2017Year%10% General%Mathematics% Chapter%1:%Linear ... · GENERAL MATHEMATICS 2017 Page 6 of 20...

20
2017 Year 10 General Mathematics Chapter 1: Linear Relations and Equations Chapter 10: Linear Graphs and Models This topic includes: In this area of study students cover representation and manipulation of linear relations and equations, and their applications in a range of contexts. Key knowledge the forms of linear relations and equations including literal linear equations the rules of linear functions and tables of values the properties of linear functions and their graphs the concept of a linear model and its properties the concepts of interpolation and extrapolation Key skills solve linear equations including literal linear equations construct tables of values from a given formula solve word problems that involve the setting up and solving of a linear equations. develop a linear model to represent and analyse a practical situation and specify its domain of application interpret the slope and the intercept of a straight-line graph in terms of its context and use the equation to make predictions with consideration of limitations of extrapolation Chapter Sections Questions to be completed 1.2 Linear Relations 7, 8, 9, 10, 11, 12, 14, 16 1.3 Solving Linear Equations 7, 8, 9, 10, 12, 13, 14, 15, 16, 18 1.4 Developing Linear Equations 2, 3, 6, 7, 8, 10, 13, 14, 16, 17, 18, 21 10.2 Linear functions and graphs 1, 3, 5, 7, 9, 11, 13ac, 14, 15ace, 17, 19, 23, 24 10.3 Linear Modelling 1, 2, 4, 7, 9, 11, 12, 15, 17 10.4 Linear equations and Predictions 4, 5, 6, 7, 10, 14, 15 More resources available at http://drweiser.weebly.com

Transcript of 2017Year%10% General%Mathematics% Chapter%1:%Linear ... · GENERAL MATHEMATICS 2017 Page 6 of 20...

2017  Year  10  General  Mathematics  

Chapter  1:  Linear  Relations  and  Equations  Chapter  10:  Linear  Graphs  and  Models  This  topic  includes:  In this area of study students cover representation and manipulation of linear relations and equations, and their applications in a range of contexts.

Key  knowledge  

•   the forms of linear relations and equations including literal linear equations •   the rules of linear functions and tables of values •   the properties of linear functions and their graphs •   the concept of a linear model and its properties •   the concepts of interpolation and extrapolation

Key  skills  

•   solve linear equations including literal linear equations •   construct tables of values from a given formula •   solve word problems that involve the setting up and solving of a linear equations. •   develop a linear model to represent and analyse a practical situation and specify its domain of

application •   interpret the slope and the intercept of a straight-line graph in terms of its context and use the equation

