2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification,...

26
1 Supplementary Information SI Materials and Methods Cell lines Human lymphocyte GM12878 was purchased from the NIGMS Human Genetic Cell Repository (Coriell Institute) and cultured in RPMI 1640 medium (no phenol red) supplemented with 15% fetal bovine serum. Cells were maintained at 37°C in a 5% CO 2 humidified chamber. Oligonucleotides and adapteors Oligonucleotides for Ad1: AD1T: 5’phosGATCGGAAGAGCACACGTCTGAACTCCAGTCASpC3; AD1B: 5’NNNNNGACTGGTTCCAATTGAAAGTGCTCTTCCGATC*T. Oligonucleotides for Ad2: AD2T: 5’phosAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTSpC3; AD2B: 5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNSpC3. Oligonucleotides for primer extension: Bio3: 5’bioTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT. Above oligonucleotides were synthesized by IDT. PCR primers for Ad1 were ordered from Sigma: Pu: 5’ GACTGGTTCCAATTGAAAGTGCTCTTCCGATC*T; Pi: 5’ TGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T. “*” indicated phosphorothioate bond. PCR primers for Ad2 and final library (Universal and Index primers for Illumina) were purchased from New England Biolabs. To prepare Ad1 or Ad2, AD1T & AD1B or AD2T & AT2B were annealed, respectively. 5nmol AD1T or AD2T and 6 nmol AD1B or AD2B were mixed together in 50 µL Hybridization Buffer (10 mM TrisHCl pH7.5, 100 mM NaCl, 0.1 mM EDTA) and boiled for 2 min, then slowly cooled down to 25°C.

Transcript of 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification,...

Page 1: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  1  

Supplementary  Information  

SI  Materials  and  Methods  

Cell  lines  

Human   lymphocyte  GM12878  was  purchased   from  the  NIGMS  Human  Genetic  Cell  Repository  

(Coriell   Institute)  and  cultured   in  RPMI  1640  medium  (no  phenol  red)  supplemented  with  15%  

fetal  bovine  serum.  Cells  were  maintained  at  37°C  in  a  5%  CO2  humidified  chamber.  

Oligonucleotides  and  adapteors  

Oligonucleotides   for   Ad1:   AD1T:   5’-­‐phos-­‐GATCGGAAGAGCACACGTCTGAACTCCAGTCA-­‐SpC3;  

AD1B:  5’-­‐NNNNNGACTGGTTCCAATTGAAAGTGCTCTTCCGATC*T.  Oligonucleotides  for  Ad2:  AD2T:  

5’-­‐phos-­‐AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-­‐SpC3;   AD2B:   5’-­‐

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNN-­‐SpC3.  Oligonucleotides  for  primer  extension:  

Bio3:   5’-­‐bio-­‐TGACTGGAGTTCAGACGTGTGCTCTTCCGATCT.   Above   oligonucleotides   were  

synthesized   by   IDT.   PCR   primers   for   Ad1   were   ordered   from   Sigma:   Pu:   5’-­‐

GACTGGTTCCAATTGAAAGTGCTCTTCCGATC*T;   Pi:   5’-­‐

TGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T.   “*”   indicated   phosphorothioate   bond.   PCR  

primers  for  Ad2  and  final  library  (Universal  and  Index  primers  for  Illumina)  were  purchased  from  

New  England  Biolabs.    

To  prepare  Ad1  or  Ad2,  AD1T  &  AD1B  or  AD2T  &  AT2B  were  annealed,  respectively.  5nmol  AD1T  

or  AD2T  and  6  nmol  AD1B  or  AD2B  were  mixed  together  in  50    µL  Hybridization  Buffer  (10  mM  

Tris-­‐HCl  pH7.5,  100  mM  NaCl,  0.1  mM  EDTA)  and  boiled  for  2  min,  then  slowly  cooled  down  to  

25°C.  

Page 2: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  2  

Damage-­‐Seq  library  preparation  

Treatment  of  cells  and  isolation  of  fragmented  genomic  DNA  

GM12878 cells were grown to ~8x105 cells/ml before treatment. To treat the cells with cisplatin

(Sigma) or oxaliplatin (LC Labs), fresh stocks were made every time before treatment. The drug

was dissolved in DMSO to 20 mM and immediately added to medium to a final concentration of

200 µM. Cells were further incubated at  37°C for 1.5 hour, then transferred to a pre-chilled 15 ml

tube on ice, collected by centrifugation, and washed by ice-cold PBS. Cell pellets were frozen at -

80°C.  

Cell  pellets  were   resuspended   in  900  µL  cold   lysis  buffer   (10  mM  Tris-­‐HCl  pH8.0,  1  mM  EDTA,  

250  mM  NaCl,  0.5%  TritonX-­‐100  and  0.1%  SDS)  with  10  µL  RNaseA  (Sigma)  and  incubated  on  ice  

for   at   least   10  min.   Lysates  were   sonicated  by  Misonix   Sonicator   3000  with   a  microtip   on   ice  

water  to  generate  fragments  averaging  400  bp  in  length  and  then  centrifuged  at  14,000  rpm  for  

10  min  to  pellet  debris.  The  supernatant  was  incubated  with  10  µL  Proteinase  K  (New  England  

Biolabs)  at  55°C  for  30  min,  followed  by  phenol/chloroform  extraction  and  ethanol  precipitation.  

The  DNA  pellet  was  dissolved  in  100  µL  1xTE  buffer,  and  fragments  200-­‐700  bp  in   length  were  

selected  by  0.5x/0.7x  (50/70  µL)  HighPrep  PCR  beads  (MagBio)  according  to  the  manufacture’s  

guidelines.  DNA  concentration  was  determined  by  NanoDrop  1000  (Thermo).  

