.6 Pa r t i c l e A d h e s i o n Mode l . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    5.7 Pore B loc k in g Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    5.8 Su r f a c e R e n e w a l Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    5.9 Pa r t i c l e - P a r t i c l e I n t e r a c t i o n s Model . . . . . . . . . . . . . . . . . . . . 186

    6. Co n c l u s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    7. A c k n o w l e d g e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    8. N o m e n c l a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    9. Re f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    * C o r r e s p o n d i n g a u t h o r .

    0001-8686/95/$29.00 © 1995 -- Elsev ier Science B.V. All righ ts reserved.

    SSD10001-8686 94)00232-0

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    2/60

    142

    ABSTRACT

    M em brane separa t i on t echno logy i s a novel and h igh ly innovat ive p rocess eng ineer ing

    opera t ion . M em brane p rocesses ex i s t fo r m os t o f t he f l u id separa t i ons encoun tered i n

    indus t ry . T he m os t wide ly used a re m em brane u l t r a f il t r a ti on and m icro f i lt r a ti on , p res -

    su re d r iven p rocesses wh ich a re capab le o f separa t i ng par t i c l es i n t he app rox imate s ize

    rang es of 1 to 100 nm and 0 .1 to 10 pm, respect ively .

    The des ign o f m em brane separa t i on p rocesses , l ike a l l o ther p rocesses , r equ i res

    quan t i t a t i ve express ions r e l a t i ng mater i a l p roper t i es t o separa t i on per fo rmance . The

    fac to r s con t ro ll ing t h e per fo rmance o f u l t r a - and micro f i lt r a ti on a re ex t ens ive ly r ev i ewed .

    The re ha ve been a n um ber o f semina l ap proaches i n t h i s fi eld. M os t have bee n based on

    the r a t e l imi ti ng e f fec ts o f t he concen t ra ti on po l ar isa t ion o f t he sepa ra t ed co lloids a t t h e

    membrane su r face . Var ious r i go rous , empi r i ca l and in tu i t i ve model s ex i s t , wh ich have

    been c r it ica l ly assesse d i n t e rm s o f t he i r p red i c ti ve capab i l i t y and app l icab i li ty . T he

    dec i s ion as t o wh ich o f t he m em brane f i lt r a ti on model s i s the m os t co r rec t i n p red i c t ing

    perm eat ion r a t es i s a mat t e r o f d i ff i cu lty and appea r s t o depend on the na tu re o f t he

    d i sper s ion t o separa t ed . Recom men dat ions a re mad e as t o wh ich o f t he ex i s ti ng model s

    can b e m os t ap propr i a t e ly app l i ed t o d i f f e ren t t ypes o f d i spers ions .

    1. I N T R O D U C T I O N

    M e m b r a n e s e p a r a t i o n t e c h n o l o g y i s a n o v e l a n d h i g h l y i n n o v a t i v e

    p r o c e s s e n g i n e e r i n g o p e r a t i o n . M e m b r a n e f i l t r a t i o n p r o c e s s e s a re n o w a -

    d a y s u s e d a s a n a l t e r n a t i v e t o c o n v e n t i o n a l i n d u s t r i a l s e p a r a t i o n m e t h -

    o d s s u c h a s d i s t i l l a t i o n , c e n t r i f u g a t i o n a n d e x t r a c t i o n , s i n c e t h e y p o t e n -

    t i a l l y o f f e r t h e a d v a n t a g e s o f h i g h l y s e l e c t i v e s e p a r a t i o n , s e p a r a t i o n

    w i t h o u t a n y a u x i l i a r y m a t e r i a l s , a m b i e n t t e m p e r a t u r e o p e r a t i o n , u s u a l l y

    n o p h a s e c h a n g e s , c o n t i n u o u s a n d a u t o m a t i c o p e r a t i o n , e c o n o m i c a l o p -

    e r a t i o n a l s o i n s m a l l u n i t s , m o d u l a r c o n s t r u c t i o n a n d s i m p l e i n t e g r a t i o n

    i n e x i s t i n g p r o d u c t i o n p r o c e s s e s , a s w e l l a s r e l a t i v e l y l o w c a p i t a l a n d

    r u n n i n g c o s ts . T h e f o r m e r a d v a n t a g e s m a k e m e m b r a n e p r o c e s s e s e v e n

    m o r e i n t e r e s t i n g f o r c e r t a i n t y p e s o f m a t e r i a l s w h i c h h a v e b e e n i n h e r -

    e n t l y d i f f i c u l t a n d e x p e n s i v e t o s e p a r a t e , s u c h a s ,

    1 . D i s p e r s i o n s o f c o l l o id s a n d f i n e p a r t ic l e s , e s p e c i a l l y t h o s e w h i c h a r e

    c o m p r e s s i b l e , h a v e a d e n s i t y c l o s e t o t h a t o f t h e l i q u id p h a s e , h a v e h i g h

    v i s c o s i t y , o r a r e g e l a t i n o u s .

    2 . B i o l o g i c a l m a t e r i a l s , w h i c h o f t e n fa l l i n t h e c o l lo i d a l s iz e r a n g e a n d

    a r e v e r y s e n s i t i v e t o t h e i r p h y s i c a l a n d c h e m i c a l e n v i r o n m e n t .

    3 . L o w m o l e c u l a r w e i g h t , n o n - v o la t i l e o r g a n ic s o r p h a r m a c e u t i c a l s a n d

    d i s s o l v e d s a l t s .

    T h e v a r i o u s m e m b r a n e s e p a r a t i o n m e t h o d s c a n b e d i v id e d a c c o r d in g

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    3/60

    143

    t o t h e i r s e p a r a t i o n c h a r a c t e r i s t i c s w h i c h m a y b e c la s s i fi e d b y t h e s iz e -

    r a n g e o f m a t e r i a l s s e p a r a t e d a n d t h e a p p l ie d d r i v i n g fo rc e. U l t r a f i l t r a -

    t i o n a n d m i c r o f i l t r a t io n s e p a r a t e s o l u t e s a n d c o ll o id a l p a r t i c l e s o f t h e s i ze

    o f a p p r o x i m a t e l y 1 t o 1 0 0 n m a n d 0 .1 t o 1 0 ~tm r e s p e c t i v e l y , u s i n g a

    p r e s s u r e d i f f e re n c e o f u s u a l l y 1 00 to 5 0 0 k P a a s t h e d r i v i n g f orc e.

    T o d a y u l t r a f i l t r a t i o n a n d m i c r o f il t ra t io n m e m b r a n e s a r e m o s t c om -

    m o n l y m a d e o f p o l y m e r ic m a t e r i a l s s u c h a s p o l y a m i d e , p o l y s u lp h o n e ,

    c e l l u lo s e - a c e t a t e , p o l y c a r b o n a t e a n d a n u m b e r o f o t h e r a d v a n c e d p o ly -

    m e r s . H o w e v e r , r e c e n t d e v e l o p m e n t s o f i n o r g a n i c m e m b r a n e s c o m p o se d

    o f m a t e r i a l s s u c h a s c e r a m i c , a l u m i n i u m - o x i d e o r s il i c a -g l a s s s h o w a d -

    v a n t a g e o u s p r o p e r t i e s c o m p a r e d t o p o ly m e r i c t y p e s , l i k e h i g h e r t e m p e r a -

    t u r e s t a b i l i t y , i n c r e a s e d r e s i s t a n c e t o f o u l in g a n d n a r r o w e r p o r e si z e

    d i s t r i b u t i o n , d e s p i t e t h e i r h i g h c a p i t a l co s ts .

    V a r i o u s c o n f i g u r a t i o n s e x i s t t o s u p p o r t o r c o n t a i n t h e m e m b r a n e s .

    W h i c h c o n f i g u r a t io n , f o r i n s t a n c e t u b u l a r m o d u l e s , h o ll o w f i b re m o d u l e s ,

    p l a t e - a n d - f r a m e m o d u l e s o r s p i ra l - w o u n d m o d u l e s i s to b e u s e d d e p e n d s

    b o t h o n t h e s o l u t i o n w h i c h s h o u l d b e f i l t e r e d a n d t h e o p e r a t i n g c o n d i -

    t i o n s .

    I n g e n e r a l , t h r e e f i l tr a t i o n m o d e s c a n be d i s ti n g u i s h e d : u n s t i r r e d a n d

    s t i r r e d d e a d - e n d f i l t r a t i o n a n d c r o s s - f l o w f i l t r a t i o n . I n t h e u n s t i r r e d

    d e a d - e n d f i l tr a t i o n th e s o l u t io n is p u t u n d e r p r e s s u r e w i t h o u t a n y a g i t a -

    t i o n in t h e l i q u id . I n t h e s t i r r e d d e a d - e n d m o d e a g i t a t i o n i s p r o v i d e d w i t h

    a s t i r r i n g b a r . I n c r o s s - f l o w f i l t r a t i o n t h e s o l u t i o n i s p u m p e d t o f l o w

    t a n g e n t i a l l y o v e r t h e m e m b r a n e s u rf a ce .

    I n r e c e n t y e a r s , m e m b r a n e s e p a r a t i o n p r o c e s s e s h a v e f o u n d w i d e

    a p p l i c a t i o n . M e m b r a n e p r o c e s s e s e x i s t f o r m o s t o f t h e f l u i d s e p a r a t i o n s

    e n c o u n t e r e d i n in d u s t r y . T h e d e v e l o p m e n t o f q u a n t i t a t i v e p r e d i ct iv e

    m o d e l s i s , t h e r e f o r e , o f g r e a t i m p o r t a n c e f o r t h e s u c c e s s fu l a p p l i c a t i o n o f

    m e m b r a n e s e p a r a t i o n p r o ce s se s in th e p r o ce s s i n d u s t r i e s . T h e d e s i g n a n d

    s i m u l a t i o n o f m e m b r a n e s e p a r a t i o n p r o c es s e s, l ik e a l l o t h e r p r o c e s s es ,

    r e q u i r e q u a n t i t a t i v e e x p r e s s io n s r e l a t i n g m a t e r i a l p r o p e r ti e s to s e p a r a -

    t i o n p e r f o r m a n c e . T h e p h y s i c a l t h e o r i e s g o v e r n i n g t h e f i l t r a t i o n m o d e l s

    p r i n c i p a l l y d e s c ri b e t h e e f fe c t o f t h e c o n c e n t r a t i o n p o l a r i z a t i o n p h e n o m -

    e n a a t t h e m e m b r a n e s u r f a c e .

