2017 Mathematical Methods Written examination 2 … · MATHEMATICAL METHODS Written examination 2...

25
MATHEMATICAL METHODS Written examination 2 Thursday 9 November 2017 Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 2.00 pm (2 hours) QUESTION AND ANSWER BOOK Structure of book Section Number of questions Number of questions to be answered Number of marks A 20 20 20 B 4 4 60 Total 80 Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used. Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape. Materials supplied Question and answer book of 22 pages Formula sheet Answer sheet for multiple-choice questions Instructions Write your student number in the space provided above on this page. Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this. Unless otherwise indicated, the diagrams in this book are not drawn to scale. All written responses must be in English. At the end of the examination Place the answer sheet for multiple-choice questions inside the front cover of this book. You may keep the formula sheet. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2017 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Victorian Certificate of Education 2017 STUDENT NUMBER Letter

Transcript of 2017 Mathematical Methods Written examination 2 … · MATHEMATICAL METHODS Written examination 2...

MATHEMATICAL METHODSWritten examination 2

Thursday 9 November 2017 Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 2.00 pm (2 hours)

QUESTION AND ANSWER BOOK

Structure of bookSection Number of

questionsNumber of questions

to be answeredNumber of

marks

A 20 20 20B 4 4 60

Total 80

• Studentsarepermittedtobringintotheexaminationroom:pens,pencils,highlighters,erasers,sharpeners,rulers,aprotractor,setsquares,aidsforcurvesketching,oneboundreference,oneapprovedtechnology(calculatororsoftware)and,ifdesired,onescientificcalculator.CalculatormemoryDOESNOTneedtobecleared.Forapprovedcomputer-basedCAS,fullfunctionalitymaybeused.

• StudentsareNOTpermittedtobringintotheexaminationroom:blanksheetsofpaperand/orcorrectionfluid/tape.

Materials supplied• Questionandanswerbookof22pages• Formulasheet• Answersheetformultiple-choicequestions

Instructions• Writeyourstudent numberinthespaceprovidedaboveonthispage.• Checkthatyournameandstudent numberasprintedonyouranswersheetformultiple-choice

questionsarecorrect,andsignyournameinthespaceprovidedtoverifythis.• Unlessotherwiseindicated,thediagramsinthisbookarenot drawntoscale.• AllwrittenresponsesmustbeinEnglish.

At the end of the examination• Placetheanswersheetformultiple-choicequestionsinsidethefrontcoverofthisbook.• Youmaykeeptheformulasheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

©VICTORIANCURRICULUMANDASSESSMENTAUTHORITY2017

SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education 2017

STUDENT NUMBER

Letter

2017MATHMETHEXAM2 2

SECTION A – continued

Question 1Letf :R → R,f (x)=5sin(2x)–1.TheperiodandrangeofthisfunctionarerespectivelyA. πand[−1,4]B. 2πand[−1,5]C. πand[−6,4]D. 2πand[−6,4]E. 4πand[−6,4]

Question 2Partofthegraphofacubicpolynomialfunctionfandthecoordinatesofitsstationarypointsareshownbelow.

O 5

50

–50

–6

(–3, 36)

x

y

5 400,3 27

f′(x)<0fortheintervalA. (0,3)

B. ( , ) ,−∞ − ∪( )5 0 3

C. ( , ) ,−∞ − ∪ ∞

3 5

3

D. −

3 5

3,

E. −

40027

36,

SECTION A – Multiple-choice questions

Instructions for Section AAnswerallquestionsinpencilontheanswersheetprovidedformultiple-choicequestions.Choosetheresponsethatiscorrectforthequestion.Acorrectanswerscores1;anincorrectanswerscores0.Markswillnotbedeductedforincorrectanswers.Nomarkswillbegivenifmorethanoneansweriscompletedforanyquestion.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.