For   naked   DNA   samples,   DNA   fragments   were   prepared   from   untreated   GM12878   cells   as  

described  above.  For  untreated  samples,  1  µg  size-­‐selected  DNA  was  used  to  prepare  library  by  

NEBNext   DNA   preparation   kit   following   the   manufacture’s   protocol   (unlike   the   Damage-­‐seq  

protocol).   For   cisplatin   treatment,   5   µg   DNA   were   incubated   with   20   µM   cisplatin   in   a   final  

volume  of  50  µL  at  room  temperature  for  15  min.  Treated  DNA  were  purified  through  a  G50  spin  

column  (GE)  immediately  and  subjected  to  Damage-­‐seq.  

Page 3: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  3  

End-­‐repair,  dA-­‐tailing  and  first  adaptor  ligation  

Size-­‐selected  DNA  (5  µg)  were  used  for  End-­‐repair  and  dA-­‐tailing  by  NEBNext  DNA  preparation  

kit   following   the   manufacture’s   instruction.   Ad1   (500   pmol)   was   ligated   to   both   ends   by  

NEBNext  Quik  Ligase  for  more  than  12  hr  under  16°C,  then  purified  by  HighPrep  PCR  beads  and  

eluted  in  126  µL  0.1x  TE.  

Damage-­‐specific  immunoprecipitation  by  antibodies  

Damaged  DNA  immunoprecipitation  was  performed  as  described  previously  with  modification.  

To  denature  DNA,  42  µL  of  8M  Urea  were  added  (to  a  final  concentration  of  2M),   followed  by  

boiling   for   2   min   and   immediately   putting   on   ice   water   for   2   min.   Then   50   µg   denatured  

sonicated  salmon  sperm  DNA  (Stratagene)  and  20  µL  of  10x  PEXB  Buffer  (see  below)  were  added,  

followed  by  incubation  with  antibody-­‐coated  beads  which  were  prepared  as  described  below  in  

totally   200  µL  of   1x  PEXB  Buffer   (1xPBS,   2  mM  EDTA,   0.01%  Triton  X-­‐100  and  0.025%  BSA).  A  

slurry   of   40  µL   of   anti-­‐rat  Dynabeads   (11035,   Thermo)  was  washed   three   times  with   1x   PEXB  

Buffer,  and  then  incubated  with  10  µg  carrier  DNA,  1.5  µL  anti-­‐cisplatin  modified  DNA  antibody  

(ab103261,  Abcam)   in  100  µL  of  1x  PEXB  Buffer   for  3  hrs  at  4°C.  After   incubation,  beads  were  

washed  by  1x  PEBX  Buffer  and  incubated  with  denatured  DNA  overnight  at  4°C.    

The  beads  were  washed  sequentially  with  PEXU  Buffer  (1xPBS,  2  mM  EDTA,  0.01%  Triton  X-­‐100  

and  1.6M  Urea),  PEX  Buffer  (1xPBS,  2  mM  EDTA,  0.01%  Triton  X-­‐100),   IP  Buffer  (20  mM  Tris-­‐Cl  

pH  8.0,   2  mM  EDTA,  150  mM  NaCl,   1%  Triton  X-­‐100,   and  0.5%   sodium  deoxycholate),   and  TE  

Buffer  (10  mM  Tris-­‐Cl  pH  8.0  and  1  mM  EDTA).  The  fragments  containing  damage  were  eluted  

by   incubation  with  100  µL  of  Elution  Buffer   (50  mM  NaHCO3,  1%  SDS)  at  65°C  for  10  min.  The  

eluted   DNA   was   then   isolated   by   phenol/chloroform   extraction   followed   by   ethanol  

precipitation.  

Page 4: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  4  

Primer  extension  and  purification  

NEBNext  Q5  Hot   Start  HiFi   PCR  Master  Mix  was  used   for  primer  extension   in   the  presence  of  

purified  DNA  and  30  pmol  Bio3  in  a  thermocycler  for  45s  at  98°C  followed  by  5  min  at  65°C.  We  

chose  this  enzyme  because  it  has  high  fidelity  and  furthermore,  it  can  carry  out  primer  extension  

at   the   same   temperature   used   for   annealing.   Then   2   µL   of   Exo1   (New   England   Biolabs)  were  

added  to  degrade  excessive  primers  at  37°C  for  10  min.  After  HighPrep  PCR  beads  purification,  

DNA  was  denatured  by  boiling  for  2  min  and  immediately  putting  on  ice  water  for  2  min,  then  

incubated  with  5  µL  of  Dynabeads  MyOne  Streptavidin  C1  (Thermo)  in  30  µL  of  1x  B&W  Buffer  (5  

mM  Tris-­‐HCl  pH  7.5,  0.5  mM  EDTA,  1  M  NaCl)  at  4°C  for  1  hr.  Biotinylated  DNA  were  eluted  by  a  

short   incubation   (~10s)   in   100   µL   of   nonionic   water   at   75°C   and   concentrated   by   ethanol  

precipitation.  

Second  adaptor  ligation,  PCR  amplification  and  high-­‐throughput  sequencing  

To  add  the  second  adaptor  to  the  3’  end,  purified  DNA  were  incubated  with  40  pmol  of  Ad2  in  

10  µL  of  1x  Hybridization  Buffer  for  10  min  at  65°C  and  then  for  5  min  at  16°C  in  a  thermal  cycler.  

To  perform   ligation,  4  µL  of  5x   ligase  buffer,  1  µL  of  T4  DNA   ligase  HC   (Thermo),  1  µL  of  50%  

PEG8000   (New  England  Biolabs),   and  4  µL  of  H2O  were  added   to  each   reaction.  The   reactions  

were  incubated  overnight  at  16°C.    

For   quality   check,   one   percent   of   ligation   products   were   PCR-­‐amplified   with   primers   Pu/Pi  

(Primers  1  for  Ad1)  or  Universal/Index1  (Primers  2  for  Ad2,  E7350S,  New  England  Biolabs).  After  

HighPrep  PCR  beads  purification,  ligated  DNA  were  PCR-­‐amplified  by  NEBNext  Q5  Hot  Start  HiFi  

PCR   Master   Mix   for   11-­‐13   cycles   with   NEBNext   Multiplex   Oligos   for   Illumina   (New   England  

Biolabs).   The   PCR   products   were   purified   by   HighPrep   PCR   beads   and   concentration   was  

determined  by  Pico  Green  (Thermo).    