    T h i s a r t i c l e p r e s e n t s a r e v ie w a n d a s s e s s m e n t o f t h e e x i s t i n g f i l tr a t i o n

    m o d e l s f o r c o ll o id a l a n d f i n e p a r t i c l e d i s p e r s i o n s w i t h e m p h a s i s o n t h e i r

    q u a l i t a t i v e a n d q u a n t i t a t i v e p r e d i c t iv e c a p a b i l i ty , t h e i r s c i e n t if i c b a s i s ,

    a n d t h e i r l i m i t a t i o n s .

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    4/60

    144

    1 .1 T h e o r y o f U l t r a f il t r a t io n

    Ultrafiltration is a pressure-driven membrane process by which macro-

    molecu lar solutes and/or colloidal particles are sep ara ted from a solvent,

    usual ly water. The relationship between the applied ultrafilt ration pres-

    sure and the rate of permeation (flux) for a pure solvent feed flowing

    under laminar conditions in tortuous membrane channels may be de-

    scribed by the C arm an-Ko zen y equation (Carman (1938))

    J-IAPl (1)

    R m

    where J is the flux (volumetric rate per unit area), Ap the t ra ns mem brane

    pre ssu re difference, p the solvent viscosity and R m the membrane resis-

    tance. The general approach to describe ultrafiltr ation in the presence of

    a solute is given by

    J = l A P ] - IA~I (2)

    ~ R m + R s)

    where An is the difference in osmotic pres sure across the mem bra ne, and

    R s rep res ent s reversible (concentrated layer, filter cake) and sometimes

    irreversib le (foulants) deposition of solute (or solids) onto the membra ne

    surface.

    1 . 2 C o n c e n t r a t i o n P o l a r i z a t i o n

    The separation of solute and solvent takes place at the membrane

    surface where the solvent passes throug h the memb rane and the ret ained

    solute causes th e local concent ration to increase, an effect whic h is known

    as c o n c e n t r a t i o n p o l a r i z a t i o n . Thereby a concentration profle is estab-

    lished within a boundary film generat ed by the h ydrodynamic conditions

    (see Fig. 1).

    With the higher concentration at the me mbr ane surface, there will be

    a tendency of solute to diffuse back into the bulk solution according to

    Fick's law of diffusion. A solute mass balance above the membrane

    surface at steady state condition and with the assumption that

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    5/60

    145

    Cm It

    I

    dy

    J c

    Membrane

    Cp C~

    < <

    Cm

    Cb

    Y

    Fig . 1 . Concen t ra t ion po la r i za t ion a t a membrane su r face .

    1. solvent and solute densit ies are similar,

    2. the diffusion coefficient is cons tan t and

    3. concentration gradients parallel to the membra ne are negligible

    compared with the concentration gradients orthogonal to the

    membrane,

    gives the rate of convective transpor t of solute towards the membr ane

    surface equal to the rate of solute leakage through the mem bra ne plus

    the rate of solute due to back-diffusion,

    d e

    J c = D-d--~y + J C (3)

    where c and Cp are solute concentrations in the boundary layer and in the

    permeate, respectively and D is the diffusion coefficient of the solute in

    the solvent. An integration of Eq. (3) over the boundary layer thickness

    5 with the bound ary conditions

    c y = 5 ) = C b c y = O ) = Cm

    gives the well-known film model relationship:

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    6/60

    146

    C m - - C p

    J = k s In [ cb _ cp

    (4)

    where k s = 19 /5 , the overall mass transfer coefficient of the solute in the

    boundary layer, and c m is the concentration at the mem brane surface.

    The overall mass tra nsf er coefficient is usually obtained from correla-

    tions of the form

    Sh - ~ - K Re a S c b (5)

    where the constants K, a, b , c vary with the flow regime (see Blat t et al.

    (1970), Por te r (1972a), Gekas and Halls trSm (1987)). The above boundary

    layer theory applies to mass transfer controlled systems where the

    permeate flux is ind ependen t of pressure (no pressure term in the model).

    2. GEL-POLARIZATION MODEL

    Several investigators (Blatt et al. (1970), Porter (1972a,b), Henry

    (1972), Kozinski and Lightfoot (1972), F ane et al. (1981)) found from plots

    of flux versus applied ultrafiltration pressure of most macromolecular

    solution and colloidal dispersion experiments t hat the steady sta te flux

    reaches asymptotically a limiting value where fu rther increase in applied

    pressu re r esults in minimal increase in pe rmeate flux. The existence of

    this flux plat eau cannot be explained from the basic principle of the film

    model of concentration polarisation.

    Michaels (1968) and Blatt et al. (1970) forwarded a hypothesi s that as

    the concentration at the memb ran e surface increases due to polarization

    the macrosolute reaches its solubility limit and precipitates on the

    membra ne surface to form solid or thioxotropic gels. For colloidal disper-

    sions the g e l l a y e r is expected to resemble a layer of close-packed spheres

    (Porter (1972a)). As a consequence, a constant gel layer concent ration is

    rapidly reached, which is expected to be virtually independent of bulk

    solution concentration, applied pressure, fluid flow conditions or mem-

    brane characteristics. According to Michaels' model, an increase in ap-

    plied press ure produces a t emporary increase in flux, which brings more

    solute to the gel layer and increases its thickness (increase in hydrauli c

    resi stance to solvent flow), the reby reducing the flux to the original level.

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    7/60

    147

    F o r 1 0 0 % s o l u t e r e j e c t i o n ( % = 0 ) E q . ( 4 ) c a n t h u s b e w r i t t e n i n t h e

    f o r m

    J l i m =

    k s

    i n

    I - ~ | ( 6 )

    ~ ) C b

    w h e r e c m h a s b e e n r e p la c e d b y t h e c o n s t a n t g e l l a y e r c o n c e n t r a t i o n Cga n d

    J l i m

    i s t h e l i m i t i n g f lu x .

    B l a t t e t a l . ( 1 9 7 0 ) , P o r t e r ( 1 9 7 2 a , b ) , G o l d s m i t h ( 1 9 7 1 ) , H e n r y ( 1 9 7 2 )

    a n d M a d s e n (1 97 7 ), a m o n g m a n y o t h er s , w h o h a v e s t u d i e d m a c r o s o l u t e

    a n d c o ll oi da l u l t r a f i l t r a t i o n , h a v e o b t a i n e d e x p e r i m e n t a l r e s u l t s f or th e

    l i m i t i n g f lu x w h i c h g i v e s t r o n g s u p p o r t t o t h e g e l - p o l a r i z a t i o n m o d e l ,

    n a m e l y ,

    J lim i s i n d e p e n d e n t o f a p p l i e d p r e s s u r e ,

    J lim i s s e m i - l o g a r i t h m i c a l l y r e l a t e d t o Cb,

    J lim a p p r o a c h e s z e ro a t a l i m i t i n g b u l k c o n c e n t r a t i o n

    Cb,lim

    w h i c h i s

    e q u a l t h e g e l c o n c e n t r a t i o n Cg ( or t h e c a k e - c o n c e n t r a t i o n i n t h e

    c a s e o f c o l l o id a l d i s p e r s i o n s ) ,

    J lim m a y b e m o d i f e d b y f a c to r s w h i c h a l t e r t h e o ve r a ll m a s s t r a n s f e r

    c o e f f i c i e n t

    k s

    P o r t e r ( 1 9 7 2 a ) r e p o r t e d t h a t t h e a g r e e m e n t b e t w e e n t h e o r e t i c a l a n d

    e x p e r i m e n t a l u l t r a f i l t r a t i o n r a t e s f o r m a c r o m o l e c u l a r s o l u t i o n s c a n b e

    s a i d t o b e w i t h i n 1 5 t o 3 0 % u s i n g t h e L ~ v S q u e ( l a m i n a r f l o w ) a n d

    D i t t u s - B o e l t e r ( t u r b u l e n t f lo w ) m a s s t r a n s f e r r e l a t i o n s h i p s f o r f l ow in

    n o n - p o r o us c h a n n e l a n d t u b u l a r s y s t e m s . T h e s u c c es s o f t h e r e l a t i o n s h i p s

    i n i n d i c a t i n g t h e v a r i a t i o n ( po w e r d e p e n d e nc e ) o f u l t r a f i l t r a t i o n f l u x w i t h

    c h a n n e l g e o m e t r y a n d f l u i d v e l o c i ty i s g r a t if y i n g . H o w e v e r , f o r c o l lo i d a l

    d i s p e r s i o n s , e x p e r i m e n t a l f l u x v a l u e s a r e o f te n o n e t o t w o o r d e r s o f

    m a g n i t u d e h i g h e r t h a n t h os e i n di c a te d b y t h e L ~ v~ qu e a n d D i t t u s - B o e l t e r

    r e l a t i o n s h i p s . S i m i l a r d i s c r e p a n c i e s f o r c o l l o i d a l u l t r a f i l t r a t i o n w e r e

    n o t e d b y B l a t t e t a l . ( 19 7 0 ).

    2.1 L imi ta t ions o f the Model

    T h e g e l - p o l a r i z a t i o n m o d e l h a s p r o v e d t o b e u s e f u l i n t h e i n t e r p r e t a -

    t i o n o f u l t r a f i l t r a t i o n p e r f o r m a n c e ( F a n e ( 1 98 6)) . H o w e v e r , i t b e a r s s o m e

    i m p l i c a t i o n s w h i c h p u t i t s f o u n d a t i o n i n d o u b t.

    P o r t e r ( 19 7 2 a ) n o te d t h a t f or t h e u l t r a f l l t r a t i o n o f h u m a n a l b u m i n i n

    s p i r a l f l o w c h a n n e l p l a t e s w i t h 1 0 m m a n d 3 0 m m c h a n n e l - h e i g h t f o r

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    8/60

    148

    laminar and turbulent flow, respectively, the plots of flux versus bulk

    concent ration gave surprisingly different gel concentrations. A fact which

    cannot be accounted for by the gel-polarization model.

    Nakao et al. (1979), who have measured the concent ration of the gel

    layer at steady state conditions for macromolecular solutions, found th at

    the gel concentration is not constant but rather a function of bulk

    concentration and cross-flow velocity, which confirmed Porter's experi-

    men tal observations. Furthermore, they found from experiments using a

    bulk concent ration equal to the calculated gel concentration (obtained by

    extrapola tion of flux versus In

    cb

    plots), that the permeate flux was not

    zero as predicted by the gel-polarization model.