3 2017MATHMETHEXAM2

SECTION A – continuedTURN OVER

Question 3Aboxcontainsfiveredmarblesandthreeyellowmarbles.Twomarblesaredrawnatrandomfromtheboxwithoutreplacement.Theprobabilitythatthemarblesareofdifferentcoloursis

A. 58

B. 35

C. 1528

D. 1556

E. 3028

Question 4Let fandgbefunctionssuchthat f (2)=5, f (3)=4,g(2)=5,g(3)=2andg(4)=1.Thevalueof f (g(3))isA. 1B. 2C. 3D. 4E. 5

Question 5The95%confidenceintervalfortheproportionofferryticketsthatarecancelledontheintendeddeparturedayiscalculatedfromalargesampletobe(0.039,0.121).ThesampleproportionfromwhichthisintervalwasconstructedisA. 0.080B. 0.041C. 0.100D. 0.062E. 0.059

2017MATHMETHEXAM2 4

SECTION A – continued

Question 6Partofthegraphofthefunctionf isshownbelow.Thesamescalehasbeenusedonbothaxes.

x

y

Thecorrespondingpartofthegraphoftheinversefunctionf −1isbestrepresentedby

x

y

x

y

x

y

x

y

x

yA. B.

D. E.

C.

Question 7Theequation(p–1)x2 + 4x=5–p hasnorealrootswhenA. p2–6p+6<0B. p2–6p+1>0C. p2–6p–6<0D. p2–6p+1<0E. p2–6p+6>0

5 2017MATHMETHEXAM2

SECTION A – continuedTURN OVER

Question 8Ify=ab–4x+2,wherea>0,thenxisequalto

A. 14

2b ya− −( )log ( )

B. 14

2b ya− +( )log ( )

C. b ya− +

log ( )1

42

D. b ya42− −log ( )

E. 14

2b ya+ −( )log ( )

Question 9Theaveragerateofchangeofthefunctionwiththerulef (x)=x2–2xovertheinterval[1,a], wherea>1,is8.ThevalueofaisA. 9

B. 8

C. 7

D. 4

E. 1 2+

Question 10AtransformationT:R2 → R2withruleT

xy

xy

=

2 0

0 13

mapsthegraphof y x= +

3 2

4sin π

ontothegraphof

A. y=sin(x + π)

B. y x= −

sin π

2

C. y=cos(x + π)

D. y=cos(x)

E. y x= −

cos π

2

2017MATHMETHEXAM2 6

SECTION A – continued

Question 11Thefunctionf :R → R,f (x)=x3 + ax2 + bxhasalocalmaximumatx=–1andalocalminimumatx=3.ThevaluesofaandbarerespectivelyA. –2and–3B. 2and1C. 3and–9D. –3and–9E. –6and–15

Question 12Thesumofthesolutionsof sin( )2 3

2x = overtheinterval[–π,d]is–π.

ThevalueofdcouldbeA. 0

B. 6π

C. 34π

D. 76π

E. 32π

Question 13Let h R h x

x: ( , ) , ( ) .− → =

−1 1

11

Whichoneofthefollowingstatementsabouthisnottrue?A. h(x)h(–x)=–h(x2)B. h(x)+h(–x)=2h(x2)C. h(x)–h(0)=xh(x)D. h(x)–h(–x)=2xh(x2)E. (h(x))2=h(x2)

Question 14

TherandomvariableXhasthefollowingprobabilitydistribution,where0 13

< <p .

x –1 0 1

Pr(X=x) p 2p 1–3p

ThevarianceofXisA. 2p(1–3p)B. 1–4pC. (1–3p)2

D. 6p–16p2

E. p(5–9p)

7 2017MATHMETHEXAM2

SECTION A – continuedTURN OVER

Question 15ArectangleABCDhasverticesA(0,0),B(u,0),C(u, v)andD(0,v),where(u, v)liesonthegraphof y=−x3+8,asshownbelow.

y

8D C(u, v)

A B 2x

Themaximumareaoftherectangleis

A. 23

B. 6 23

C. 16D. 8

E. 3 23

Question 16ForrandomsamplesoffiveAustralians,P̂ istherandomvariablethatrepresentstheproportionwholiveinacapitalcity.