Page 5: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  5  

XR-­‐Seq  library  preparation  for  cisplatin  and  oxaliplatin  induced  damages  

XR-­‐seq   libraries   were   prepared   as   described   (1)   with   modifications   in   the   damage-­‐specific  

immunoprecipitation   and   in   vitro   reversal   steps.   GM12878   cells   were   treated   with   200   µM  

cisplatin  or  oxaliplatin   for  3  hr  and  collected  as  described  above.  Cells  were   lysed  and  primary  

excision  products  were  pulled  down  by  TFIIH  co-­‐immunoprecipitation  and  followed  by  adapter  

ligation   on   both   ends.   The   damage-­‐specific   immunoprecipitation   with   anti-­‐cisplatin   modified  

DNA  antibody  was  performed  as  described  in  Damage-­‐seq  with  minor  difference.  A  slurry  of  25  

µL  of  anti-­‐rat  Dynabeads  and  1  µL  anti-­‐cisplatin  modified  DNA  antibody  were  used  per  reaction.  

Pre-­‐incubated   beads   were   then   incubated   with   ligation   products   and   20   µg   of   denatured  

sonicated   salmon   sperm   DNA   in   100   µL   of   1x   PEXB   Buffer   at   4°C   overnight.   After   sequential  

wash  with  PEX  Buffer  twice,  IP  Buffer  once  and  TE  Buffer  once,  the  ligation  products  containing  

damage  were  eluted  by  incubation  with  100  µL  of  Elution  Buffer  at  65°C  for  10  min.  The  eluted  

DNA   was   purified   by   phenol/chloroform   extraction   and   ethanol   precipitation.   To   reverse  

cisplatin  or  oxalipaltin-­‐induced  damages  in  vitro,  damaged  DNA  were  incubated  with  200  mM  of  

NaCN   at   65°C   overnight,   then   purified   through   a   G50   spin   column   and   followed   by   ethanol  

precipitation.  Purified  DNA  were  amplified  by  PCR  and  purified  by  native  PAGE  as  described  to  

make  the  library.  

Sequencing  and  genome  alignments  

All   sequencing   libraries   were   sequenced   on   HiSeq   2500   platform   by   the   University   of   North  

Carolina  High-­‐Throughput  Sequencing  Facility.  Based  on  our  previous  experience  with  XR-­‐seq,  in  

which  5  million  uniquely  mapped   reads  are   sufficient   to  detect   repair  enrichment  over  genes,  

we   sequenced   Damage-­‐seq   to   at   least   10   million   mapped   reads   per   sample.   Generally,   this  

Page 6: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  6  

required  multiplexing  ≤  4  samples  per  lane  for  Damage-­‐seq  and  ≤  8  samples  per  lane  for  XR-­‐seq.  

Summary  of  alignments  are  available  in  SI  appendix  Tables  S3,4.    

Damage-­‐seq   sequence   analysis.   Libraries  were   sequenced   to   produce   paired-­‐end   50nt   reads,  

allowing   us   to   establish   unique   aligned   reads   and   distinguish   between   damage   hot   spots   and  

amplification   artifacts.   Products   of   primer   extension   of   undamaged   DNA   were   filtered   using  

cutadapt   (2)   filtering   the   adapter   sequence   5’-­‐GACTGGTTCCAATTGAAAGTGCTCTTCCGATCT-­‐3’.  

Paired  end  reads  were  aligned  to  the  hg19  reference  genome  with  bowtie  using  command  line  

options     –q   -­‐-­‐nomaqround   -­‐-­‐phred33-­‐quals  –S  –X  1000  –m  4  –seed  123.  The  damage  position  

and  nucleotide  composition  were  then  determined  as  the  2  nt  upstream  of  the  first  read  start  

using  samtools  and  bedtools.    

XR-­‐seq.   XR-­‐seq   data   was   analyzed   as   previously   reported.   Flanking   adapter   sequences   were  

removed   using   trimmomatic   (3).   Reads   were   aligned   to   the   hg19   human   reference   genome  

using  bowtie  (4)    with  the  command  options    -­‐q  -­‐-­‐nomaqround  -­‐-­‐phred33-­‐quals  -­‐m  4  -­‐n  2  -­‐e  70  -­‐l  

20  -­‐-­‐best  –S.  Uniquely  aligned  reads  were  obtained  using  samtools.    

Data  visualization  

For  comparison  of  the  DNA  damage  and  repair  signal,  we  normalized  all  the  count  data  by  the  

sequencing  depth  and  data  is  available  for  viewing  as  a  track  hub  on  the  UCSC  genome  browser  

(https://genome.ucsc.edu/cgi-­‐bin/hgGateway)  by  pasting  the  link:  

http://trackhubs.its.unc.edu/sancarlb/Platinum_damage/hub.txt.  The  raw  data  and  bigwig  

tracks  are  available  with  GEO  accession  GSE82213.  (www.ncbi.nlm.nih.gov/geo/).  

 

 

Page 7: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  7  

ENCODE  data    

GM12878  stranded  RNA-­‐seq  (ENCODE  DCC  accessions  ENCSR00CUH),  and  DNase-­‐seq  (accession  

ENCSR000EJD),   as   well   as   chromHMM   chromatin   state   segmentation   (UCSC   accession  

wgEncodeEH000784)   and   nucleosome   data   (Mnase-­‐seq,   accession   ENCSR000CXP)   were  

downloaded   from   the   ENCODE   portal   (http://genome.ucsc.edu/ENCODE/)   or   viewed   on   the  

UCSC  browser.      

Di-­‐nucleotide  frequencies    

The  di-­‐nucleotide  positions   for  the  hg19  reference  genome  were  established  using  oligoMatch  

from  the  UCSC  tools.    

Chromatin  state  analysis      

Bedtools   (5)  coverage  was  used  to  calculate  the  damage  and  repair   levels  over  each  of   the  15  

predicted   chromatin   states   defined   by   the   ChromHMM  algorithm   (6).  Merged   data   from   two  

biological  replicates  was  used.  Values  were  normalized  per  million  mapped  reads  and  per  Kb  of  

interval  length  and  plotted  with  R.    