to make predictions with consideration of limitations of extrapolation

Chapter Sections Questions to be completed

1.2 Linear Relations 7, 8, 9, 10, 11, 12, 14, 16

1.3 Solving Linear Equations 7, 8, 9, 10, 12, 13, 14, 15, 16, 18

1.4 Developing Linear Equations 2, 3, 6, 7, 8, 10, 13, 14, 16, 17, 18, 21

10.2 Linear functions and graphs 1, 3, 5, 7, 9, 11, 13ac, 14, 15ace, 17, 19, 23, 24

10.3 Linear Modelling 1, 2, 4, 7, 9, 11, 12, 15, 17

10.4 Linear equations and Predictions 4, 5, 6, 7, 10, 14, 15

More resources available at

http://drweiser.weebly.com    

GENERAL MATHEMATICS 2017

Page 2 of 20

Table  of  Contents  THIS  TOPIC  INCLUDES:   1  KEY  KNOWLEDGE   1  KEY  SKILLS   1  TABLE  OF  CONTENTS   2  1.2  LINEAR  RELATIONS   3  IDENTIFYING  LINEAR  RELATIONS   3  RULES  FOR  LINEAR  RELATIONS   3  WORKED  EXAMPLE  2   3  TRANSPOSING  LINEAR  EQUATIONS   4  WORKED  EXAMPLE  3   4  1.3  SOLVING  LINEAR  EQUATIONS   5  SOLVING  LINEAR  EQUATIONS  WITH  ONE  VARIABLE   5  WORKED  EXAMPLE  4   5  SUBSTITUTING  INTO  LINEAR  EQUATIONS   6  WORKED  EXAMPLE  5   6  LITERAL  LINEAR  EQUATIONS   6  WORKED  EXAMPLE  6   6  1.4  DEVELOPING  LINEAR  EQUATIONS   7  DEVELOPING  LINEAR  EQUATIONS  FROM  WORD  DESCRIPTIONS   7  WORKED  EXAMPLE  7   7  WORD  PROBLEMS  WITH  MORE  THAN  ONE  UNKNOWN   7  WORKED  EXAMPLE  8   7  TABLES  OF  VALUES   8  WORKED  EXAMPLE  9   8  LINEAR  RELATIONS  DEFINED  RECURSIVELY   9  WORKED  EXAMPLE  10   9  WORKED  EXAMPLE  11   9  10.2  LINEAR  FUNCTIONS  AND  GRAPHS   10  LINEAR  FUNCTIONS   10  THE  GRADIENT  OF  A  LINEAR  FUNCTION   10  𝑥-­‐  AND  𝑦-­‐INTERCEPTS   10  GRADIENT–INTERCEPT  FORM   10  WORKED  EXAMPLE  1   11  DETERMINING  THE  GRADIENT  FROM  A  GRAPH   11  WORKED  EXAMPLE  2   12  FINDING  THE  GRADIENT  GIVEN  TWO  POINTS   12  WORKED  EXAMPLE  3   12  PLOTTING  LINEAR  GRAPHS   13  WORKED  EXAMPLE  4   13  SKETCHING  GRAPHS  USING  THE  GRADIENT  AND  Y-­‐INTERCEPT  METHOD   14  WORKED  EXAMPLE  5   14  SKETCHING  GRAPHS  USING  THE  X-­‐  AND  Y-­‐INTERCEPTS   15  WORKED  EXAMPLE  6   15  10.3  LINEAR  MODELLING   16  LINEAR  MODELS   16  EXAMPLE  7   ERROR!  BOOKMARK  NOT  DEFINED.  SOLVING  PRACTICAL  PROBLEMS   16  INTERPRETING  THE  PARAMETERS  OF  LINEAR  MODELS   ERROR!  BOOKMARK  NOT  DEFINED.  

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 3 of 20

1.2  Linear  Relations    Identifying  linear  relations    

A linear relation is a relationship between two variables that when plotted gives a straight line. Many real-life situations can be described by linear relations, such as water being added to a tank at a constant rate, or money being saved when the same amount of money is deposited into a bank at regular time intervals.

Rules  for  linear  relations    

Rules define or describe relationships between two or more variables. Rules for linear relations can be found by determining the common difference between consecutive terms of the pattern formed by the rule.

Consider the number pattern 3, 6, 9  and  12. This pattern is formed by adding 3 (the common difference is 3). If each number in the pattern is assigned a term number as shown in the table, then the expression to represent the common difference is 3𝑛 (i.e. 3  ×  𝑛).

n 1 2 3 4

3n 3 6 9 12

So, the rule for this number pattern is 3𝑛.

Now, consider the number pattern 4, 7, 10  and  13. This pattern is also formed by adding 3. But it has a starting value of 4 not 3 so the rule for this number pattern is 3𝑛 + 1

If a rule has an equals sign, it is described as an equation. For example, 3𝑛   +  1 is referred to as an expression, but if we define the term number as 𝑡, then 𝑡 = 3𝑛 + 1 is an equation.

Worked  Example  2  

Find the equations for the linear relations formed by the following number patterns.

a)   3, 7, 11, 15

b)   8, 5, 2, −1

GENERAL MATHEMATICS 2017

Page 4 of 20

Note: It is good practice to substitute a second term number into your equation to check that your answer is correct.

Transposing  linear  equations    

If we are given a linear equation between two variables, we are able to transpose (re-arrange) this relationship to express it in terms of either variable. That is, we can change the equation so that the variable on the right-hand side of the equation becomes the stand-alone variable on the left-hand side of the equation.

Worked  Example  3  

Transpose the linear equation 𝑦 = 4𝑥 + 7 to make 𝑥 the subject of the equation.