Giventhat ( ) 1Pr 0 ,243

= =P̂ then ( )Pr 0.6 ,>P̂ correcttofourdecimalplaces,is

A. 0.0453B. 0.3209C. 0.4609D. 0.5390E. 0.7901

2017MATHMETHEXAM2 8

SECTION A – continued

Question 17Thegraphofafunctionf,wheref(−x)=f(x),isshownbelow.

y

xa b c d

Thegraphhasx-interceptsat(a,0),(b,0),(c,0)and(d,0)only.Theareaboundbythecurveandthex-axisontheinterval[a,d]is

A. ( )d

af x dx∫

B. f x dx f x dx f x dxa

b

c

b

c

d( ) ( ) ( )∫ ∫ ∫− +

C. 2 f x dx f x dxa

b

b

c( ) ( )∫ ∫+

D. 2 2f x dx f x dxa

b

b

b c( ) ( )∫ ∫−

+

E. f x dx f x dx f x dxa

b

c

b

d

c( ) ( ) ( )∫ ∫ ∫+ +

Question 18LetXbeadiscreterandomvariablewithbinomialdistributionX~Bi(n, p).Themeanandthestandarddeviationofthisdistributionareequal.Giventhat0<p<1,thesmallestnumberoftrials,n,suchthatp ≤0.01isA. 37B. 49C. 98D. 99E. 101

9 2017MATHMETHEXAM2

END OF SECTION ATURN OVER

Question 19Aprobabilitydensityfunctionfisgivenby

f xx k x k

( )cos( ) ( )

=+ < < +

1 10 elsewhere

where0<k<2.ThevalueofkisA. 1

B. 3 1

2π −

C. π−1

D. 1

2π −

E. 2π

Question 20Thegraphsof : 0, , ( ) cos( ) and : 0, , ( ) 3 sin( )

2 2πf R f x x g R g x x → = → =

π areshownbelow.

ThegraphsintersectatB.

π2

π2

3,

y x= 3sin( )

y = cos(x)

B1

O

y

xA

TheratiooftheareaoftheshadedregiontotheareaoftriangleOABisA. 9:8

B. 3 1 38

− : π

C. 8 3 – 3 : 3π

D. 3 1 34

− : π

E. 1 38

: π

2017MATHMETHEXAM2 10

SECTION B – Question 1–continued

Question 1 (11marks)Let f :R → R, f (x)=x3 –5x. Partofthegraphof f isshownbelow.

x

y

10

5–5

–10

–5

O

5

a. Findthecoordinatesoftheturningpoints. 2marks

b. A(−1,f(−1))andB(1,f(1))aretwopointsonthegraphof f.

i. FindtheequationofthestraightlinethroughAandB. 2marks

ii. FindthedistanceAB. 1mark

SECTION B

Instructions for Section BAnswerallquestionsinthespacesprovided.Inallquestionswhereanumericalanswerisrequired,anexactvaluemustbegivenunlessotherwisespecified.Inquestionswheremorethanonemarkisavailable,appropriateworkingmust beshown.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.

11 2017MATHMETHEXAM2

SECTION B – continuedTURN OVER

Letg:R → R,g(x)=x3 –kx, k ∈ R+.

c. LetC(–1,g(−1))andD(1,g(1))betwopointsonthegraphofg.

i. FindthedistanceCDintermsofk. 2marks

ii. FindthevaluesofksuchthatthedistanceCDisequaltok+1. 1mark

d. Thediagrambelowshowspartofthegraphsofgandy=x.Thesegraphsintersectatthepointswiththecoordinates(0,0)and(a,a).

y y = g(x)

y = x(a, a)

(0, 0) x

i. Findthevalueofaintermsofk. 1mark

ii. Findtheareaoftheshadedregionintermsofk. 2marks

2017 MATHMETH EXAM 2 12

SECTION B – Question 2 – continued

Question 2 (12 marks)Sammy visits a giant Ferris wheel. Sammy enters a capsule on the Ferris wheel from a platform above the ground. The Ferris wheel is rotating anticlockwise. The capsule is attached to the Ferris

wheel at point P. The height of P above the ground, h, is modelled by ( ) 65 – 55cos ,15

th t π =

where t is the time in minutes after Sammy enters the capsule and h is measured in metres.