Plotting  average  damage  and  repair  profiles    

Average  damage  and  repair  profiles   from  the  merged  biological   replicates  was  calculated  over  

GM12878   DNase   peaks   using   bedtools   (5)   coverage.   Counts   were   normalized   per   million  

mapped  reads  and  plotted  with  R.  For  plots,  data  was  binned  into  50nt  windows.    

For   average   XR-­‐seq   profiles   relative   to   the   annotated   TSS   or   TES,   we   limited   the   gene   list   to  

genes   that   do   not   have   overlapping   or   neighboring   genes   for   at   least   6000bp   upstream   or  

downstream   on   either   strand   and   were   at   least   10,000bp   in   length.   The   highest   quartile   of  

expressed  genes  from  GM12878  (n=442)  cells  was  identified  as  previously  described.  Briefly,  we  

Page 8: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

  8  

calculated  FPKM  for  the  two  mapped  RNA-­‐seq  replicates  using  cufflinks  (7)  and  the  UCSC  hg19  

genes.gtf.   Merged   biological   replicates   were   used   for   plotting.   Read   counts   were   calculated  

from  the  aligned  .bam  files  using  bedtools  coverage,  normalized  per  million  mapped  reads  and  

plotted  with  R.  For  plots,  data  was  binned  into  50nt  windows.    

For   nucleosome   analysis,   nucleosome   positions  were   determined  with   DNAPOS2   (8).   Average  

damage  and  repair  signal  from  merged  biological  replicates  surrounding  the  2,000,000  randomly  

picked   nucleosome   center   position   was   calculated   using   the   R   GenomicRanges   (9)   and  

genomation  packages  (10).  For  plotting,  data  was  binned  to  5nt  windows.    

References  

1.   Hu,  J.,  Adar,  S.,  Selby,  C.P.,  Lieb,  J.D.  &  Sancar,  A.  Genome-­‐wide  analysis  of  human  global  and  transcription-­‐coupled  excision  repair  of  UV  damage  at  single-­‐nucleotide  resolution.  Genes  Dev  29,  948-­‐960  (2015).  

2.   Martin   M   (2011)   Cutadapt   removes   adapter   sequences   from   high-­‐throughput  sequencing  reads.  EMBnet. journal 17(1), pp-10.  

3.   Bolger   AM,   Lohse  M,  &  Usadel   B   (2014)   Trimmomatic:   a   flexible   trimmer   for   Illumina  sequence  data.  Bioinformatics  30(15):2114-­‐2120.  

4.   Langmead   B,   Trapnell   C,   Pop  M,   &   Salzberg   SL   (2009)   Ultrafast   and  memory-­‐efficient  alignment  of  short  DNA  sequences  to  the  human  genome.  Genome  Biol  10(3):R25.  

5.   Quinlan  AR  &  Hall  IM  (2010)  BEDTools:  a  flexible  suite  of  utilities  for  comparing  genomic  features.  Bioinformatics  26(6):841-­‐842.  

6.   Ernst,   J.   et   al.  Mapping   and   analysis   of   chromatin   state   dynamics   in   nine   human   cell  types.  Nature  473,  43-­‐49  (2011).  

7.   Trapnell   C,   et   al.   (2010)   Transcript   assembly   and   quantification   by   RNA-­‐Seq   reveals  unannotated   transcripts   and   isoform   switching   during   cell   differentiation.   Nat  Biotechnol  28(5):511-­‐515.  

8.   Chen  K,  et  al.  (2013)  DANPOS:  dynamic  analysis  of  nucleosome  position  and  occupancy  by  sequencing.  Genome  Res  23(2):341-­‐351.  

9.   Lawrence  M,  et  al.  (2013)  Software  for  computing  and  annotating  genomic  ranges.  PLoS  Comput  Biol  9(8):e1003118.  

10.   Akalin  A,  Franke  V,  Vlahovicek  K,  Mason  CE,  &  Schubeler  D  (2015)  Genomation:  a  toolkit  to  summarize,  annotate  and  visualize  genomic  intervals.  Bioinformatics  31(7):1127-­‐1129.  

 

 

 

Page 9: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

SIappendixFigureS1DetailedSchema-cofDamage-Seq.

9

Page 10: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

A. B.

SIappendixFigureS2Damage-seqandXR-seqofoxalipla-n.A)AgarosegelanalysisofDamage-seqlibraries. DNA fragments from oxalipla-n-treated cells were amplified with sets of primerscomplementary to the1stand2ndadapters.B)Na-vepolyacrylamidegelelectrophoresisofXR-seqlibrariesshowingoxalipla-nadductreversalbyNaCNisnecessaryforPCRamplifica-onofsequencinglibraries.

10

Page 11: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

Cispla-n

Rep1 Rep2

GA

TC

Oxalipla-n

Rep1 Rep2

A.

B.

SI appendix Figure S3. Single nucleo-de frequencies in damage-seq reads. Supplemental to mainFigure2a.Nucleo-defrequenciesareploKedforposi-ons3ntupstreamofthereadstartand10ntintothe read for each damage type and an undamaged control.A) Data is represented for the secondreplicateofcispla-nDamage-seqnotshowninthemainFigure.LeNpanelisfrommainFigure2a.B)Data for two biological replicates of oxalipla-n Damage-seq.C)Data is represented for the secondreplicateofsequencedundamagedDNA.notshowninthemainFigure.LeNpanelisfrommainFigure2c.

C.