    Fane et al. (1981) observed experimenta lly that the gel-polarized

    behav iour with identical solutions and hydrodynamics produced different

    limiting flux values when membranes of differing permeability were

    used. This is in contradiction to the gel-polarization model, since no

    dependence of membrane properties is implied.

    Blatt et al. (1970) and Porter (1972a) ascertained that colloidal ul-

    trafll tration flux is several times higher than predicted by the gel-polari-

    zation model and the conventional mass transfer correlations. This has

    been termed, the

    flux paradox

    for colloidal dispersions. Porter related

    this finding to the tubular-pinch effect (Segr~ and Silberberg (1962)),

    which is sometimes known as the radial migration phenomenon. The

    tubular-pinch effect as well as further explanations are presented in

    Section 5.

    Thus the gel-polarization model appears to have some physical limi-

    tations although in some cases it still remains the most convenien t model

    from a pract ical point of view (Fane (1986)).

    2.2 Model Developments with Variable Physical Properties

    Kozinski and Lightfoot (1972) developed a theoretical model for pre-

    dicting permeate flux through a rotating disk ultrafiltration memb ran e

    tak ing into consideration concentration dependent diffusivity and viscosity.

    The model is based on the concentration-diffus ion equation (in a form

    equivale nt to Eq. (7)) and the equations of motion (in a form equiva lent

    to Eq. (8), (9)), which have to be solved simultaneously to give a numerical

    solution. Exper imental studies were performed with bovine serum albumin

    (BSA) solutions and the results compared quite well with t he numer ical

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    9/60

    149

    predictions for situations in which the protein has not denatured. However,

    the model could not account for the experimental finding that the filtra-

    tion rate increased by 50% when ionic str eng th was lowered by a factor

    of 5. They suggested that these effects might result from the instability

    of bovine serum albumin at low ionic strength and in particular its

    tende ncy to undergo polymerization.

    Their numerica l solution was found to be very sensitive to the exact

    behaviour of the diffusivity, osmotic pressure and viscosity at high

    concentrations. The lack of sufficient diffusion data (see Fig. 2) may be

    the greatest source of uncertainty in the prediction of ultrafiltration

    per formance (Kozinski and Lightfoot (1972), Shen and Probs tein (1977),

    Probstein (1978), Trettin and Doshi (1980a,b), Vilker et al. (1981)).

    Kozinski and Lightfoot extended their model to parallel plate systems

    9 W

    E

    ¢D

    ~ 6

    5

    3

    O

    = 3

    i t 3

    2

    1

    0

    z~

    X 0 0.1M buffer, pH 4.7 Keller e t a / 1971))

    X r l 0 .15M NaCI , pH 7 .4

    Shen and Pr obste i n

    1977))

    0 .15M N aCI, pH 7 .1 - 7 .7 Ph l l ies e t a L 1976))

    Z~ Ibid. PilUes

    et a l

    1976))

    V 0 .1M NaCI (Doherty and enedek (1974))

    onic

    strength and pH l iterature data

    , I , I ~ I , / , I

    1 2 3 6

    Albumin Concentration /(g L-l)

    Fig. 2. Diffusion coefficient versus concentra tion of bovine serum alb umi n (BSA) solutions

    (Shen a nd Pro bst ein (1977)).

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    10/60

    150

    and considered the limitations of Blatt's et al. (1970) thin channel

    ultraf iltra tion da ta for bovine seru m albumin. The predictions were low

    but well within the accuracy of Blatt's data.

    Shen and Probstein (1977) proposed that the physical model of

    Michaels (1968) is essential ly correct in its qualit ative behav iour and th at

    the quanti tat ive disa greement is principally a consequence of not consid-

    ering the variable transport properties of the macromolecular solution,

    in particular, the variability of the diffusion coefficient. They obtained

    out of the concentration-diffusion equation for steady, Newtonian, fully

    developed lam inar flow in a parallel plate system

    o c o c o / o

    u ~xx + v ~y - 8y (c) (7)

    with a concentration dependent diffusion coefficient D c ) and u , v the

    velocity components longitudinal and normal to the membrane surface,

    respectively, that the limiting flux is proportional to the dimensionless

    quan ti ty (D(cg) /D(c b))2/3. This result suggests simply the replacing of the

    diffusion coefficient evaluated at c b by one evaluated at Cg in the mass

    transfer correlation for laminar channel flow of the gel-polarization

    model. This finding is consistent with Kozinski's and Lightfoot's (1972)

    observation that the critical region for mass transfer is adjacent to the

    membrane surface.

    Shen and Probstein (1977) compared the calculated results for the

    limit ing flux of the ir modified film model with that of an exact numerical

    solution developed out of the boundary layer concentration-diffusion

    equation with variable diffusivity (Eq. (7)), coupled to the channel mo-

    me ntu m equation

    ~u

    = ~(c) 8y (8)

    with variable viscosity and the continuity equation

    ~u ~v

    + = = o ( 9 )

    oy

    The agreement proved to be quite good for a bovine serum albumin

    solution of known properties despite the ra the r complex behav iour of the

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    11/60

    151

    diffusion coefficient through the boundary layer.

    Many meas urem en ts of bovine serum albumin diffusivity (Fig. 2) at

    dilute concentrations (usually below 1 wt.%) have been reported in the

    lite ratu re, where solution properties like buffer type, pH-value (electrical

    charge on the micro-ions), and ionic stren gth have negligible effects on

    the diffusion coefficient. However, ther e is a lack of data at h igh concen-

    trat ions which is especially limiting since the above stated factors cannot

    be ignored as the interaction among the charged macro-ions becomes

    more pronounced. Furthermore, Shen and Probstein (1977) and Trettin

    and Doshi (1980b) stated that even existing data scattered appreciably

    for the same solution conditions.

    Shen and Probste in (1977) tested the ir numerical model for the sensi-

    tivity of the dependen ce of the limiting flux on viscosity. Their predicted

    flux values for a cons tant bulk viscosity were at most 50% high er th an

    the calculations whe n the dimensionless viscosity was tak en to vary from

    1 to infinity in the concent ration boundary layer as th e bulk concentra-

    tion increases to the gel concentration. Therefore, they concluded that

    the limiting flux will be much more depen dent on the variation of the

    diffusion coefficient than the viscosity coefficient. This finding fu rther

    confirmed the assu mption of a constant viscosity which was adopted in

    deriving the modified film model equation.

    Shen and Probstein (1977) compared also Blatt's et al. (1970) experi-

    men tal data of bovine serum a lbumin in 0.9% saline-water solution with

    the ir calculated data using the modified film-model. The predictions were

    consistently higher by a small amount, due to uncerta inties by the

    extrapolation of diffusion coefficient data at high gel concen trations and

    unkno wn pH-values ofBla tt's et al. (1970) experiments. However, Tre ttin

    and Doshi (1980a) noted that Shen and Probstein (1977) as well as

    Kozinski and Lightfoot (1972) misinterpreted the system design of Blatt's

    et al. (1970) experiments, which led to them using a cross-flow velocity

    four times h igh er th an reality. Use of the correct velocity in the predic-

    tions of the modified model of Shen and Probstein would resul t in 24 to

    34% lower flux values than mea sured by Blatt et al. (1970).

    Probstein et al. (1978) developed an integral method based on the

    par tia l diffe rent ial equat ions of cont inui ty (Eq. (9)) and diffusion (Eq. (7))

    with a concentration dep ende nt diffusivity governing the behaviour of a

    developing concent ration boundary layer of constant density fluid flowing

    under laminar conditions in a plane channel. The result is valid when

    the gelling concentration is large compared to the bulk concentration and

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    12/60

    152

    justifies analytically the result previously obtained by Shen and Probstein

    (1977), namely the replacing of the bulk diffusivity by the diffusivity at

    the gel concentration in the widely used formula of Michaels (1968).

    Comparison of the analytic result for the limiting flux with both exact

    numerica l solution (Shen and Probstein (1977)) and with experiments for

    bovine serum albumin in 0.15 M saline water at pH 7.4 showed excellent

    agreement. Possible limitations of the experimental data of Probstein et

    al. (1978) are that flux measurements were taken only over a narrow

    rang e of low solute concentrations.

    Trett in and Doshi (1980a) have developed an integral me thod solution

    to the solute mass balance equation (Eq. (7)) for a parallel plate system

    using a variable non-l inear concentration profile (Doshi et al. (1971)) in

    the boundary layer. Excellent agreement was found, for the case of a

    constant diffusion coefficient, between the calculated limiting flux values

    of the integral method solution and an exact numerical solution, where

    Eq. (7) was trans formed to an ordinary differential equation by a method

    described by Shen and Probste in (1977). For a concentra tion dep end en t

    diffusion coefficient the integral method was satisfactory. By a compari-

    son of their integral method solution with the film theory model of

    Michaels (1968) for constant fluid properties ag reeme nt was found for

    Fg

    < 4, where Fg is the ratio of the gel concentration to the feed concentration.

    For higher values

    o fFg

    the integral solution deviates from the logarithmical

    behaviour of the film model and predicts higher permea te flux rates. This

    would mean tha t extrapolation of experimental values in flux versus In

    cb

    plots may not be valid and may underpredict the gel concentration.

    Despite existing predictive differences, the same upsloping flux behav-

    iour was observed when they compared Probstein's et al. (1978) integral

    method relationship, which is a special case of Trettin and Doshi's

    integral method solution, with the film model. However, experimental

    evidence for their theoretical investiga tion was not presented.

    Trett in and Doshi (1980b) carried on in the development of a constant

    property integral method solution for ultrafilt ration in an u nsti rred batch

    cell which agreed well with an exact solution but not with the film theory

    model. The deviat ion was more tha n 25% for all values

    of Fg

    greater than

    4, which is similar to the results obtained by Trettin and Doshi (1980a)

    for the parallel plate system. Agreement was found to be excellent

    between experimental data for bovine serum albumin over a wide con-

    centration and pressure range in the unstirred batch cell and the int egral

    model predictions, with the average error less than 3%, while the film

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    13/60

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    14/60

    154

    ship via an osmotic pressure mechan ism ( lap I - I Anl ---- 0), which has

    been confirmed experimentally. Their observation may not apply to other

    macromolecular solutions since they migh t display much lower osmotic

    pressures in concentrated solutions.