On the CAS

On  a  blank  calculator  page  

c11  (remember  we  use  documents,  never  scratchpad)  

Type:  

solve(𝑦 = 4×𝑥 + 7, 𝑥)  

Press ·,  the  answer  will  be  shown.  The  top  one  is  if  the  calculator  is  set  to  “approximate”  and  the  bottom  “exact”  or  “auto”  

To  change  this,  c52,  calculation  mode  (5th  one  down)  

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 5 of 20

1.3  Solving  linear  equations    Solving  linear  equations  with  one  variable    

To solve linear equations with one variable, all operations performed on the variable need to be identified in order, and then the opposite operations need to be performed in reverse order.

In practical problems, solving linear equations can answer everyday questions such as the time required to have a certain amount in the bank, the time taken to travel a certain distance, or the number of participants needed to raise a certain amount of money for charity.

Worked  Example  4  

Solve the following linear equations to find the unknowns.

a) 5𝑥 = 12 b) 8𝑡 + 11 = 20 c) 12 = 4(𝑛-­‐‑3) d) :;<=>

= 5

On the CAS Worked Example 4(c) and 4(d)

On  a  blank  calculator  page  

c11  (remember  we  use  documents,  never  scratchpad)  

Type:  

solve(12 = 4(𝑛 − 3), 𝑛)  then  press  ·  

 

solve(:;<=>

= 5, 𝑥)  then  press  ·  

 

GENERAL MATHEMATICS 2017

Page 6 of 20

Substituting  into  linear  equations    

If we are given a linear equation between two variables and we are given the value of one of the variables, we can substitute this into the equation to determine the other value.

Worked  Example  5  

Substitute 𝑥 = 3  into the linear equation 𝑦 = 2𝑥 + 5 to determine the value of 𝑦.

On the CAS On  a  blank  calculator  page  c11  (remember  we  use  documents,  never  scratchpad)  Type:  

solve(𝑦 = 2𝑥 + 5, 𝑦)|x=3  then  press  ·  

The  “|”  tells  the  CAS  the  value  of  𝑥  in  the  equation  The  “solve”  function  reads  “solve(the  equation,  for  the  variable)”when”  the  other  variable  is  “this”  

Literal  linear  equations    

A literal equation is an equation that includes several pronumerals or variables. Literal equations often represent real-life situations.

The equation 𝑦   =  𝑚𝑥   +  𝑐 is an example of a literal linear equation that represents the general form of a straight line. To solve literal linear equations, you need to isolate the variable you are trying to solve for.

Worked  Example  6  

Solve the linear literal equation y = mx + c for x.

On  a  blank  calculator  page  c11  (remember  we  use  documents,  never  scratchpad)  Type:  

solve(𝑦 = 𝑚𝑥 + 𝑐, 𝑥)  then  press  ·  

 

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 7 of 20

1.4  Developing  linear  equations    Developing  linear  equations  from  word  descriptions    

To write a worded statement as a linear equation, we must first identifythe unknown and choose a pronumeral to represent it. We can then use the information given in the statement to write a linear equation in terms of the pronumeral.

The linear equation can then be solved as before, and we can use the result to answer the original question.

Worked  Example  7  

Cans of soft drinks are sold at SupaSave in packs of 12 costing $5.40. Form and solve a linear equation to determine the price of 1 can of soft drink.

Word  problems  with  more  than  one  unknown    

In some instances, a word problem might contain more than one unknown. If we can express both unknowns in terms of the same pronumeral, we can create a linear equation as before and solve it to determine the value of both unknowns.

Worked  Example  8  

Georgina is counting the numberof insects and spiders, she can find in her back garden. All insects have6 legs and all spiders have 8 legs. In total, Georgina finds 43 bugs with a total of 290 legs. Form a linear equation to determine exactly how many insects and spiders Georgina found.

GENERAL MATHEMATICS 2017

Page 8 of 20

Tables  of  values    

Tables of values can be generated from formulas by entering given values of one variable into the formula. Tables of values can be used to solve problems and to draw graphs representing situations (as covered in more detail in Chapter 10).

Worked  Example  9  

The amount of water that is filling a tank is found by the rule W = 100t + 20, where W is the amount of water in the tank in litres and t is the time in hours.

a)   Generate a table of values that shows the amount of water, W, in the tank every hour for the first 8 hours (i.e. t = 0, 1, 2, 3, ..., 8).

b)   Using your table, how long in hours will it take for there to be over 700 litres in the tank?