Sammy exits the capsule after one complete rotation of the Ferris wheel.

platform

a capsule

h

P

a. State the minimum and maximum heights of P above the ground. 1 mark

b. For how much time is Sammy in the capsule? 1 mark

c. Find the rate of change of h with respect to t and, hence, state the value of t at which the rate of change of h is at its maximum. 2 marks

13 2017MATHMETHEXAM2

SECTION B – Question 2–continuedTURN OVER

AstheFerriswheelrotates,astationaryboatatB, onanearbyriver,firstbecomesvisibleatpointP1.Bis500mhorizontallyfromtheverticalaxisthroughthecentreC oftheFerriswheelandangleCBO=θ,asshownbelow.

500 m

C

y

P1

Ox

d. Findθindegrees,correcttotwodecimalplaces. 1mark

PartofthepathofPisgivenbyy x x= − + ∈ −3025 62 5 55 55, [ , ], wherexandyareinmetres.

e. Finddydx. 1mark

2017MATHMETHEXAM2 14

SECTION B – continued

AstheFerriswheelcontinuestorotate,theboatatB isnolongervisiblefromthepointP2(u,v)onwards.ThelinethroughBandP2istangenttothepathofP,whereangleOBP2=α.

500 m

α

y

B

O

P2(u, v)

C

x

f. FindthegradientofthelinesegmentP2Bintermsofuand,hence,findthecoordinatesof P2,correcttotwodecimalplaces. 3marks

g. Findαindegrees,correcttotwodecimalplaces. 1mark

h. Henceorotherwise,findthelengthoftime,tothenearestminute,duringwhichtheboatat B isvisible. 2marks

15 2017MATHMETHEXAM2

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

2017MATHMETHEXAM2 16

SECTION B – Question 3–continued

Question 3 (19marks)ThetimeJenniferspendsonherhomeworkeachdayvaries,butshedoessomehomework everyday.ThecontinuousrandomvariableT,whichmodelsthetime,t,inminutes,thatJenniferspends eachdayonherhomework,hasaprobabilitydensityfunctionf,where

f t

t t

t t( )

( )

( )=

− ≤ <

− ≤ ≤

1625

20 20 45

1625

70 45 70

0 elsewhere

a. Sketchthegraphoffontheaxesprovidedbelow. 3marks

150

125

200 40 60 80 100

y

t

b. FindPr(25≤T≤55). 2marks

c. FindPr(T≤25|T≤55). 2marks

17 2017MATHMETHEXAM2

SECTION B – Question 3–continuedTURN OVER

d. FindasuchthatPr(T≥a)=0.7,correcttofourdecimalplaces. 2marks

e. TheprobabilitythatJenniferspendsmorethan50minutesonherhomeworkonanygivenday

is 825

. Assumethattheamountoftimespentonherhomeworkonanydayisindependentof

thetimespentonherhomeworkonanyotherday.

i. FindtheprobabilitythatJenniferspendsmorethan50minutesonherhomeworkonmorethanthreeofsevenrandomlychosendays,correcttofourdecimalplaces. 2marks

ii. FindtheprobabilitythatJenniferspendsmorethan50minutesonherhomeworkonatleasttwoofsevenrandomlychosendays,giventhatshespendsmorethan50minutesonherhomeworkonatleastoneofthosedays,correcttofourdecimalplaces. 2marks

2017MATHMETHEXAM2 18

SECTION B – continued

LetpbetheprobabilitythatonanygivendayJenniferspendsmorethandminutesonherhomework.Letqbetheprobabilitythatontwoorthreedaysoutofsevenrandomlychosendaysshespendsmorethandminutesonherhomework.

f. Expressqasapolynomialintermsofp. 2marks

g. i. Findthemaximumvalueofq,correcttofourdecimalplaces,andthevalueofpforwhichthismaximumoccurs,correcttofourdecimalplaces. 2marks

ii. Findthevalueofd forwhichthemaximumfoundinpart g.i.occurs,correcttothenearestminute. 2marks

19 2017MATHMETHEXAM2

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

2017MATHMETHEXAM2 20

SECTION B – Question 4–continued

Question 4 (18marks)Letf :R → R :f (x)=2x +1–2.Partofthegraphoff isshownbelow.