    Aimar and Sanchez (1986) developed a semi-empirical model based on

    the film theory model and osmotic pressure model (see Section 3) consid-

    ering the dependenc e of the mass trans fer coefficient on permeat e flux,

    which has already been proposed by Jonsson (1984) as a qualitative

    explanation of the existence of a limiting flux. Concentra tion depe nde nt

    viscosity is used in the model, since the variation in diffusivity is demon-

    stra ted to be of less influence compared to the viscosity varia tion on th e

    mass transfer coefficient for bovine serum albumin solutions (data used

    from Kozinski and Lightfoot (1972) and Phil lies et al. (1976)). They

    compared t he values of the limiting flux of thei r model predictions with

    experimental data from several authors for different solutes, module

    geometries and me mbra nes after determining a few param eters depend-

    ing on hydrodynamic conditions and solute properties first. Excellent

    agreement was found for all kinds of ultrafiltration experiments. Fur-

    thermore, a complete model is deduced which calculates the permeate

    flux from zero to the limiting value. Again, the experimental data was

    well represen ted by the model over the whole range of applied pressures.

    Therefore, the assumptions made in the model seem to be valid, especially

    the decrease of the mass trans fer coefficient with increasing applied

    pressure (increasing membr ane wall concentration) for the l imiting flux

    case. They concluded tha t the limiting membr ane wall concentration (for

    limiting flux) is a function of the bulk concentration, the hydrodynamic

    conditions and the physicochemical solution properties.

    Gill et al. (1988) model led the effect of viscosity on the concentration

    polarization in the ent rance region of a t hin rec tangular channel module

    until gel-conditions are reached on the membrane surface. They men-

    tioned that Shen and Probstein (1977) neglected the entranc e length in

    their model by assuming that the gel concentration is present at the

    channel inlet. However, Gill's et al. model could only predict tha t the gel

    concentration is reached after a shorter distance from the channel en-

    trance w hen a concentration dependent viscosity is used rathe r tha n a

    constant viscosity. Quantitative predictions were limited because of

    several assumptions made in the model.

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    15/60

    155

    TABLE 1

    Osmotic pressures of macromolecular solutions. (a) Vilker et al. (1981), (b) Jonsson (1984),

    (c) Wijmans et al. (1985)

    Conc. Osmotic pressure

    (g/L) (kPa)

    BSAa Wheyb Dextran

    pH 5.4 proteins

    T10b T70 c T500 c

    100 7 63 72 21 13

    200 25 126 216 97 84

    300 60 298 595 284 267

    400 134 685 1300 - -

    3. OSMOTIC PRESSURE MODEL

    At typical ul trafi l t rat ion feed concentrat ions, macrosolutes have a

    negligible osmotic pre ssu re and cons eque ntly osmotic effects are fre-

    quently ignored (Blatt et al. (1970), Porter (1972a)). However, with the

    effect of concentrat ion polar izat ion at the mem bra ne surface the surface

    conce ntrat i on could be of one to two orders of mag nit ude higher, wh ere

    osmotic pre ssu re s m ay be impo rt an t (see Table 1), as long as the bound -

    ary lay er rema ins New toni an and gelat ion or precipi tat ion does not occur

    (Fane (1986)).

    Kedem and Katchalsky (1958) derived the osmotic pressure model ,

    which describes the permeate flux in relat ion to the osmotic pressure

    difference An crea ted by the concentrat ion difference betw een the two

    sides of the membr ane:

    j : I A P l - I A n l

    ~t R m

    i i )

    where

    R m

    is the me mb ra ne resistance, ~ the solvent viscosi ty and An =

    n c m) - n Cp) with the concentrat ions c m and Cp a t the memb rane surface

    and in the permeate, respectively. The osmotic pressure n is often repre-

    sente d in te rms of a polynomial

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    16/60

    156

    = a l c + a 2 c 2 + a 3 c 3 (12)

    where a 1 is the coefficient in van' t Hoffs law for infinitely dilute solutions

    and a2, a 3 rep resent the non-ideality of the solution.

    Goldsmith (1971) who first applied the osmotic pressure model has

    shown that under circumstances where no gel layer is expected, that is

    for a low molecular weight po lyethylene glycol (mean Mwt = 15500

    Daltons) as the solute with a limiting concentration less th an 10 wt.%,

    an almost limiting flux can be obtained for laminar and turbulent flow

    conditions, whereby the J versus In

    c b

    plot is linear for a given pressure

    drop Ap.

    Kozinski and Lightfoot (1972) examined low polarization ultrafiltra-

    tion in a rotating disk geometry. They numerically integrated the con-

    cent ration-dif fusion equation (Eq. (7)) and the equations of motion (Eq.

    (8), (9)) subject to the osmotic pressure boundary condition and found

    tha t concen tration polarization could account for experimenta lly ob-

    served reductions in permeate flux when ultrafiltering bovine serum

    albumin solutions.

    Leung and Probstein (1979) developed an integral solution method

    based on the two-dimensional concentration-diffus ion equation (Eq. (7))

    and the osmotic pressure model with concentration depende nt diffusivity

    and osmotic pressure for the ultra filtration of bovine serum albumin in

    steady, plane laminar channel flow under low polarization conditions.

    The integral solution was checked with a finite difference solution for the

    case of a linea r osmotic pressure--concentration relation and a constant

    diffusivity, where the agreement was excellent. Experimental ultrafil-

    trat e fluxes were found to agree very well with the theoretica lly calcu-

    lated values of the integra l solution method using Vilker's et al. (1981)

    non-linear osmotic pressure data and a diffusivity relation ob tained by

    linearly interpolati ng the diffusivity values between the gel and dilute

    concentra tion limits.

    Vilker et al. (1981) concluded from osmotic pressure measurements

    and ultrafiltration experiments of bovine serum albumin in an unstir red

    cell, tha t the permea te flux is limited by the osmotic pressure, since also

    no gel formation was observed under t he applied operation conditions.

    Wijmans et al. (1984) provided an inte res ting analysis of the osmotic

    pressure model. Assuming complete rejection

    Cp

    = 0) the osmotic pres-

    sure difference in equation (11) is approximated by

    (13)

    T z = ~ c m ) = a c m

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    17/60

    157

    with n > 1. c m itsel f is de pen dent on perm eat e flux according to the film

    model (Eq. (4)), which gives

    la p[ - a c~ exp

    n J / k s )

    J = (14)

    g R m

    Wijmans et al. (1984) demonstrated how the derivatives of Eq. (14)

    provide insight into the ultrafiltrat ion process. The flux-pressure derivat ive

    [ 1 1

    J n

    - ~ R m + , - : - ( i @ i - J g R m )

    ~IApl

    i1_1

    = g R ~ + - - I A n

    k s

    (15)

    gives the asymptotes

    ~J

    ~ l a p J

    ~. gR in )

    -1 for lap [ ~ O, or [ An[ ~ 0

    and

    ~J

    2 1 @ 1

    --> 0 for ]Apl

    --~ oo, o r

    [An[

    > > J g R m

    Thus the flux-pressure profile commences at low Ap with a slope similar

    to pure solvent flow and as Ap increases the slope declines and approaches

    zero at high pressure, which is similar to the gel-polarization model.

    The fl ux-concentr ation relationship could be examine d by rearrang-

    ing Eq. (14), taking the logarithm and differentia ting to give

    In c b l a p I j

    n gRm

    gR,nks ; 1

    = - k s l+niAnl)

    ( 1 6 )

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    18/60

    1 5 8

    which shows that when polarization is significant, tha t is,

    nlA l

    IAPl >>

    J g R m

    or -- >> 1, then:

    g R m k s

    ~J

    __> k s

    In

    c b

    The same prediction for the limit ing slope in a J versus In c b plot is given

    in the gel-polarization model.

    The limiting concentration Cb,l i m for J ~ 0 is obtained from equation

    (14) wh en

    Ap =a c n

    b , l im = 7~(Cb , l im)

    (17)

    which gives an osmotic pressure equal to the applied pressure. This also

    implies tha t Cb,l i m -- f(~9), an impor tant difference from the gel-polariza-

    tion model which predicts tha t

    C b , l i m - -- -

    Cg :/: ~ p ) .

    Wijmans et al. (1984) concluded from their theoretical ana lysis that,

    (1) lower values for the membrane resistance

    R m

    lead to a more

    pronounced osmotic pressure effect, that is flux limitation at lower

    applied pressures,

    (2) the mem bran e resistance has a diminishing importance as the

    osmotic pressure increases, that is as the bulk concentration increases,

    and,

    (3) the osmotic pressure limitation will be expected in ultr afilt ration

    of med ium macrosolutes (104-105 Mwt).

    Jonsson (1984) has analysed the ultrafiltration of dextran solutions

    (macrosolutes of med ium molecular weight) and demon strat ed tha t the

    osmotic pressure model could produce a semi-logarithmic plot of Jve rs us

    in Cb, which gives a linear relation at bulk concentra tions above 7 wt.%,

    intersec ting the In cb-axis at a concentration of about 37 wt.%. However,

    Jonss on concluded tha t this is not the gel concentration, but the concen-

    tration at which the solution has an osmotic pressure equal to the applied

    pressure. Fur the r evidence for the absence of a gel layer was obtained by

    direct observation of the hydrodynamic flow of the polarization layer.

    Cli~on et al. (1984) solved the two-dimensionalconcentration-diffusion

    equation with constant diffusivity, coupled to the m omem tu m equat ion

    with variab le viscosity for a hollow-fibre membr ane geometry in order to

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    19/60

    159

    d e s c ri b e t h e g r o w t h o f t h e c o n c e n t r a ti o n p o l a r i z a ti o n l a y e r a l o n g t h e

    m e m b r a n e . T h e o b t a i n e d i n t e g r a l s o lu t io n w a s c o m b i n e d w i t h t h e o s m o t i c

    p r e s s u r e m o d e l t o y i e l d a n u m e r i c a l s o l u ti o n , w h e r e t h e p e r m e a t e f lu x ,

    t a k e n s e p a r a t e l y i n s e v e r a l s e c ti o n s a l o n g t h e m e m b r a n e b u n d l e , w a s

    a s s u m e d t o b e c o m p l e t e l y l i m i t e d b y t h e o s m o t ic p r e s s u r e e ff ec t. V e r y

    g oo d a g r e e m e n t b e t w e e n o b s e rv e d a n d c a l c u la t e d v a l u e s w a s o f te n f ou n d ,

    b u t g e n e r a l l y b e t t e r f or d e x t r a n T 7 0 t h a n P V P ( p o ly v i n y lp y r ro l id o n e )

    s o l ut io n s . T h e y p r o p o se d t h a t t h i s w a s d u e t o a b e t t e r r e p r e s e n t a t i o n o f

    t h e v i s c o s i ty v a r i a t i o n s b y t h e i r c o n c e n t r a ti o n d e p e n d e n t v i s c o s it y r e la -

    t i o n s h i p f o r t h e d e x t r a n s o lu t io n s . F u r t h e r m o r e , f or h i g h b u l k c o n c e n t ra -

    t i o n s o f P V P a d i s t i n c t d i v er g e n c e b e t w e e n m e a s u r e d a n d c a l c u l a te d f l u x

    v a l u e s w a s o b s e rv e d b e y o n d a c e r t a i n d i s t a n c e a l o n g t h e m e m b r a n e .