On  a  blank  list  &  spreadsheet  page  c14    Enter  a  label  of  “time”  in  the  first  column  and  type  in  the  time  values  0  to  8  Enter  the  label  “water”  into  the  second  column  In  the  first  cell  in  the  “water”  column  enter:  = 100 ∙ 𝑎1 + 20  then  press  ·  The  answer  should  be  20  

Highlight  the  b1  cell  (the  answer  20)  (it  will  go  blue)  Now  press  b33  to  use  the  “fill  down”  function  and  press  the  down  arrow  until  the  time  value  is  8  and  the  press  ·  to  apply  the  equation  to  all  the  cells  

b) Look for the value of the Water that is over 700 and read off the value of the time.

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 9 of 20

Linear  relations  defined  recursively    

Many  sequences  of  numbers  are  obtained  by  following  rules  that  define  a  relationship  between  any  one  term  and  the  previous  term.  Such  a  relationship  is  known  as  a  recurrence  relation.    

A  term  in  such  a  sequence  is  defined  as  tn,  with  n  denoting  the  place  in  the  sequence.  The  term  tn  −  1  is  the  previous  term  in  the  sequence.    

Worked  Example  10  A  linear  recurrence  relation  is  given  by  the  formula  𝑡𝑛 = 𝑡𝑛

 -­‐‑  

1 + 6, 𝑡1

 

=  5.  Write  the  first  six  terms  of  the  sequence.    

Worked  Example  11  

The  weekly  rent  on  an  inner-­‐city  apartment  increases  by  $10  every  year.  In  a  certain  year  the  weekly  rent  is  $310.    a)   Model this situation by setting up a linear recurrence relation between the weekly rental prices in

consecutive years.

b)   Fine the weekly rent for the first six years. On  a  blank  list  &  spreadsheet  page  c14    Enter  a  label  of  “year”  in  the  first  column  and  type  in  the  year  values  1  to  6  Enter  the  label  “rent”  into  the  second  column  In  the  first  cell  in  the  “rent”  column  enter  310  In  the  second  cell  (b2)  enter  the  equation  = 310 + 10  then  press  ·  Then  fill  down  the  equation  (b33)  

c)   Find an expression for the weekly rent (r) in the nth year.

GENERAL MATHEMATICS 2017

Page 10 of 20

10.2  Linear  functions  and  graphs    Linear  functions    

A  function  is  a  relationship  between  a  set  of   inputs  and  outputs,  such  that  each  input   is  related  to  exactly  one  output.  A  function  of  𝑥  is  denoted  as  𝑓(𝑥).  Each  input  and  output  can  be  expressed  as  an  ordered  pair,   i.e.  (𝑥, 𝑓(𝑥))  where  𝑥   is   the   input  and  𝑓(𝑥)   the  output. A   linear   function   is  a   set  of  ordered  pairs  that  form  a  straight  line  when  graphed.    

The  gradient  of  a  linear  function    

The  gradient  (or slope) of  a  straight-­‐line  function,  determines  the  change  in  the  𝑓(𝑥) value  for  each  change  in  𝑥-­‐value.  The  gradient  can  be  found  by  analysing  the  equation,  by  examining  the  graph  or  by  finding  the  change   in  values   if   two  points  are  given.  The  gradient   is   typically   represented  with  the  pronumeral  𝑚.    

A   positive   gradient   means   that   the   𝑓(𝑥) value   is  increasing   as   the  𝑥-­‐value   increases,   and   a   negative  gradient  means  that  the  𝑓(𝑥) value  is  decreasing  as  the  𝑥-­‐value  increases.  

A  gradient  of  EF  means  that  there  for  every  increase  

of  b  in  the  x-­‐value,  there  is  an  increase  of  a  in  the  y-­‐value.  For  example,  a  gradient  of  =

>  means  that  for  

every  increase  of  3  in  the  x-­‐value,  the  y-­‐value  increases  by  2.  (Recall, the gradient is also known as the GHIJ

GKL).  

𝑥-­‐  and  𝑦-­‐intercepts    

The  𝒙-­‐intercept  of  a  linear  function  is  the  point  where  the  graph  of  the  equation  crosses  the  𝑥-­‐axis.  This  occurs  when  𝑦   =  0.    

The  𝒚-­‐intercept  of  a  linear  function  is  the  point  where  the  graph  of  the  equation  crosses  the  𝑦-­‐axis.  This  occurs  when  𝑥   =  0.    

