20141103 Thin Film Physics 2

download 20141103 Thin Film Physics 2

of 29

Transcript of 20141103 Thin Film Physics 2

  • 8/10/2019 20141103 Thin Film Physics 2

    1/29

    1FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Epitaxy

  • 8/10/2019 20141103 Thin Film Physics 2

    2/29

    2FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Epitaxial growth

    Adatom movement is critical for epilayer growth At high temperature, low flux, epilayer is formed

    Surface should be very clean: eg) with native oxide, poly Si will grow

    ? ?

  • 8/10/2019 20141103 Thin Film Physics 2

    3/29

    3FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Heteroepitaxy

    Commensurate : atomic spacing of overlayer is sameas that of substrate

    Incommensurate : atomic spacing of overlayer is not same as that of substrate due to relaxed strain

    Pseudomorphic(=coherent) : 1 to 1 correspondence between atomic rowsdue to strain

    relaxed strained

    Lattice constant ofsubstrate

    Lattice constantof film

    Lattice constant ofsubstrate

    Lattice constantof film

    =

    (coherent)

  • 8/10/2019 20141103 Thin Film Physics 2

    4/29

    4FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Condition for Heteroepitaxy: examples

  • 8/10/2019 20141103 Thin Film Physics 2

    5/29

    5FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Terminology

    Unit cell distortion according to Poissons ratio

    //

    //

    //

    //

    as

    af

    as

    substrate

    Unstrained film

    af

    Strained film ?

    ?

    ?

    ?

  • 8/10/2019 20141103 Thin Film Physics 2

    6/29

    FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Calculation of misfit and strain

    Ex) substrateSrTiO3: as=3.905 filmLaAlO3: af=3.79Both STO and LAOcubic structure.

    Misfit, f = l 3.905-3.79 l / 3.905 = 0.029

    Pseudomorphic(coherent) growth af//= as: 3.905 af:3.57

    // = (3.905-3.79)/3.79=0.03+3% (+) Tensile strain

    = (3.57-3.79)/3.79=-0.058-5.8% (-) Compressive strain

    =3.57-3.905/ 3.79 = 0.088 (8.8%)

    as

    af

    as

    SrTiO3

    LaAlO3

    af

    ?

    ?

    (3.905-3.79)/3.?79=0.03+3%

    (3.905-3.79)/3.?79=0.03+3%

    (3.905-3.79)/3.?79=0.03

    +3%

  • 8/10/2019 20141103 Thin Film Physics 2

    7/29

    7FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Epitaxial relationship

  • 8/10/2019 20141103 Thin Film Physics 2

    8/29

    8FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Heteroepitaxy growth mode

    Growth modes : depending on surface/interface energy and strain caused by mismatch

    (

    )/

    2. > and almost no misfit

    3. > and misfit

    1) 2)

    1. < , regardless of misfit level

    1. > , large misfit

  • 8/10/2019 20141103 Thin Film Physics 2

    9/29

    9FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Relaxation

    Strain relaxation by misfit dislocation formation.If ||=f, totally strained, and ||=0, totally relaxed

  • 8/10/2019 20141103 Thin Film Physics 2

    10/29

    10FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Epitaxial relationship

    hc

    Gecomposition is highereasily relaxed

    *GexSi1-xfilm / Si substrate*Critical thickness VS misfit

  • 8/10/2019 20141103 Thin Film Physics 2

    11/29

    11FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Heteroepitaxy system between semiconductor

    Epitaxybetween dissimilar materials:* band gap (Eg) engineeringtwo different SCs could be grown alternatelymodulated Eg* Strain engineeringstrain status could be engineered using lattice mismatch

    ?

    ?

  • 8/10/2019 20141103 Thin Film Physics 2

    12/29

    12FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    2DEG (2 Dimensional Electron Gas)

    Heteroepitaxy system between semiconductor

    ?

  • 8/10/2019 20141103 Thin Film Physics 2

    13/29

    13FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Heterojunction (or hetero structure) devices

  • 8/10/2019 20141103 Thin Film Physics 2

    14/29

    14FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Heteroepitaxy and superlattice

    Superlattice: 1D periodic structure

    of alternating ultrathin layers

    Strained super lattice: superlatticefrom lattice mismatched layers

  • 8/10/2019 20141103 Thin Film Physics 2

    15/29

    15FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Bufferlayer

    Buffer layer also used for Heteroepitaxyof non-superlatticeapplications:eg) graded Si1-xGex layer

    Use of buffer layer to reduce net strain accumulated

    a) No buffer layer

    b) With buffer layer

  • 8/10/2019 20141103 Thin Film Physics 2

    16/29

    16FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Thin film deposition- Evaporation

    1) thermal2) e beam

    3) MBE- sputtering

  • 8/10/2019 20141103 Thin Film Physics 2

    17/29

    17FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Physical vapor deposition

    Deposition without chemical reaction Species to form films are physically dislodged from a source as a vapor: this vapor is

    transported to substrate.

    ?

  • 8/10/2019 20141103 Thin Film Physics 2

    18/29

    18FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Evaporation

    simplest PVD thin films deposition technique using evaporation (or sublimation) of solid

    source either bythermal or e-beamevaporation not the main dep. technique now for semiconductor industry (limited step coverage, less

    reliability) any more, but still used for some specific purpose

    ?

  • 8/10/2019 20141103 Thin Film Physics 2

    19/29

    19FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Source configuration for thermal evaporation

    source charge

    f

  • 8/10/2019 20141103 Thin Film Physics 2

    20/29

    20FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Evaporation of sources

    High temperature needed for some elements

    E b

  • 8/10/2019 20141103 Thin Film Physics 2

    21/29

    21FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    E-beam source

    (Some materials which need high temperature to be evaporated)

    E it i l th t h i MBE ( l l b it )

  • 8/10/2019 20141103 Thin Film Physics 2

    22/29

    22FNNLFunctional Nanostructures & Nanoelectronics Lab

    Semiconductor processing

    Epitaxial growth technique: MBE (molecular beam epitaxy)

    MBE is a ultra high vacuum form of evaporation to produce high quality, epitaxialfilms

    M l l b it

  • 8/10/2019 20141103 Thin Film Physics 2

    23/29

    23FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    Molecular beam epitaxy

    E l S l tti b MBE

  • 8/10/2019 20141103 Thin Film Physics 2

    24/29

    24FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    Example: Superlattice by MBE

    PVD- Evaporation

    1) thermal2) e beam3) MBE

    - sputtering?

    S tt i

  • 8/10/2019 20141103 Thin Film Physics 2

    25/29

    25FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    Sputtering

    Thin film deposition by energetic ion bombardment, which physically dislodge atoms from

    target surface

    substrate

    target

    S tt i

  • 8/10/2019 20141103 Thin Film Physics 2

    26/29

    26FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    Sputtering

    10KeV

    DC diode Sp ttering

  • 8/10/2019 20141103 Thin Film Physics 2

    27/29

    27FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    DC diode Sputtering

    Magnetron Sputtering

  • 8/10/2019 20141103 Thin Film Physics 2

    28/29

    28FNNLFunctional Nanostructures & Nanoelectronics Lab Semiconductor processing

    Magnetron Sputtering

    (Erosion ring)

    (Erosion ring)

    Magnetron Sputtering

  • 8/10/2019 20141103 Thin Film Physics 2

    29/29

    29FNNL Semiconductor processing

    Magnetron Sputtering

    Target size larger than sample, distance optimization. Heart shaped magnetron to address erosion profile: Typical modern tools