    C l i f t o n e t a l. (1 9 8 4) a l s o s u g g e s t e d t h a t t h e p o l a r i z a t i o n l a y e r b r e a k s

    d o w n d u e t o i n s t a b i l i t i e s i n th e b o u n d a r y l a y e r a f t e r a c e rt a i n p o i n t a l o n g

    t h e m e m b r a n e , b e c om i n g t h i n n e r a n d t h u s a l lo w i n g a m o re r a p i d m a s s

    t r a n s f e r t o t a k e p l ac e r e s u l t i n g i n t h e o b s e rv e d h i g h e r f lu x v a l u e s. S u c h

    h y d r o d y n a m i c d i s t u r b a n c e s h a v e b e e n o b se rv e d d i r e c tl y b y M a d s e n

    ( 1 97 7 ) a n d J o n s s o n ( 19 8 4) u s i n g a c o lo u r ed m a c r o m o l e c u l a r s o l u te .

    C h o e e t a l . ( 1 9 8 6 ) c o n f i r m e d J o n s s o n ' s ( 1 9 8 4 ) o b s e r v a t i o n s t h a t i n

    u l t r a f i l t r a t i o n w i t h d e x t r a n s o lu t io n s , th e o s m o ti c p r e s s u r e i s t h e o n l y

    r e s i s t a n c e w h i c h n e e d s t o b e t a k e n i n to a c c o u n t to e x p l a in t h e p e r m e a t e

    f l u x d e c l i n e .

    4 . RE S IS TANC E M O DE LS

    U l t r a f i l t r a t i o n p e r f o rm a n c e c a n a l so b e i n t e r p r e t e d b y a r e si s t a n c e -i n -

    s e r i e s r e l a t i o n s h i p , w h i c h c a n b e o b t a i n e d f r o m e q u a t i o n (2) b y n e g l e c t i n g

    t h e o s m o t i c p r e s s u r e t e r m ,

    J ] SP l (18 )

    ~ t R m + R s )

    A c c o r d i n g to t h e f i l t r a t i o n t h e o r y t h e r e s i s t a n c e o f p o l a r iz e d s o li d s c a n b e

    w r i t t e n a s

    R~ = o~ m p (19)

    A m

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    20/60

    160

    where m p is the mass of deposited particles, A m the membran e area and

    the specific resistance of the deposit, which can be approximately

    related to the properties for spherical particles by the C arma n-Ko zeny

    rela tionsh ip (Carman (1938))

    180(1 - ~)

    = (20)

    ppdp2a3

    where ~ is the void volume of the cake, pp the densi ty of the particles and

    d p

    the mean diameter of the particles. A general observation would be

    tha t the smaller the particles are then the greate r the specific resistance

    will be. Equation (18), (19) and (20) apply equally well to particulate

    filtra tion (microfiltration) and colloidal ultrafi ltra tion (Fane (1984)).

    For dead-end (unstirred) filtration under constant pressure condi-

    tions, without any particle back-transport, R s increases with time, be-

    cause

    m p = V c b (21)

    where Vis the total volume filtered and

    c b

    the bulk concentration, so that

    the combination of Eqs. (18), (19) and (21) with

    J = A m 1 d V / d t

    gives by

    integration the well-known constant pressure filtration equation (in a

    form first sugges ted by Underwood (1926)).

    t ~ R m ~t c¢ c b

    + V (22)

    V - A m l A P I 2 A 2 ] A p l

    Equation (22) yields a stra ight line on plotting experimental data of t/V

    versus V which allows determinat ion of the specific resistance a and the

    membr ane resistance

    R m.

    4 .1 G e l - P o l a r i z a t i o n R e s i s t a n c e M o d e l

    Fane (1986) expressed the gel-polarization model in te rms of resistances,

    J = lAP] (23)

    ~ t R m + R b l + R g )

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    21/60

    1.61

    where Rg is due to the gel layer at limiting concentration Cg, and Rbl

    repre sents the resistance of the viscous, but non-gelled boundary layer.

    If the concentration polarization at t he mem bran e surface increases from

    zero to the gel concentration due to an increase in pressure, Rg is zero

    and the flux is pressure dependent. After the gel concentration is reached

    Rg is established and any furthe r increase in lap I simply increases the

    thickness of the gel layer, and increases

    Rg,

    which predicts the pressure

    ind epe ndent flux behaviour.

    Chudacek and Fane (1984) used the filtration model to describe the

    dynamics of polarization in stirred or cross-flow ultrafiltration. The

    appropr iate form of the resis tance model (Eq. (18)) is

    J= IAPl (24)

    Rm + Rsd + Rsr)

    where Rsd is the resistance which would be caused by deposition of all

    convectively transpo rted solute (equivalent to R s in Eq. (19)), and Rsr is

    the resi stance removed by stirring or cross-flow. They assumed th at the

    remova l of solute (back-transport) is constant and equal to the convective

    solute trans port at steady state = Jss Cb)so that Eq. (21) is not any more

    valid. Equation (24) becomes

    j :

    ~tIRm + g/nm-dsst)° ~Cb I

    (25)

    The quantity Jss can e ither be expressed by the film model relationship

    (Eqn. (4)) or by exper imen tal ly det ermin ed values

    Of Jss.

    Chudacek and Fane's (1984) numerical solutions of the model using

    experimentally determined a-values and measured Jss-values, tended

    slightly to overpredict initial experimental flux values for their three

    solutes (bovine serum albumin, dextran T2000, Syton X30 silica) used.

    They explained the discrepancy as due to membrane-solute interactions

    where the incoming solute may obstruct the entrance pores of the mem-

    brane resulting in an additional resistance for which the model takes no

    account.

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    22/60

    162

    4 .2 B o u n d a r y L a y e r R e si s ta n c e M o d e l

    Wijmans et al. (1985) proposed the boundary layer resistance model

    for cross-flow ult rafil trat ion of dex tran solutions wher e no gel-formation

    will occur. The basic principle of the model is the correspondence of the

    permeability of a concentrated solute layer for solvent flow and the

    permeability of a solute in a stagnant solution, as occurring during a

    sedimentation experiment. This relationship (Mijnlieffand Jaspers (1971))

    can be described by

    ~s

    p = (26)c(1 -

    v l / v o )

    wh erep is the permeability of a concentrate d solute layer of concentrati on

    c, v0 and v I are the par tial specific volumes of the solvent and the solute

    respectively and s is the sedimentation coefficient at concentration c

    usual ly described by

    1 1

    s s 0

    -- - - (1 +

    KlC + K2 c2 +

    K3c3)

    (27)

    wh ere So, K1, K 2 and K 3 are constants .

    The permeability depends on the concentration and since there is a

    concentration profile in the boundary layer, the permeability will be a

    function of the coordinate y perpend icular to the membrane . Since, the

    hydrodynamic resistance of the boundary layer Rbl is generall y defined

    a s

    f

    5

    Rbz = rbldY

    (28)

    0

    where

    rbl

    is the specific resistance of the boundary l ayer

    rbl

    = app(1 -e ))

    and equal to the reciprocal of the permeability. Thus, th e boundary layer

    resistance is

    f

    5 1

    R~l = dy

    o P(Y)

    (29)

    Substituting Eq. (26), (27) with c y) = c b e x p J y / D ) into Eq. (28) and

    inte grat ing over the bo unda ry layer thickness 5, results in

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    23/60

    163

    D 1 - v l l [ c m - - ~ - c 2 - c 2 )+- - - ~ c 3 c~) C m -C 4) 1

    bl ~tSo Vo)L Cb + K1 K2 K3

    _ _ . _ _ ~ _ 4

    (3O)

    w h e r e c m i s t h e s o l u t e c o n c e n t r a t io n a t t h e m e m b r a n e s u r fa c e , w h i c h

    c o u ld b e d e t e r m i n e d v i a t h e f i lm m o d e l r e l a t i o n s h i p ( Eq . (4 )) i f

    k s

    i s

    k n o w n .

    C o m b i n i n g E q . (1 8) w i t h

    R s = Rbl ,

    (30) an d (4) fo r

    Cp =

    0 , t h e b o u n d a r y

    l a y e r r e s i s t a n c e m o d e l is o b t a in e d i n w h i c h t h e p e r m e a t e f lu x is t h e s i n g l e

    u n k n o w n p a r a m e t e r .

    j =

    I Pl

    Vl l[c - + @ + c4-

    m+ ~ 1 - VoJL 2 3 4

    (31)

    w i t h

    C m = C b exp J/ k s)

    T h u s , t h e f l u x c a n b e c a l c u l a t e d i f t h e p r o c es s c o n d i t i o n s ( A p, Rm, Cb, k s)

    a n d t h e p h y s i c a l p r o p e r ti e s o f t h e s o l u t e - s o l v e n t s y s t e m (s, D ) a r e k n o w n .

    W i j m a n s e t a l. (1 9 85 ), w h o c a l c u l a t e d t h e m a s s t r a n s f e r c o e f fi c ie n t b y

    a p p l y i n g t h e o s m o t i c p r e s s u r e m o d e l, a f t e r h a v i n g p r o v e n t h a t t h e

    r e s i s t a n c e m o d e l a n d t h e o s m o t i c p r e s s u r e m o d e l a r e e q u i v a l e n t , o b -

    t a i n e d a n e x c e l l e n t a g r e e m e n t b e t w e e n t h e i r c a l c u l a t e d a n d e x p e r i m e n -

    t a l f l u x v a l u e s .