In  the  graph  of  𝑦 = 𝑥 + 3,  we  can  see  that  the  𝑥-­‐intercept  isat  (-­‐‑3, 0)  and   the  𝑦-­‐intercept   is   at   (0, 3).   These   points   canalso,   be   determined  algebraically  by  putting  𝑦 = 0  and  𝑥 = 0  into  the  equation.    

Gradient–intercept  form    

All  linear  equations  relating  the  variables  𝑥  and  𝑦  can  be  rearranged  into  the  form𝑦 = 𝑚𝑥 + 𝑐,  where  𝑚  is  the  gradient.  This  is  known  as  the  gradient–intercept  form  of  the  equation.    

If  a  linear  equation  is  in  gradient–intercept  form,  the  number  and  sign  in  front  of  the  𝑥-­‐value  gives  the  value  of  the  gradient  of  the  equation.  For  example,  in  𝑦 = 4𝑥 + 5,  the  gradient  is  4.    

The  value  of  𝑐  in  linear  equations  written  in  gradient–intercept  form  is  the  𝑦-­‐intercept  of  the  equation.  This  is  because  the  𝑦-­‐intercept  occurs  when  𝑥 = 0,  and  when  𝑥 = 0  the  equation  simplifies  to  𝑦 = 𝑐.  The  value  of  𝑐  in  𝑦 = 4𝑥 + 5  is  5.      

 

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 11 of 20

Worked  Example  1  

State  the  gradients  and  y-­‐intercepts  of  the  following  linear  equations.  

a)   𝑦 = 5𝑥 + 2  

b)    2𝑦 = 4𝑥-­‐‑6

On  a  blank  calculator  page  c11  

solve(2𝑦 = 4𝑥 − 6, 𝑦)  then  press  ·  

so  the  gradient  is  2  and  the  y-­‐intercept  is  −3  

Determining  the  gradient  from  a  graph    

The  value  of  the  gradient  can  be  found  from  a  graph  of  a   linear   function.   The   gradient   can   be   found   by  selecting   two   points   on   the   line,   then   finding   the  change   in  the  𝑦-­‐values  and  dividing  by  the  change   in  the  𝑥-­‐values.    

In  other  words,  the  general  rule  to  find  the  value  of  a  gradient   that   passes   through   the   points   (𝑥1, 𝑦1)   and  (𝑥2, 𝑦2)  is:    

 

 

For  all  horizontal  lines  the  𝑦-­‐values  will  be  equal,  so  the  numerator  of  OP<OQ;P<;Q

will  be  0.  Therefore,  the  gradient  of  vertical  lines  is  0.    

For  all  vertical  lines  the  𝑥-­‐values  will  be  equal,  so  the  denominator  of  OP<OQ;P<;Q

will  be  0.  Dividing  a  value  by  0  is  undefined;  therefore,  the  gradient  of  vertical  lines  is  undefined.  

 

GENERAL MATHEMATICS 2017

Page 12 of 20

Worked  Example  2  

Find the values of the gradients of the following graphs.

a) b)

Finding  the  gradient  given  two  points    

If  a  graph  is  not  provided,  we  can  still  find  the  gradient  if  we  are  given  two  points  that  the  line  passes  through.   The   same   formula   is   used   to   find   the   gradient   by   finding   the   difference   in   the   two   𝑦-­‐coordinates  and  the  difference  in  the  two  𝑥-­‐coordinates:    

For  example,  the  gradient  of  the  line  that  passes  through  the  points  (1, 1)  and  (4, 3)  is    

𝑚 =𝑦= − 𝑦R𝑥= − 𝑥R

=3 − 14 − 1 =

23  

Worked  Example  3  

Find  the  value  of  the  gradients  of  the  linear  graphs  that  pass  through  the  following  points.    

a)   (4,6) and (5,9)

b)   (2, -­‐‑1) and (0,5)  

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 13 of 20

Plotting  linear  graphs    

Linear   graphs   can   be   constructed   by   plotting   the   points   and   then  ruling  a  line  between  the  points  as  shown  in  the  diagram.    

If  the  points  or  a  table  of  values  are  not  given,  then  the  points  can  be  found   by   substituting   x-­‐values   into   the   rule   and   finding   the  corresponding  y-­‐values.  If  a  table  of  values  is  provided,  then  the  graph  can  be  constructed  by  plotting  the  points  given  and  joining  them.    