Control

Rep1 Rep2

11

Page 12: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

−5 −4 −3 −2 −1 G G 1 2 3 4 5

Position relative to dimers

Nuc

leot

ide

frequ

ency

(%)

0

20

40

60

80

100

Cispla-ndamage-seqreplicate2

−5 −4 −3 −2 −1 G G 1 2 3 4 5

Position relative to dimers

Nuc

leot

ide

frequ

ency

(%)

0

20

40

60

80

100

Randomgenomicloci

−5 −4 −3 −2 −1 G G 1 2 3 4 5

Position relative to dimers

Nuc

leot

ide

frequ

ency

(%)

0

20

40

60

80

100

GA TC

−5 −4 −3 −2 −1 G G 1 2 3 4 5

Position relative to dimers

Nuc

leot

ide

frequ

ency

(%)

0

20

40

60

80

100

Oxalipla-ndamage-seq

A. B.

C.Rep1 Rep2

SI appendix Figure S4. Sequence context for the 5nt flanking G-G di-nucleo-des at the -1 and -2posi-ons rela-ve to the read start for the second biological replicate of cispla-n damage seq (A),randomlyselected26mersinthehg19referencegenome(B)andoxalipla-nDamage-seq(C).

12

Page 13: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

Histogram of GMCisP_XR3h_Rep1_length[, 1]

GMCisP_XR3h_Rep1_length[, 1]

Freq

uenc

y

10 20 30 40 50

0e+0

02e

+06

4e+0

66e

+06

8e+0

61e

+07

Histogram of GMCisP_XR3h_Rep2_length[, 1]

GMCisP_XR3h_Rep2_length[, 1]Fr

eque

ncy

0 10 20 30 40 50

0.0e

+00

2.0e

+06

4.0e

+06

6.0e

+06

8.0e

+06

1.0e

+07

1.2e

+07

Histogram of OXP_XR_Rep1_length[, 1]

OXP_XR_Rep1_length[, 1]

Freq

uenc

y

0 10 20 30 40 50

0.0e

+00

4.0e

+06

8.0e

+06

1.2e

+07

Histogram of OXP_XR_Rep2_length[, 1]

OXP_XR_Rep2_length[, 1]

Freq

uenc

y

0 10 20 30 40 50

0.0e

+00

4.0e

+06

8.0e

+06

1.2e

+07

Cispla-n

Rep1 Rep2

Oxalipla-n

SIappendixFigureS5.Distribu-onofXR-seqfragmentsizesfromtheCispla-n-andOxalipla-n-XR-seqbiologicalreplicatesinGM12878.Readsof50ntlikelyreflectsmallfrac-onofcontaminantDNA.

13

Page 14: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

1−2

2−3

3−4

4−5

5−6

6−7

7−8

8−9

9−10

10−1

111−1

212−1

313−1

414−1

515−1

616−1

717−1

818−1

919−2

020−2

121−2

222−2

323−2

424−2

525−2

6

GG

dim

er fr

eque

ncy

(%)

010203040

Position along excised fragment

Cispla-nXR-seq–rep2

−5 −4 −3 −2 −1 G G 1 2 3 4 5

Position relative to dimers

Nuc

leot

ide

frequ

ency

(%)

0

20

40

60

80

100

1−2

2−3

3−4

4−5

5−6

6−7

7−8

8−9

9−10

10−1

111−1

212−1

313−1

414−1

515−1

616−1

717−1

818−1

919−2

020−2

121−2

222−2

323−2

424−2

525−2

6

GG

dim

er fr

eque

ncy

(%)

01020304050

Position along excised fragment

Oxalipla-nXR-seq–rep1

14 15 16 17 18 19 20 21 22 23 24 25

Position in excised oligo

% o

f rea

ds

0

20

40

60

80

100

A. B.

14 15 16 17 18 19 20 21 22 23 24 25

Position in excised oligo

% o

f rea

ds

0

20

40

60

80

100

1−2

2−3

3−4

4−5

5−6

6−7

7−8

8−9

9−10

10−1

111−1

212−1

313−1

414−1

515−1

616−1

717−1

818−1

919−2

020−2

121−2

222−2

323−2

424−2

525−2

6

GG

dim

er fr

eque

ncy

(%)

01020304050

Position along excised fragment

Oxalipla-nXR-seq–rep2

Cispla-nXR-seq–rep2

Oxalipla-nXR-seq–rep1

Oxalipla-nXR-seq–rep2

GA TC

SIappendixFigureS6.Singlenucleo-deresolu-onmappingofrepair.SupplementaltomainFig2e,f.A)Frequencyoftherelevantdi-nucleo-de,G-G,ateachposi-onof26ntXR-seqexcisionfragmentsinthe second replicate of cispla-n- and for oxalipla-n- XR-seq. B) The corresponding nucleo-defrequenciesatthe5ntflankingtheG-Gdimeratposi-on19-20.

14

Page 15: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

Scalechr1:

100 Mb hg1950,000,000 100,000,000 150,000,000 200,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr8:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr1Damage+Repair+

Damage-Repair-

Chr2Damage+Repair+

Damage-Repair-

Chr3Damage+Repair+

Damage-Repair-

Chr4Damage+Repair+

Damage-Repair-

Chr5Damage+Repair+

Damage-Repair-

Chr6Damage+Repair+

Damage-Repair-

Chr7Damage+Repair+

Damage-Repair-

Chr8Damage+Repair+

Damage-Repair-

Scalechr2:

100 Mb hg1950,000,000 100,000,000 150,000,000 200,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr3:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr4:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr5:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr6:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr7:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr9:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr9

Chr10

Chr11

Chr12

Scalechr10:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr11:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr12:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr16:

20 Mb hg1950,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr14

Chr16

Chr15

Scalechr14:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr15:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr17:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000 80,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr17

Chr18

Chr19

Chr20

Chr21

Chr22

ChrX

Scalechr18:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr19:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr20:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr21:

10 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr22:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

ScalechrX:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr13Scalechr13:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

SIappendixFigureS7.15

Page 16: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

Scalechr13:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Scalechr1:

100 Mb hg1950,000,000 100,000,000 150,000,000 200,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr12:

50 Mb hg1950,000,000 100,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

Chr1Damage+Repair+

Damage-Repair-

Chr2Damage+Repair+

Damage-Repair-

Chr3Damage+Repair+

Damage-Repair-

Chr4Damage+Repair+

Damage-Repair-

Chr5Damage+Repair+

Damage-Repair-

Chr6Damage+Repair+

Damage-Repair-

Chr7Damage+Repair+

Damage-Repair-

Chr8Damage+Repair+

Damage-Repair-

Chr9

Chr10

Chr11

Chr12

Chr14

Chr16

Chr15

Chr17

Chr18

Chr19

Chr20

Chr21

Chr22

ChrX

Chr13

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

Damage+Repair+

Damage-Repair-

Scalechr8:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr9:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr17:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000 80,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr16:

20 Mb hg1950,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr2:

100 Mb hg1950,000,000 100,000,000 150,000,000 200,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr3:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr4:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr5:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr6:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr7:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr10:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr11:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr14:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr15:

50 Mb hg1950,000,000 100,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr18:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr19:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr20:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr21:

10 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

Scalechr22:

20 Mb hg1910,000,000 20,000,000 30,000,000 40,000,000 50,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

ScalechrX:

50 Mb hg1950,000,000 100,000,000 150,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

SIappendixFigureS8. 16

Page 17: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

SI appendix Figure S8. Whole genome map of damage and repair of oxalipla-n damage.Screenshots of damage and repair signals, separated by strand, for all the chromosomes of thehumangenome.

SIappendixFigureS7.Wholegenomemapofdamageandrepairofcispla-ndamage.Screenshotsofdamageandrepairsignals,separatedbystrand,forallthechromosomesofthehumangenome.

17

Page 18: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

Scalechr17:

20 Mb hg1950,000,000

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

GM12878 Sg 2

GM78 cel pA+ - 2

GM78 cel pA+ + 2

Scalechr17:

20 kb hg197,570,000 7,580,000 7,590,000 7,600,000 7,610,000

ATP1B2TP53

TP53

TP53TP53TP53TP53TP53TP53TP53TP53TP53TP53

HV941431HV941433HV941428HV941434HV941486

TP53TP53TP53

HV941429TP53

HV941440HV941478HV941442HV941444

TP53HV941430

WRAP53

WRAP53WRAP53

WRAP53WRAP53WRAP53

WRAP53EFNB3

HLOxP_P

GMOxPXR3hRep1PLU

HLOxP_M

GMOxPXR3hRep1MIN

GM12878 Sg 1

GM78 cel pA+ - 2

GM78 cel pA+ + 2

20Kb

Scalechr17:

20 Mb hg1950,000,000

HLCisP_P

GMCisPXR3hRep1PLU

HLCisP_M

GMCisPXR3hRep1MIN

GM12878 Sg 2

GM78 cel pA+ - 1

GM78 cel pA+ + 1

OxaliplaGn20Mb

Damage-seq:GG…50ntXR-seq:TCTTTTTGAAAGCTGGTCTGGTCCTTT

Damage+

Damage-Repair+

Repair-

RNA+RNA-

DNAseHS

Damage+

Damage-Repair+

Repair-

RNA+RNA-

DNAseHS

A.

B.

C.

SI appendix Figure S9. Genome-wide paKerns of damage and repair of oxalipla-n damage. A)Representa-ve screen shot of damage and repair signals, separated by strand, for the en-rechromosome 17. B) Zoom-in on a ~80kbp segment of chromosome 17 which includes TP53. C)Representa-veXR-seqandDamage-seqreadsthatcaptureaspecificPt-d(GpG)damage.

18

Page 19: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

CisplaGnCisplaGn

OxaliplaGnOxaliplaGn

DamageTS DamageNTSRepairTS RepairNTS

GGfrequency

B.

C. D.

G.

OxaliplaGn OxaliplaGn

E. F.

A.

SI appendix Figure S10. Repair and damage at transcribed genes. Supplemental tomain Fig3d-f.A)Oxalipla-n damage and repair profiles at the transcribed and non-transcribed strands are ploKedsurroundingtheTSSofhighlyexpressedgenes,B)similartoa,exceptwithazoomed-inscaleforthedamagelevels.C)Cispla-ndamageandrepairareploKedsurroundingtheTESofhighlyexpressedD)similartoc,exceptwithazoomed-inscaleforthedamagelevels.E)Sameasc,exceptforoxalipla-ndamageandrepair,F)sameasd,exceptforoxalipla-ndamage.G)G-GfrequencyploKedsurroundingtheTESofhighlyexpressedgenes.

19

Page 20: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

CisplaGn OxaliplaGn

RepairDamage

RepairDamage

A. B.

SIappendixFigureS11.OpenregionsinthegenomehavehigherrepairbutliKledifferenceindamage.A) Plofng cispla-n damage and repair around DNAse-HS sites in GM12878. B) Same as c, exceptploKedisoxalipla-ndamageandrepair.

20

Page 21: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

3.Poisedpromoter

4.Strongenhancer

1.Ac-vepromoter

2.Weakpromoter

6.Weakenhancer

8.Insulator

9.Txntransi-on

11.Weaktxn

12.Repressed

5.Strongenhancer

7.Weakenhancer

10.Txnelonga-on

13.Heterochroma-c

14.Repe--ve

15.Repe--ve

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.5

1.0

1.5

2.0

coun

ts p

er K

b pe

r mil

read

s

B. C.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.5

1.0

1.5

2.0

coun

ts p

er K

b pe

r mil

read

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.5

1.0

1.5

2.0

coun

ts p

er K

b pe

r mil

read

s

CisplaGndamage GGfrequency

OxaliplaGndamage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0123456

coun

ts p

er K

b pe

r mil

read

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0123456

coun

ts p

er K

b pe

r mil

read

s

OxaliplaGn

012

3456

012

Readsp

erKbpe

rmilmappe

dRe

pair

Damage

A.

SI appendix Figure S12. Damage and repair at different chroma-n states.A) Analysis of oxalipla-nrepair (top) and damage (bo*om) levels across the 15 annotated chroma-n states in GM12878 B)Small varia-ons in cispla-n and oxalipla-n damage levels at the different chroma-n states areobserved when plofng damage on a smaller scale. C) Varia-ons in the frequency of G-G in thedifferentstatesmirrorsthevaria-onindamagelevels.