    N a k a o e t a l. ( 19 8 6) w h o e x a m i n e d t h e c o n c e n t r a t i o n p o l a r i z a t i o n e f f e ct

    i n u n s t i r r e d u l t r a f i l t r a t i o n u s e d t h e b o u n d a r y l a y e r r e s i s t a n c e m o d e l

    a d a p t e d t o t h e c a k e f i l t r a ti o n th e o r y t o a n a l y s e t h e e x p e r i m e n t a l f l u x

    b e h a v i o u r o f d e x t r a n a n d p o l y e t h y l e n e g l yc o l s o l u ti o n s . T h e r e f o r e a s t e p

    c o n c e n t r a t i o n p r o fi le a n d a t i m e - i n d e p e n d e n t c o n c e n t r a t io n i n t h e b o u n d -

    a r y l a y e r w i t h o u t a n y s o lu t e b a c k - t r a n s p o r t w e r e a s su m e d . T h e s i m p l e

    m o d e l w o r k e d w e l l i n p r e d i c ti n g t h e e x p e r i m e n t a l f l u x b e h a v i o u r b u t o n l y

    w i t h t h e n e e d o f s e v e r a l o th e r e x p e r i m e n t s t o o b t a i n t h e n e c e s s a r y

    p a r a m e t e r s .

    V a n d e n B e r g a n d S m o l d e rs ( 1 98 9) a n a l y s e d t h e c o n c e n t r a t i o n p o l ar i-

    z a ti o n p h e n o m e n a o f b o v in e s e r u m a l b u m i n d u r i n g u n s t i r r e d d e a d -e n d

    u l t r a f i l t r a t i o n b y a d a p t i n g t h e b o u n d a r y l a y e r re s i s t a n c e m o d el in

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    24/60

    164

    c o m b i n a t i o n w i t h t h e o n e - d i m e n s i o n a l u n s t e a d y s t a t e c o n c e n t r a t i o n -

    d i f f u s i o n e q u a t i o n ( E q . (1 0)). T h e i r n u m e r i c a l a p p r o a c h c o m p a r e d t o

    N a k a o ' s e t a l . ( 1 9 8 6 ) m o d e l r e q u i r e d n o a s s u m p t i o n s c o n c e r n i n g t h e

    c o n c e n t r a t i o n a t t h e m e m b r a n e , t h e c o n c e n t r a t i o n p r o f il e o r t h e s p e c if ic

    r e s i s t a n c e o f t h e b o u n d a r y l a y e r . T h e m o d e l p r e d i c t i o n s a g r e e d v e r y w e l l

    w i t h t h e e x p e r i m e n t a l d a t a f or a ll f ee d co n c e n t ra t io n s , m e m b r a n e r e s is -

    t a n c e s ( r e t e n t i o n s ) a n d a p p l i e d p r e s s u r e s i n v e s t i g a t e d .

    5 . ALTERNATIVE MOD ELS F OR CO LLOIDAL FILTRATION

    C o l l o i d a l d i s p e r s i o n s h a v e b e e n s u b j e c t e d t o u n s t i r r e d , s t i r r e d a n d

    c ro ss -f lo w u l t r a f i l t r a t i o n i n b o t h l a m i n a r a n d t u r b u l e n t f lo w s y s t e m s b y

    m a n y i n v e s t i g a to r s . F l u x p r e d i c ti o n s a r e f r e q u e n t l y d e s cr ib e d b y t h e

    w i d e l y a c c e p t e d g e l - p o l a r i z a t i o n m o d e l o f M i c h a e l s ( 1 96 8 ),

    J -- ~- In

    = k s

    In (32)

    w h e r e t h e d i f f u s i o n c o e f f i c i e n t c a n b e c a l c u l a t e d f r o m t h e S t o k e s - E i n -

    s t e i n r e l a t i o n s h i p f o r d i f f u s iv i t y ,

    k T

    D o

    (33)

    3 ~ ~i d p

    a l t h o u g h t h i s s t r i c t l y a p p li e s o n l y t o d i lu t e s o l u t io n s , w h e r e k is t h e

    B o l t z m a n n c o n s t a n t , T t h e a b s o l u t e t e m p e r a t u r e , ~t t h e v i s c o s i t y o f t h e

    s o l v e n t , a n d

    d p

    t h e p a r t i c l e d i a m e t e r . T h e i n f e r e n c e f r o m E q . ( 3 2 ) a n d

    ( 33 ) i s t h a t a s p a r t i c l e s i z e i n c r e a s e s s o f l u x d e c r e a s e s . H o w e v e r , a s

    p a r t i c l e s i z e i n c r e a s e s f r o m c o l lo i da l u p w a r d s , b a c k - t r a n s p o r t b e c o m e s

    n o n - d i f f u s i v e a n d E q . (3 2) n o l o n g e r s t r i c t l y a p p l ie s .

    B l a t t e t a l . ( 1 9 7 0 ) w h o h a v e c a r r i e d o u t u l t r a f i l t r a t i o n e x p e r i m e n t s

    w i t h s k i m m e d m i l k , p o l y m e r la t ex , a n d c l a y d i s p e r si o n s f o u n d t h a t t h e

    f i lm t h e o r y m o d e l e x p r e s s e d b y E q . (3 2) a n d ( 33 ) d r a s t i c a l l y u n d e r p r e -

    d i ct s e x p e r i m e n t a l p e r m e a t e r a te s . T h e s e o b s e r v a t io n s l e d t h e m t o t h e

    c o n c l u s i o n t h a t e i t h e r : (1 ) t h e b a c k - d i f f u s i o n o f p a r t i c l e s f r o m t h e p o l a r -

    i z e d l a y e r i s s u b s t a n t i a l l y a u g m e n t e d o v e r t h a t e x p e c t e d t o o c c u r b y

    B r o w n i a n m o t io n o r, (2) t h e t r a n s m e m b r a n e f lu x is n o t l i m i t e d b y t h e

    h y d r a u l i c r e s i s t a n c e o f t h e p o l ar iz e d l a y e r o v e r a n y r e a s o n a b l e r a n g e o f

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    25/60

    165

    l a y e r th i c k n e s s . B l a t t e t a l. f a v o u r e d t h e s e c o n d e x p l a n a t i o n to b e th e

    m o r e r e a s o n a b l e , s i n c e a c a k e f o r m e d b y m i c r o n s i z e p a r t i c l e s h a s a

    r e l a t i v e l y lo w s p e ci fi c r e s i s t a n c e c o m p a r e d w i t h a m a c r o m o l e c u l a r c ak e .

    P o r t e r ( 19 7 2 a ,b ) w h o o b s e r ve d e s s e n t i a l l y t h e s a m e f lu x a u g m e n t a t i o n

    c o m p a r e d w i t h t h e f i lm m o d e l p r e d i c t io n s i n m o r e t h a n 4 0 c o ll o id a l

    d i s p e r s i o n s h e s t u d i e d , d i s p u t e d B l a t t ' s e t a l . ( 1 9 7 0 ) h y p o t h e s i s a n d

    a r g u e d t h a t , i f t h e p o l a r iz e d l a y e r is n o t t h e l i m i t i n g fa c to r , th e f l u x

    s h o u l d b e i n d e p e n d e n t o f t h e b u l k c o n c e n t r a t io n a n d p r o p o r t i o n a l t o t h e

    a p p l i e d p r e s s u r e . H o w e v e r , h e o b s e r v e d t h e o p p o s i t e t o b e t r u e , d e c r e a s-

    i n g f lu x w i t h i n c r e a s i n g b u l k c o n c e n t r a t io n . T h e r e fo r e , P o r t e r h y p o t h e -

    s iz e d t h e a u g m e n t e d b a c k - t r a n s p o r t o f t h e l a t e r a l ( r a d ia l ) m i g r a t i o n o f

    p a r t ic l e s k n o w n a s t h e

    tubu lar-pinch e ffec t

    ( S eg r ~ a n d S i l b e r b e r g ( 19 6 2 ))

    t o b e r e l e v a n t f o r t h e e n h a n c e d f l ux . B u t n o q u a n t i t a t i v e p r e d i ct io n s o f

    t h e e n h a n c e d m a s s t r a n s f e r o f p a r t i c le s a w a y f r om t h e m e m b r a n e s u r fa c e

    c o u l d b e m a d e a t t h a t s t ag e .

    H e n r y ( 1 9 7 2 ) p o i n t e d o u t t h e l o n g t r a n s i e n t f lu x d e c li n e i n t h e u l t r a f il -

    t r a t i o n o f c o l lo i d a l d i s p e r si o n s . H e f o u n d i n g e n e r a l t h a t t h e d e p e n d e n c e

    o f t h e p e r m e a t i o n r a t e o n fl u i d r a t e ( or s h e a r r a t e ) i s g r e a t e r i n c o ll o id a l

    u l t r a f i l t r a t i o n t h a n t h a t p r e d ic t ed b y t h e f i l m t h e o r y m o d e l. T h i s f i n d in g

    l e d H e n r y t o t h e c o n c lu s io n , l i k e P o r t e r ( 19 7 2 a ,b ), t h a t a n a d d i t i o n a l

    p a r t ic l e b a c k - t r a n s p o r t m e c h a n i s m i s p r e s e n t i n s u c h s y s t e m s .

    5.1 Ine r t ial M igra t ion M odel Tu bu lar-Pinch Ef fec t)

    S e g r ~ a n d S i l b e r b e r g ( 19 6 2 ), w o r k i n g w i t h d i l u t e d i s p e r s i o n s o f r i g id ,

    s p h e r ic a l , n e u t r a l l y b u o y a n t p a r t ic l e s ( m e a n d i a m e t e r s f r o m 0 . 32 t o

    1 .7 l m m ) t r a n s p o r t e d a l o n g i n P o i s e u i ll e f lo w t h r o u g h a n o n - p o r o u s t u b e ,

    w e r e t h e f i r s t t o p u b l i s h t h e i r o b s e r v a t i o n s o f t h e

    tubular-pinch e f fec t ,

    w h e r e b y t h e p a r t ic l e s a r e s u b je c t to r a d i a l f or ce s w h i c h m i g r a t e t h e m

    a w a y b o t h f r o m t h e t u b e w a l l a n d t h e t u b e a x i s , r e a c h i n g a c e r t a i n

    e q u i l i b r i u m p o s i t io n a t a b o u t 0 . 6 tu b e r a d i i f r o m t h e a x i s , i r r e s p e c t iv e o f

    t h e t u b e e n t r a n c e r a d i a l p o s i t io n o f t h e s p h e r e s . T h e o r i g i n o f t h e s e e f fe c ts

    w e r e f o u n d t o l i e i n t h e i n e r t i a o f t h e f lu i d. S e g r~ a n d S i l b e r b e r g d e v e lo p e d

    a n e m p i r i c a l e q u a t i o n t o c o r r e l a t e t h e i r d a t a f o r t h e r a d i a l m i g r a t i o n

    v e l o c i t y v r,

    2.84

    ( r )

    = r 1 - ~-; (34 )

    vr

    0 17uRet[d(d-~t

    d t / 2

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    26/60

    166

    w h e r e u i s t h e a v e r a g e f l u i d a x i a l v e l o c it y , R e t = u 2 R / v t h e R e y n o l d s

    n u m b e r ,

    dp

    t h e m e a n p a r ti c le d i a m e t e r ,

    d t

    t h e t u b e d i a m e t e r , r t h e r a d i a l

    c o o r d i n a te , a n d r * t h e e q u i l i b r i u m r a d i a l p o s i ti o n o f t h e p a r t i c l e w h i c h

    d e c r e a s e s a s dp/d t i n c re a s e s. T h e i r o b se r v a ti o n s h a v e s p a w n e d a n u m b e r

    o f t h e o r e t ic a l a n d e x p e r i m e n t a l s t u d i e s e x p l a i n i n g a n d q u a n t i f y i n g t h i s

    e f f e c t (Bre n n e r (1 966) ) .