4

3

2

1

O–1

–2–3

–4

–4 –3 –2 –1 1 2 3 4

y

x

a. ThetransformationT R R Txy

xy

cd

: ,2 2→

=

+

mapsthegraphofy=2

xontothegraphoff.

Statethevaluesofcandd. 2marks

b. Findtheruleanddomainforf −1,theinversefunctionoff. 2marks

c. Findtheareaboundedbythegraphsoffandf −1. 3marks

21 2017MATHMETHEXAM2

SECTION B – Question 4–continuedTURN OVER

d. Partofthegraphsoffandf −1areshownbelow.

O

f

f –1

y

x–2

–2

Findthegradientof fandthegradientof f −1 at x=0. 2marks

Thefunctionsofgk ,wherek ∈ R+,aredefinedwithdomainRsuchthatgk(x)=2ekx–2.

e. Findthevalueofksuchthatgk(x)=f(x). 1mark

f. Findtherulefortheinversefunctionsgk–1ofgk ,wherek ∈ R+. 1mark

2017MATHMETHEXAM2 22

END OF QUESTION AND ANSWER BOOK

g. i. Describethetransformationthatmapsthegraphofg1ontothegraphofgk. 1mark

ii. Describethetransformationthatmapsthegraphofg1–1ontothegraphofgk

–1. 1mark

h. ThelinesL1andL2arethetangentsattheorigintothegraphsofgkandgk–1respectively.

Findthevalue(s)ofkforwhichtheanglebetweenL1andL2is30°. 2marks

i. Letpbethevalueofkforwhichgk(x)=gk−1(x)hasonlyonesolution.

i. Findp. 2marks

ii. LetA(k)betheareaboundedbythegraphsofgkandgk–1forallk>p.

StatethesmallestvalueofbsuchthatA(k)<b. 1mark

MATHEMATICAL METHODS

Written examination 2

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Victorian Certificate of Education 2017

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2017

MATHMETH EXAM 2

Mathematical Methods formulas

Mensuration

area of a trapezium 12a b h+( ) volume of a pyramid 1

3Ah

curved surface area of a cylinder 2π  rh volume of a sphere

43

3π r

volume of a cylinder π r 2h area of a triangle12bc Asin ( )

volume of a cone13

2π r h

Calculus

ddx

x nxn n( ) = −1 x dxn

x c nn n=+

+ ≠ −+∫ 11

11 ,

ddx

ax b an ax bn n( )+( ) = +( ) −1 ( )( )

( ) ,ax b dxa n

ax b c nn n+ =+

+ + ≠ −+∫ 11

11

ddxe aeax ax( ) = e dx a e cax ax= +∫ 1

ddx

x xelog ( )( ) = 1 1 0x dx x c xe= + >∫ log ( ) ,

ddx

ax a axsin ( ) cos( )( ) = sin ( ) cos( )ax dx a ax c= − +∫ 1

ddx

ax a axcos( )( ) −= sin ( ) cos( ) sin ( )ax dx a ax c= +∫ 1

ddx

ax aax

a axtan ( )( )

( ) ==cos

sec ( )22

product ruleddxuv u dv

dxv dudx

( ) = + quotient ruleddx

uv

v dudx

u dvdx

v

=

2

chain ruledydx

dydududx

=

3 MATHMETH EXAM

END OF FORMULA SHEET

Probability

Pr(A) = 1 – Pr(A′) Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) = Pr

PrA BB∩( )( )

mean µ = E(X) variance var(X) = σ 2 = E((X – µ)2) = E(X 2) – µ2

Probability distribution Mean Variance

discrete Pr(X = x) = p(x) µ = ∑ x p(x) σ 2 = ∑ (x – µ)2 p(x)

continuous Pr( ) ( )a X b f x dxa

b< < = ∫ µ =

−∞

∫ x f x dx( ) σ µ2 2= −−∞

∫ ( ) ( )x f x dx

Sample proportions

P Xn

=̂ mean E(P̂ ) = p

standard deviation

sd P p pn

(ˆ ) ( )=

−1 approximate confidence interval

,p zp p

np z

p pn

−−( )

+−( )

1 1ˆ ˆ ˆˆˆ ˆ