Worked  Example  4  

Construct  a  linear  graph  that  passes  through  the  points  (−1,  2),  (0,  4),  (1,  6)  and  (3,  10):    

a)   without technology b)   using CAS.

a)  

b)  

 On  a  blank  list  &  spreadsheet  page  c14    Enter  a  label  of  “x”  in  the  first  column  and  type  in  the  x  values  -­‐1,  0,  1,  3  Enter  the  label  “y”  into  the  second  column  enter  the  corresponding  y-­‐values  to  the  x-­‐values  entered  above    

Add  a  new  Data  and  Statistics  page  (/~5)  e  to  enter  the  x-­‐axis  and  e  again  to  enter  the  y-­‐axis    Press  b21  to  connect  the  data  points  with  a  line.  Alternatively,  press  b461  to  fit  a  straight  line  to  the  data  points    

GENERAL MATHEMATICS 2017

Page 14 of 20

Sketching  graphs  using  the  gradient  and  y-­‐intercept  method    

A  linear  graph  can  be  constructed  by  using  the  gradient  and  y-­‐intercept.   The   y-­‐intercept   is   marked   on   the   y-­‐axis,   and  then  another  point  is  found  by  using  the  gradient.    

Worked  Example  5  

Using  the  gradient  and  the  y-­‐intercept,  sketch  the  graph  of  each  of  the  following.    

a)   𝑦 = >:𝑥 − 2

b)   A linear graph with a gradient of 3 and a y-intercept of 1

c)   y=−2x+4

 

 

 

   

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 15 of 20

Sketching  graphs  using  the  x-­‐  and  y-­‐intercepts  

If  the  points  of  a  linear  graph  where  theline  crosses  the  𝑥-­‐  and  𝑦-­‐axes  (the  𝑥-­‐  and  𝑦-­‐intercepts)  are  known,  then  the  graph  can  be  constructed  by  marking  these  points  and  ruling  a  line  through  them.    

To  find  the  𝑥-­‐intercept,  substitute  𝑦 = 0  into  the  equation  and  then  solve  the  equation  for  𝑥.    

To  find  the  𝑦-­‐intercept,  substitute  𝑥 = 0  into  the  equation  and  then  solve  the  equation  for  𝑦.    

 

Worked  Example  6  

Find  the  value  of  the  𝑥-­‐  and  𝑦-­‐  intercepts  for  the  following  linear  equations,  and  hence  sketch  their  graphs.    

a)   3𝑥 + 4𝑦 = 12 b)   𝑦 = 5𝑥

 

On  the  CAS  

a)  Find  the  x  and  y  intercepts.  

On  a  blank  calculator  page  c11    Type:  

solve 3𝑥 + 4𝑦 = 12, 𝑥 |𝑦 = 0  then  press  ·  to  get  the  x-­‐intercept.  

Repeat  for  solve 3𝑥 + 4𝑦 = 12, 𝑦 |𝑥 = 0  to  get  the  y-­‐intercept    

b)  Repeat  for  𝑦 = 5𝑥  

 

 

     

GENERAL MATHEMATICS 2017

Page 16 of 20

10.3  Linear  modelling    Linear  models    

Practical  problems  in  which  there  is  a  constant  change  over  time  can  be  modelled  by  linear  equations.  The   constant   change,   such   as   therate   at  which  water   is   leaking   or   the   hourly   rate   charged   by   a  tradesperson,  can  be  represented  by  the  gradient  of  the  equation.    

Usually  the  𝑦-­‐value  is  the  changing  quantity  and  the  𝑥-­‐value  is  time.    

The  starting  point  or  initial  point  of  the  problemis  represented  by  the  y-­‐intercept,  when  thex-­‐value  is  0.  This  represents  the  initial  or  startingvalue.  In  situations  where  there  is  a  negativegradient  the  x-­‐intercept  represents  when  there  is  nothing  left,  such  as  the  time  taken  for  a  leaking  water  tank  to  empty.    

Identifying   the   constant   change   and   the   starting   point   can   help   to   construct   a   linear   equation   to  represent  a  practical  problem.  Once   this  equation  has  been  established  we  can  use   it   to  calculate  specific  values  or  to  make  predictions  as  required.    