    C o x a n d B r e n n e r ( 1 9 68 ) w e r e t h e f i r s t t o a t t e m p t a f u ll t h e o r e t i c a l

    t r e a t m e n t o f t h e p r o b le m o f r i g id s p h e r e s i n l a m i n a r f lo w f re e l y r o t a t i n g

    a n d t r a n s l a t i n g p a r a l l e l t o t h e t u b e a x is w h i c h g a v e a s a t i s fa c t o r y

    f u n d a m e n t a l e x p l a n a t i o n o f t h e r a d i a l m i g r a t i o n p h e n o m e n o n i n a t u b e

    o f f i n i te r a d i u s . T h e y o b t a i n e d t h e f i r s t -o r d e r s o l u t i o n o f t h e N a v i e r -

    S t o k e s e q u a t i o n i n c l u d i n g th e i n e r t i a l t e r m s a n d c o n v e r t e d t h e l a t e r a l

    f or ce , r e q u i r e d t o m a i n t a i n t h e s p h e r e s a t a f ix e d r , i n t o a n e q u i v a l e n t

    r a d i a l m i g r a t i o n v e lo c it y b y a p p l y i n g S t o ke s ' la w . F o r t h e n e u t r a l l y

    b u o y a n t c a se t h e y f o u n d

    v r = O . 5 u R e t C l p l 3 f - ~ t )

    w h e r e f r / d t )

    i s a f u n c t i o n o f t h e r a d i a l p o s i t i o n o f t h e p a r t i c l e i n t h e t u b e .

    E q u a t i o n ( 35 ) i s o f t h e s a m e f o r m a s t h e e m p i r i c a l o n e ( E q . ( 34 )) fr o m

    S e g r ~ a n d S i l b e r b e r g ( 1 9 62 ).

    V a s s e u r a n d C o x (1 97 6 ) h a v e a n a l y s e d t h e l a t e r a l m i g r a ti o n ,

    Vl,

    of a

    s o li d s p h e r i c a l p a r t i c l e in l a m i n a r c h a n n e l f lo w u s i n g t h e m e t h o d d e v el -

    o p e d b y C o x a n d B r e n n e r ( 19 68 ). F o r t h e c a s e o f a n e u t r a l l y b u o y a n t

    s p h e r e t h e y o b t a in e d

    v l = 4 u

    Rech f (13) (3 6)

    w h e r e R e ch = u 2 h /v , h i s t h e h a l f c h a n n e l h e i g h t a n d f ([3) d e p e n d s o n t h e

    p a r t i c l e p o s i t i o n i n t h e c h a n n e l .

    I n g e n e r a l , v i r t u a l l y a l l s t u d i e s o f t h e m i g r a t i o n p h e n o m e n a , w h e t h e r

    t h e o r e t i c a l o r e x p e r i m e n t a l ( B r e n n e r ( 1 96 6) ) a r r i v e a t t h e f o l lo w i n g f o r m

    f o r t h e m i g r a t i o n v e l o c it y e x p r e s s i o n ( G r e e n a n d B e l f o r t (1 9 80 ))

    Vl = K u Re ~dp ln f r)

    (37)

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    27/60

    167

    w h e r e

    d t

    i s th e t u b e d i a m e t e r o r e q u a l t o 2 h t h e c h a n n e l h e i g h t , R e = R e t

    o r R ech t h e v a l u e o f n l i e s b e t w e e n 2 .8 4 a n d 4 , a n d f ( r ) i s a f u n c t i o n o f

    t h e e q u i l i b r i u m p o s i t io n o f t h e p a r t i c l e i n t h e t u b e o r c h a n n e l . A c c o r d in g

    t o E q . (3 7 ), t h e l a t e r a l ( r a d i a l ) m i g r a t i o n v e l o c i ty d e p e n d s s t r o n g l y o n t h e

    a v e r a g e a x i a l f l u i d v e l o c i t y a n d t h e p a r t i c l e s i ze .

    M a d s e n ( 19 7 7 ) s e m i - e m p i r ic a l l y a n a l y s e d t h e p r o b le m o f p a r t ic l e

    m i g r a t i o n w i t h t h e u s e o f t h e p a r t ic l e m o v e m e n t f o r m u l a o f C o x a n d

    B r e n n e r ( 19 68 ) a n d t h e f i lm t h e o r y m o de l. H e f o u n d t h a t e x p e r i m e n t a l

    p e r m e a t e r a t e s f o r c h e e se w h e y a n d h e m o g l o b i n w e r e u n d e r p r e d i c t e d b y

    a f a c t o r o f 5 0 b y t h e p a r t i c l e m i g r a t i o n m o d e l . H i s p r i m a r y c o n c l u s io n

    w a s t h a t p a r t ic l e m i g r a t i o n c a n o n l y a c c o u n t fo r a p a r t o f t h e h i g h

    p e r m e a t e f l u x o b s e rv e d i n u l t r a f i l t r a t i o n o f c o ll o id a l d i s p e r s i o n s .

    G r e e n a n d B e l f o r t ( 19 8 0) d e v e l o p ed a m o d e l f o r c o ll o id a l u l t r a f i l t r a t i o n

    i n c o r p o r a t i n g t h e l a t e r a l m i g r a t i o n e ff ec t i n t o t h e s t a n d a r d f l t r a t i o n

    t h e o r y b y u s i n g S e g r ~ a n d S i l b e r b e r g ' s (1 9 62 ) e m p i r i c a l r e l a t i o n f o r t h e

    c a s e o f f lo w in a n o n - p o ro u s d u c t. I t w a s a s s u m e d t h a t t h e p e r m e a t i o n d r a g

    f or ce a n d t h e m i g r a t i o n l i ft d r a g f or ce c o ul d b e v e c t o r ia l l y a d d e d . F u r t h e r ,

    i t w a s a s s u m e d t h a t t h e t h i c k n e s s o f t h e ( i m m o b il e) c a k e l a y e r a d j u s t s

    i t s e l f t o t h e p o i n t w h e r e t h e c o n v e c ti v e f lo w of p a r t i c l e s t o w a r d s t h e

    m e m b r a n e i s b a l a n c e d b y t h e l if t v e l o ci ty a w a y fr o m t h e m e m b r a n e . I n

    o r d e r t o o b t a i n t h i s c o n d i t io n A l t e n a e t a l . ( 19 8 3) f o u n d a v a l u e f o r t h e c a k e

    l a y e r t h i c k n e s s o f 0 .7 t i m e s t h e c h a n n e l h e ig h t . T h e y c o m m e n t e d t h a t

    w h e t h e r s u c h a l a r g e v a l u e f o r t h e c a k e l a y e r i s r e a l is t i c, is q u e s ti o n a b l e .

    H o w e v e r , G r e e n a n d B e l f o r t' s ( 19 8 0) m o d e l p r e d i c t io n s f o r t h e s t e a d y

    s t a t e f l u x w e r e w i t h i n t h e r i g h t o r d e r -o f - m a g n i tu d e c o m p a r e d w i t h

    P o r t e r ' s ( 19 7 2) t h i n c h a n n e l u l t r a f i l t r a t i o n d a t a o f s t y r e n e - b u t a d i e n e

    p o l y m e r l a t e x. T h e y m e n t i o n e d t h a t M a d s e n (1 97 7 ) a p p l ie d t h e l i ft

    v e l o c it y e x p r e s s io n i n a n u n s a t i s f a c t o r y m a n n e r , b y e v a l u a t i n g t h e r a d i a l

    m i g r a t i o n v e l o c it y a t t h e o r i g i n a l t u b e r a d i u s d ] 2 a n d n o t, a s i t s h o u l d

    b e f or a s t e a d y s t a t e f l u x , a t d ] 2 - 5c, w h e r e 5c i s th e c a k e l a y e r t h i c k n e s s .

    T h e y d e m o n s t r a t e d t h a t t h i s s l i g h t d if fe r en c e in e f fe c ti ve t u b e r a d i u s ,

    n e g l e c t ed b y M a d s e n , p r o v id e d t h e m a r g i n b e t w e e n c o r r ec t a n d g r o s s ly

    i n c o r r e c t p r e d i c t i o n s o f s t e a d y s t a t e f lu x .

    A l t e n a e t a l. (1 9 83 ) a n d A l t e n a a n d B e l f o rt ( 19 8 4) s t u d i e d t h e o r e t i c a l l y

    t h e e ff ec t of l a t e r a l m i g r a t i o n o f s p h e r i c a l r ig i d n e u t r a l l y b u o y a n t p a r t i -

    c l es m o v i n g i n a l a m i n a r f lo w f i el d i n a p o r o u s c h a n n e l . T h e y e x t e n d e d

    C o x a n d B r e n n e r ' s ( 1 9 68 ) a n a l y s i s fo r p a r t i c l e m o t i o n i n a n o n - p o r o u s

    d u c t t o i n c l u d e t h e e f fe c t o f t h e w a l l p o r o s i ty . A l t e n a a n d B e l f o r t ( 19 8 4)

    s h o w e d t h a t t h e a s s u m p t i o n o f a n o -s l ip c o n d it i o n f or t h e t a n g e n t i a l f lo w

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    28/60

    168

    at the mem bran e wall and the negligibility of the disturbance velocity

    within the porous wall are good approximations for typical conditions

    found in hyperfiltration and ultrafiltration flow channels. They have

    analysed t ha t the inerti ally induced velocity (tubular-pinch effect) and

    the permeat ion drag velocity due to convection into the porous wall can

    be vectorially added when ~ _= Rep •2, where ~. is the ratio of wall

    permeat ion velocity to the mean axial fluid velocity, Rep is the particle

    Reynolds number based on the mean axial velocity and the particle radius

    and K is the ratio of particle radius to channel height. If ~ > Rep ~2, the equil ibrium posit ion moves

    closer to the porous wall and finally coincides with it re sulting in particle

    capture. Further, ~

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    29/60

    169

    TABLE 2

    Calcula tions o f the ratio of permeation and lift velocity as a function of particle size for a

    given channel gemoetry and axial centre line velocity (J = 4x105 m s -1) (Alterna et al.