21

Page 22: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

22

TableS1.DinucleotidefrequenciesflankingthereadstartofDamage-seqreadsCisplatin Rep1 (-3)-(-4) (-2)-(-3) (-1)-(-2) (-1)-(1) (1)-(2) TT 5.9 1.8 1.2 4.0 5.9 TC 2.0 2.3 0.7 2.5 4.4 CT 7.2 1.6 5.5 0.9 6.5 CC 2.5 1.0 0.8 0.7 8.7 AA 10.0 2.2 1.2 2.4 8.2 AC 1.8 1.0 0.6 2.0 5.1 AG 9.0 33.6 5.3 3.0 8.1 AT 6.3 1.5 1.4 2.5 5.4 CA 11.3 2.1 1.1 1.2 7.5 CG 1.6 3.5 0.6 0.4 1.4 GA 9.7 2.6 6.9 20.3 5.9 GC 1.8 3.7 1.1 19.1 4.6 GG 9.5 21.1 64.1 18.7 6.5 GT 5.2 1.4 5.0 15.7 8.8 TA 7.4 1.6 0.7 2.9 5.6 TG 8.8 18.9 3.7 3.7 7.2 Cisplatin Rep2 (-3)-(-4) (-2)-(-3) (-1)-(-2) (-1)-(1) (1)-(2) TT 6.0 1.9 1.3 3.8 5.8 TC 2.1 2.1 0.8 2.2 4.1 CT 7.1 1.7 4.9 1.0 6.5 CC 2.5 1.0 0.8 0.7 8.4 AA 10.4 2.6 1.3 2.7 8.7 AC 1.9 1.1 0.7 2.1 5.0 AG 8.9 33.6 6.0 3.2 8.1 AT 6.5 1.7 1.5 2.7 5.5 CA 11.2 2.3 1.2 1.3 7.7 CG 1.5 3.3 0.7 0.4 1.4 GA 9.8 2.9 7.3 20.5 6.0 GC 1.9 3.4 1.2 18.9 4.5 GG 8.9 20.2 62.7 19.0 6.5 GT 5.0 1.6 4.6 15.2 9.2 TA 7.6 1.8 0.8 2.9 5.7 TG 8.6 18.7 4.1 3.5 7.0

Page 23: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

23

Oxaliplatin Rep1 (-3)-(-4) (-2)-(-3) (-1)-(-2) (-1)-(1) (1)-(2) TT 9.0 3.9 3.8 5.7 6.1 TC 3.3 3.8 2.3 3.4 4.0 CT 9.0 3.0 7.6 2.5 7.8 CC 3.5 2.3 2.1 1.6 10.0 AA 8.8 3.9 3.2 3.8 9.1 AC 2.9 2.1 2.0 1.7 5.2 AG 6.9 22.3 4.1 3.6 8.3 AT 9.1 3.1 3.2 2.5 6.3 CA 8.7 3.1 2.5 3.4 9.3 CG 1.0 3.8 0.6 1.0 1.6 GA 6.3 2.8 3.7 16.8 4.7 GC 2.5 4.6 2.1 22.0 4.4 GG 7.4 13.6 51.9 10.2 5.4 GT 6.1 2.2 4.8 11.6 5.7 TA 7.6 2.7 2.1 4.7 6.0 TG 7.8 22.8 3.9 5.4 6.1 Oxaliplatin Rep2 (-3)-(-4) (-2)-(-3) (-1)-(-2) (-1)-(1) (1)-(2) TT 8.8 2.0 1.7 4.6 5.8 TC 2.4 2.6 1.0 2.9 4.2 CT 9.8 1.6 7.2 1.1 9.2 CC 2.8 1.1 0.9 0.8 12.5 AA 8.4 2.1 1.5 2.1 8.9 AC 2.3 1.0 0.8 1.2 4.9 AG 6.7 27.1 3.3 2.0 7.7 AT 9.6 1.6 1.5 1.5 6.0 CA 9.3 1.8 1.2 1.5 11.0 CG 1.1 4.9 0.4 0.4 1.9 GA 6.4 1.8 3.2 20.3 3.9 GC 1.9 4.9 1.1 29.7 3.8 GG 8.2 16.0 67.9 11.0 4.3 GT 6.6 1.2 4.5 13.4 5.3 TA 7.7 1.5 0.9 3.6 5.7 TG 8.0 28.8 2.8 3.8 5.1

Page 24: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

24

TableS2.DinucleotidefrequenciesatspecificpositioninXR-seqreads.Onlyreadsof26ntlengthwereusedforthisanalysis.Cisplatin XR-seq Rep1 (17-18) (18-19) (19-20) (20-21) (21-22) TT 5.350120035 2.317744776 0.718172576 1.332937183 2.958202774 TC 3.021537512 1.102780437 0.456586363 0.946426107 4.74323262 CT 9.326330915 4.67418824 1.051472956 1.374649293 3.707487615 CC 5.759760449 2.035778312 0.639850027 0.913014126 4.651138201 AA 6.109291016 3.49313812 2.509942972 5.042909549 4.295448622 AC 3.619173191 1.50948673 2.22282197 3.125262683 7.512144885 AG 10.9638881 16.73015119 12.42875503 7.419283895 9.434655521 AT 6.904649499 4.174673823 3.04189133 4.624519637 6.423850022 CA 8.522170066 3.969999001 1.06146483 2.428395532 2.105985767 CG 2.709965494 4.207795037 3.245138742 1.211739448 1.255883443 GA 5.322919932 9.759365003 15.68422928 18.63592941 6.936977706 GC 2.487289437 1.349881076 2.608540039 6.73579211 12.21517211 GG 6.76671934 19.05072436 37.55327017 33.65717932 19.09367884 GT 3.991198692 3.472519967 3.31349585 6.70629229 8.329178864 TA 5.953068854 2.980909176 0.956338681 1.558864564 1.20838239 TG 13.19191747 19.17086475 12.50802918 4.286804858 5.12858062 Cisplatin XR-seq Rep2