Solving  practical  problems    

Once  an  equation  is  found  to  represent  the  practical  problem,  solutions  to  the  problem  can  be  found.  When  we  have  determined  important  values  in  practical  problems,  such  as  the  value  of  the  intercepts  and  gradient,   it   is   important   to  be  able   to   relate   these  back   to   the  problem  and  to   interpret   their  meaning.  Knowing  the  equation  can  also  help  to  find  other  values  related  to  the  problem  (at  a  certain  time  for  example).  

Example  8  

A  yoga  ball  is  being  pumped  full  of  air  at  a  rate  of  40  cm3/second.  Initially  there  is  100  cm3  of  airin  the  ball.    

a)   Construct  an  equation  that  represents  the  amount  of  air,  A,  in  the  ball  after  t  seconds.    

 

 

 

 

b)   Interpret  what  the  value  of  the  y-­‐intercept  in  the  equation  means.  

 

 

 

 

c)   How  much  air,  in  cm3,  is  in  the  ball  after  2  minutes?  

 

 

 

 

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 17 of 20

d)   When  fully  inflated,  the  ball  holds  100  000  cm3  of  air.  Determine  how  long,  in  minutes,  it  takes  to  fully  inflate  the  ball.  Write  your  answer  to  the  nearest  minute.    

 

 

 

 

 

 

The  domain  of  a  linear  model    

When  creating  a   linear  model,   it   is   important   to   interpret   the  given   informationto  determine  the  domain  of  the  model,  that  is,  the  values  for  which  the  model  is  applicable.    

The  domains  of  linear  models  are  usually  expressed  using  the  less  than  or  equal  to  sign  (≤)  and  the  greater  than  or  equal  to  sign  (≥).  

For  example,  in  the  previous  example  about  air  pumped  into  a  yoga  ball  at  a  constant  rate,  the  model  will  stop  being  valid  before  100cm3  and  after  100  000  cm3  of  air  is  in  the  yoga  ball,  so  the  domain  only  includes  x-­‐values  for  when  this  is  true.    

 

Example  9  

Express  the  following  situations  as  linear  models  and  give  the  domains  of  the  models.    

a)   Julie  works  at  a  department  store  and  is  paid  $19.20  per  hour.  She  must  work  for  a  minimum  of  10  hours  per  week,  but  due  to  her  study  commitments  she  can  work  for  no  more  than  20  hours  per  week.    

 

 

 

 

 

 

b)   The  results  in  a  driving  test  are  marked  out  of  100,  with  4  marks  taken  off  for  every  error  made  on  the  course.  The  lowest  possible  result  is  40  marks.    

 

   

GENERAL MATHEMATICS 2017

Page 18 of 20

10.4  Linear  equations  and  predictions    This section is presented from the linear equation perspective. We will cover this from a data and statistics perspective in Unit 2 – Statistics. Finding  the  equation  of  straight  lines    

Given  the  gradient  and  y-­‐intercept    

When  we  are  given  the  gradient  and  𝑦-­‐intercept  of  a  straight  line,  we  can  enter  these  values  into  the  equation  𝑦   =  𝑚𝑥   +  𝑐  to  determine  the  equation  of  the  straight  line.  Remember  that  𝑚  is  equal  to  the  value  of  the  gradient  and  c  is  equal  to  the  value  of  the  𝑦-­‐intercept.    

For  example,  if  we  are  given  a  gradient  of  3  and  a  𝑦-­‐intercept  of  6,  then  the  equation  of  the  straight  line  would  be  𝑦   =  3𝑥   +  6.    

Given  the  gradient  and  one  point    

When  we  are  given  the  gradient  and  one  point  of  a  straight  line,  we  need  to  establish  the  value  of  the  y-­‐intercept  to  find  the  equation  of  the  straight  line.  This  can  be  done  by  substituting  the  coordinates  of  the  given  point  into  the  equation  𝑦   =  𝑚𝑥   +  𝑐  and  then  solving  for  𝑐.  Remember  that  𝑚  is  equal  to  the  value  of  the  gradient,  so  this  can  also  be  substituted  into  the  equation.    