    (1983))

    h or d~/2 u m d p / 2 J / v l

    (mm) (m s 1) (~tm)

    Hollow-fibre 0.1 0.1 0.1 4x 104

    1.0 40

    10.0 0.04

    Flat-p late 1.0 0.5

    Tubular 10.0 1.5

    0.1 2×105

    1.0 200

    10.0 0.2

    0.1 2×108

    1.0 2×103

    10.0 2

    ~

    1 0

    0 8

    0 6

    0 4

    0 2

    0 . 0

    0 01

    • 2.5 vol.%

    • l o v o l .

    I I I I I I I II I I I I I I I II , i i i i i i iI I

    0 1 0 1 0 0 10 00

    Partic le s ize d / (~ m )

    Fig. 3. Influence of particle size on permeate flux in aqueous dispersions of 2.5 vol% and

    10 vol% particle concentration (Fane (1984)). (Lines are for illustration purposes only).

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    30/60

    17o

    particle size increases from 25 nm to 20 pm, the flux passes through a

    minimu m at about 0.1 ~m particle size due to the fact that the polariza-

    tion control changes from diffusive (decreasing with particle size) to

    non-diffusive (increasing with particle size), such as lateral migration

    and/or scour effects (Fane et al. (1982)).

    5 . 2 S h e a r - I n d u c e d H y d r o d y n a m i c C o n v e c t i o n M o d e l

    Madsen (1977), Green and Belfort (1980), Altena et al. (1983) and

    Altena and Belfort (1984) have found from their hydrodynamic calculations

    that the inerti al lift velocity is often less than the permeat ion velocity in

    typical cross-flow filtration systems. As a result, a concentrated layer of

    deposited particles is formed on the membra ne surface. If this cake layer

    would built up indefinitely, it would plug the tube or channel, but this is

    not observed in practice. Instead, Blatt et al. (1970) have hypothes ized

    that the cake layer accumulates only until the hydrodynamic shear

    exerted by flow of dispersion causes the cake to flow tang enti ally along

    the membrane surface at a rate which balances the deposition of particles.

    Although Porter (1972a,b), Henry (1972), and others have reported an

    increase in the permeation flux with increasing tangenti al shear, indi-

    cating that a high shear rate is effective in reducing the cake layer

    thickness, this process is not well understood (Davis and Leighton (1987)).

    Leonard and Vassilieff (1984), using the method of characteristics,

    solved the unsteady, two-dimensional convective equat ion by neglecting

    the diffusion ter m (no diffusive particle transport) for the axial mov eme nt

    of deposited particles along a membrane surface. They described the

    simultaneous convective deposition of particles onto the membrane and

    the sweeping of this cake layer in response to the fluid shear along the

    mem brane surface where it is discharged with t he fluid at t he exit of the

    filtration device. Leonard and Vassilieff were able to obtain analytical

    solutions for the developing cake layer thickness over time until steady

    state is reached by assuming that the velocity profile in the vicinity of

    the cake layer is linear, the permeate flux is invariant with time and

    position along the membra ne and the cake layer is trea ted as a Newton-

    ian fluid with the same effective viscosity as the bulk dispersion. Thei r

    simple convection model has been used to predict the steady state

    performance of plasmapheresis devices, yielding good correspondence

    with exper imental observations.

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    31/60

    171

    D a v i s a n d B i r d s e ll (1 98 7 ) p r e s e n t e d a s t e a d y s t r a t i f i e d l a m i n a r f lo w

    m o d e l w h i c h r e l a x e s s o m e o f t h e s i m p l i fi c a ti o n s i m p o s e d b y L e o n a r d a n d

    V a s s i l i e f f ( 19 8 4 ). I n p a r t i c u l a r , f u l l y d e v e l o p e d p a r a b o l i c v e l o c i t y p r o f i l e s

    w e r e d e t e r m i n e d f or b o t h t h e d i s p e r s io n a n d t h e c a k e l ay e r , t h e c h a n n e l

    p r e s s u r e a n d t h e p e r m e a t e f lu x w e r e a ll ow e d to v a r y a l o n g t h e c h a n n e l ,

    a n d t h e c a k e l a y e r w a s a s s i g n e d a c o n c e n t r a t i o n - d e p e n d e n t e ff ec ti ve

    v i s c o s i ty h i g h e r t h a n t h a t o f t h e b u l k d i s p er s io n s . T h e y d e v e lo p e d o u t o f

    t h e n o n - d i m e n s i o n a l N a v i e r - S t o k e s e q u a t io n , b y n e g l e c t in g t h e t r a n -

    s i e n t a n d c o n v e c ti v e i n e r t i a t e r m s , a n d t h e c o n t i n u i t y e q u a t i o n t h e

    s o l u t i o n f o r f u l l y d e v e l o p e d f lo w i n a t w o - d i m e n s i o n a l c h a n n e l , w h i c h

    y i e l d s p a r a b o l i c f lo w p r o fi le s i n b o t h t h e d i s p e r s i o n s a n d t h e c a k e l a y e r .

    A l t h o u g h t h e g o v e r n i n g e q u a t i o n s w e r e d e v el o pe d f o r t h e f lo w o f t h e

    d i s p e r s i o n s , t h e y w e r e a l so v a l i d fo r t h e c a k e l a y e r , p r o v i d e d t h a t t h e

    v i s c o u s t e r m s a r e m u l t i p l i e d b y t h e v i s c o s i t y r a t i o ~ = ~c / ~b. A d d i t i o n a l l y ,

    t h e s t e a d y s t a t e d i f f e re n t i a l m a s s b a l a n c e s f o r t h e b u l k m a t e r i a l ( l i q u id

    p l u s s o li ds ) a n d f or t h e s o li d m a t e r i a l f lo w i n g t h r o u g h t h e c h a n n e l s e r v e d

    a s a u x i l i a r y e q u a t i o n s i n t h e d e t e r m i n a t i o n o f t h e c a k e l a y e r t h i c k n e s s ,

    t h e p r e s s u r e d ro p , a n d t h e c h a n g e o f t h e p r e s s u r e d r op o v e r t h e c h a n n e l

    d o w n s t r e a m d i s ta n c e , a l l a s a f u n c t i o n of t h e l o n g i t u d i n a l d i s ta n c e f r o m

    t h e c h a n n e l e n t r a n c e , w h i c h r e s u l t e d f u r t h e r i n t h e p e r m e a t i o n f lu x . F o r

    d i l u t e d i s p e r s i o n s , t h a t i s 5c / h

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    32/60

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    33/60

    173

    3175 ~tm and 1054 ~m mean diameter, were used, to ensure better

    observation of the marked particle and to make sure tha t Brownian and

    electrokinetic forces were negligible. Eckstein et al. found that their

    calcula ted values of the self-diffusion coefficient were not of high accuracy

    owing to the nature and size of the experimental errors, but correct within

    a factor of two. However, the self-diffusion coefficients showed the tr end

    of increasing linearly in the range of 0 to 20% particle volume fraction,

    and to be constant in the concent ration range of 20 to 50%.

    Leigh ton and Acrivos (1987a) carried out similar experiment s but only

    mea sure d the t ransi t time of a marked particle immersed in the disper-

    sions to complete a circuit of a Couette device, since they developed an

    utilization method, based on the unste ady two-dimensional density dif-

    fusion equation, which obviated the need of measuring the radial particle

    position in the Couette gap. This greatly simplified the experimental

    apparatus compared to Eckstein's et al. (1977) and as a consequence

    reduced the expe rimenta l errors. Leighton and Acrivos (1987 a) compared

    the ir measured self-diffusion coefficients (for particle volume fractions of

    5 to 40%) in dispersions of 645 ~tm and 389 ~m acrylic spheres with tha t

    observed by Eckstein et al. (1977). They found that the self-diffusion

    coefficient is proportional to the shear r ate and t he square of the particle

    radius and to be an increasing function of particle volume fraction ~,

    approximately equal to 0.5~ 2 at low concentrations, which is in contras t

    to the linear dependence for low concentrations reported by Eckste in et

    al. (1977). However, for partic le volume fractions above 20% the self-dif-

    fusion coefficients devia ted rapidly from the constant values of Ecks tein

    et al. (at ¢ = 40 vol.% approximately 5 times). Leighton and Acrivos

    (1987a) demonstrated that Eckstein's et al. (1977) experiments at high

    concentrations were limited by the presence of the Couette walls, since

    the ir particle diameter to gap-width ratio was only 1/8 compared to 1/32

    of Leighton and Acrivos.

    Leighton and Acrivos (1987b) demonstrated in the course of their

    exper iment al stud y of the behaviour of concentrated dispersions (30-50

    vol.%) of neu tra lly buoyant polys tyrene particles (46 pm and 87 pm me an

    diamete r) in New tonian fluids using the Couette device, tha t the short-

    term viscosity-increase and the long-term viscosity-decrease phenome-

    non observed in the Couette gap is due to particle migration across the

    gap-width and out of the sheared gap respectively, forced by the shear-

    induced diffusion mechanism. Their experiments enabled t hem to infer

    the values of the effective diffusivity, which consists of the sum of the

  • 8/19/2019 21 Theoretical Descriptions of Membrane Filtration of Colloids and Fine Particles-An Assessment and Review

    34/60

    174

    r a n d o m s e lf - d if f us i o n ( E c k s t e i n e t a l . ( 19 7 7 ) a n d L e i g h t o n a n d A c r iv o s

    ( 1 98 7 a )) a n d t h e n o n - r a n d o m d r i f t p r o c e ss ( m i g r a t i o n o f p a r t i c l e s a l o n g

    c o n c e n t r a t i o n g r a d i e n t s ) o c c u r r i n g in c o n c e n t r a t e d d i s p e r s i o n s o f n o n -

    u n i f o r m c o m p o s i t i o n . L e i g h t o n a n d A