(17-18) (18-19) (19-20) (20-21) (21-22) TT 5.286587879 2.296428978 0.607421775 1.185720056 2.938130453 TC 2.984899054 1.068941063 0.384098469 0.883939507 4.362072401 CT 9.366312668 4.826545495 1.006859308 1.299078853 3.727651799 CC 5.713205613 2.066032082 0.619936586 0.868082231 4.495175061 AA 6.113653659 3.309740021 2.241576275 4.337871917 4.290170536 AC 3.741462139 1.479183309 2.009987493 3.111549979 6.878378578 AG 10.80339128 16.64304053 12.15094883 7.16961352 8.342948318 AT 7.040863838 4.114652253 2.692316761 4.182408425 6.013483349 CA 8.327661075 3.843083442 0.9882296 2.104068816 2.519182252 CG 2.677988209 4.288330884 3.346869885 1.213884859 1.293456257 GA 5.250520349 9.069817877 14.69166278 17.77608438 7.722726716 GC 2.584425097 1.347738926 2.471092211 7.171893652 12.98866386 GG 6.936547835 19.61291145 39.95334022 36.30616669 19.33354355 GT 4.234203678 3.470955663 3.118597657 7.034101176 8.693311209 TA 5.854781034 2.872188022 0.879975188 1.30695567 1.35149596 TG 13.08349659 19.69041 12.83708696 4.048580269 5.049609696

Page 25: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

25

Oxaliplatin XR-seq Rep1 (17-18) (18-19) (19-20) (20-21) (21-22) TT 6.94017857 2.807392784 0.608301687 0.774051157 2.356301081 TC 2.947505461 1.088990394 0.305937101 0.628042286 3.588398813 CT 10.9939323 4.530829171 1.088108864 1.614634478 4.794398678 CC 5.516208983 1.825137043 0.59115826 1.330805668 6.719562985 AA 6.147870321 2.928139115 1.688499985 3.525763931 5.357903838 AC 3.716893977 1.285269876 1.340087086 2.302179903 6.640712627 AG 7.919834755 13.95087561 8.510168906 4.815346567 10.48503293 AT 9.119200241 4.952432209 2.064913042 2.523675406 4.796022546 CA 7.708244794 3.097044789 0.803537253 2.103279354 2.689147486 CG 2.918159852 5.5469542 3.373613041 1.648318126 1.893730875 GA 4.104789575 5.312838548 10.10432205 20.81930138 5.844159309 GC 2.819312705 1.657020106 4.459842856 11.83581217 14.83678858 GG 6.195101673 19.23135275 46.99375274 34.59902192 17.84467802 GT 4.678734014 3.950017283 2.741324475 6.379177196 6.806323896 TA 5.155826345 2.265646567 0.570581508 0.831327277 1.063169135 TG 13.11820643 25.57005955 14.75585115 4.269263184 4.283669207 Oxaliplatin XR-seq Rep2 (17-18) (18-19) (19-20) (20-21) (21-22) TT 6.517572508 2.652764575 0.646059225 0.758311531 2.092331946 TC 3.013541828 1.16317109 0.387253983 0.70420062 3.551743993 CT 11.0024725 4.682189634 1.218973125 1.763590814 4.923139092 CC 5.8261404 2.082799034 0.751484748 1.521219022 7.316419627 AA 5.814715533 2.822620419 1.892261316 3.919724208 4.896712329 AC 3.772981164 1.351974479 1.632437155 2.794104512 6.944905726 AG 7.781180187 13.31539748 8.329743634 5.210733385 10.94644667 AT 8.92336342 4.655827833 2.14076898 2.669666758 4.6862521 CA 7.440775504 3.151969493 0.930836044 2.249916969 2.692191292 CG 3.115845337 5.94486785 3.58089073 1.929001975 2.142649024 GA 4.20493654 5.935632548 11.17454178 20.48639986 5.858069853 GC 3.249214947 1.884240044 4.692573928 12.05487488 15.13516455 GG 6.438812464 18.96349996 45.19496568 32.98842686 17.23601636 GT 4.90421647 3.861418443 2.608322394 5.798235672 6.232228598 TA 4.685344627 2.084988624 0.596630849 0.818275787 0.956284627 TG 13.30888657 25.44663849 14.22225643 4.333317146 4.38944421

Page 26: 2016 08 30 MaterialsAndMethods submission with ref · ! 4! Primer,extensionandpurification, NEBNextQ5HotStartHiFiPCRMasterMixwasusedforprimerextensioninthepresenceof! purifiedDNAand30!pmol!Bio3!ina!thermocycler!for45s!at

26

TableS3.SummarystatisticsforallDamage-seqsequencingsamplesinthisstudy.

SampleName TotalReads Reads after

filtering

Total Aligned Pairs

Unique Aligned Pairs

% Aligned Average Fragment Length

HLCisP_rep1 34514632 29424268 24378977 23654148 68.5 176.7 HLCisP_rep2 40418699 34552648 27785100 26970800 66.7 164.6 HLOxP_Rep1 29651260 14604091 10514412 10149131 34.2 209.3 HLOxP_Rep2 33016641 25643907 18324749 16370527 49.6 202.8

HLunD_Rep1 6889258 6788256 3171901 3151831 45.7 161.6 HLunD_Rep2 9175301 9060212 3733693 3711577 40.5 157.2

HLCisPvitro_Rep1 41928298 37969998 24872196 24335674 58.0 185.4 HLCisPvitro_Rep2 34580644 32120669 22012872 21586194 62.4 191.6

TableS4.SummarystatisticsforallXR-seqsequencingsamplesinthisstudy.

SampleName Mean Length

Total FASTQ Reads

Unique Aligned Reads

Percent Unique Aligned

GMCisP_XR3h_Rep1 26.4 80338902 35203560 43.8 GMCisP_XR3h_Rep2 27.1 83700727 35203560 42.1

OXP_XR_Rep1 26.74 99390886 37221727 37.4 OXP_XR_Rep2 27.97 124668994 39786126 31.9