Given  two  points    

When  we  are  given  two  points  of  a  straight  line,  we  can  find  the  value  of  thegradient  of  a  straight  line  between   these  points   as  discussed   in   Section  10.2   (by  using  𝑚 = OP<OQ

;P<;Q).  Once   the  gradient   is  

found,  we  can  find  the  𝑦-­‐intercept  by  substituting  one  of  the  points  into  the  equation  𝑦 = 𝑚𝑥 + 𝑐  and  then  solving  for  𝑐.    

Example  10  

Find  the  equations  of  the  following  straight  lines.    

a)   A  straight  line  with  a  gradient  of  5  passing  through  the  point  (-­‐‑2, -­‐‑5)    

 

 

 

 

b)   A  straight  line  passing  through  the  points  (-­‐‑3, 4)  and  (1, 6)

c)   A  straight  line  passing  through  the  points  (-­‐‑3, 7)  and  (0, 7)    

 

   

LINEAR EQUATIONS, GRAPHS AND MODELS

Page 19 of 20

Lines  of  best  fit  by  eye    

Sometimes  the  data  for  a  practical  problem  may  not  be  in  the  form  of  a  perfect  linear  relationship,  but  the  data  can  still  be  modelled  by  an  approximate  linear  relationship.    

When  we  are  given,  a  scatterplot  representing  data  that  appears  to  be  approximately  represented  by  a  linear  relationship,  we  can  draw  aline  of  best  fit  by  eye  so  that  approximately  half  of  the  data  points  are  on  either  side  of  the  line  of  best  fit.    

Lines  of  best  fit  by  eye    

Sometimes  the  data  for  a  practical  problem  may  not  be  in  the  form  of  a  perfect  linear  relationship,  but  the  data  can  still  be  modelled  by  an  approximate  linear  relationship.    

When  we   are   given   a   scatterplot   representing   data   that  appears   to   be   approximately   represented   by   a   linear  relationship,  we  can  draw  aline  of  best  fit  by  eye  so  that  approximately  half  of  the  data  points  are  on  either  side  of  the  line  of  best  fit.    

 

Example  11  

A   sports   scientist   is   looking  at  data  comparing  the  heights  of  athletes  and  their  performance  in  the  high  jump.  The  following  table  and  scatterplot  represent  the  data  they  have  collected.  A  line  of  best  fit  by  eye  has  been  drawn   on   the   scatterplot.  Choose  two  appropriate  points  that   lie   on   the   line   of   best   fit  and   determine   the   equation  for  the  line.    

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL MATHEMATICS 2017

Page 20 of 20

Making  predictions    

Interpolation    

When we use interpolation, we aremaking a prediction from a line of bestfit that appears within the parameters ofthe original data set.

If  we  plot  our  line  of  best  fit  on  the  scatterplot  of  the  given  data,  then  interpolation will occur between thefirst and last points of the scatterplot.

Extrapolation    

When we use extrapolation, we are making a prediction from a line of best fit that appears outside the parameters of the original data set.

Reliability  of  predictions    

The  more  pieces  of  data  there  are  in  a  set,  the  better  the  line  of  best  fit  you  will  be  able  to  draw.  More  data  points  allow  more  reliable  predictions.    

In   general,   interpolation   is   a   far   more   reliable  method   of   making   predictions   than   extrapolation.  However,  there  are  other  factors  that  should  also  be  considered.  Interpolation  closer  to  the  centre  of  the  data  set  will  be  more  reliable  that  interpolation  closer  to  the  edge  of  the  data  set.  Extrapolation  that  appears  closer  to  the  data  set  will  be  much  more  reliable  than  extrapolation  that  appears  further  away  from  the  data  set.    

Worked  Example  12  

The  following  data  represent  the  air  temperature  (°C)  and  depth  of  snow  (cm)  at  a  popular  ski  resort.    

The  line  of  best  fit  for  this  data  set  has  been  calculated  as  𝑦 = -­‐‑7.2𝑥 + 84.    

a)  Use  the  line  of  best  fit  to  estimate  the  depth  of  snow  if  the  air  temperature  is  -­‐‑6.5°𝐶.    

 

b)  Use  the  line  of  best  fit  to  estimate  the  depth  of  snow  if  the  air  temperature  is  25.2°𝐶.  

 

 

 

 

c)  Comment  on  the  reliability  of  your  estimations  in  parts  a)  and  b).