2013 April Beacon

8
INSIDE: News 2 New Faculty 5 Community 8 Research 1, 3-4, 6-7 King Abdullah University of Science and Technology at Thuwal, Kingdom of Saudi Arabia www.kaust.edu.sa B EACON the نـار ا ةApril 2013 / Jumada Al-Thani 1434 Volume 3, Issue No. 8 RESEARCHERS from the Materials Science and Engineering pro- gram have conducted breakthrough research on organic solar cells, detailing the formation of the photoactive layer, a nanoscale blend of electron donating and accepting materials, during the process of spin coating. The results address a long debated question in the field and will help produce efficient solar cells using roll-to-roll printing techniques. These findings by Assistant Professor Aram Amassian, head of the Organic Electronics and Photovoltaics group, and post- doctoral researcher Dr. Kang Wei Chou, are being published this month and featured on the front cover of the high-impact journal Advanced Materials. (http://onlinelibrary.wiley.com/doi/10.1002/ adma.201370082/abstract) The research highlights a world-first, high-speed synchrotron X-ray scattering and optical measurements during the drying of a solu- tion on a rapidly rotating substrate. While current understanding of organic solar cells is provided mainly by post-deposition meas- urements, KAUST scientists have overcome key technical hurdles allowing them to provide new insights on the kinetics and sequence of crystallization and phase separation as the solar ink spreads and dries on the spinning disk to form the photoactive layer of a solar cell. Spin-coating may represent an effective way of coating uniform and fast-drying layers, but its usage is exclusively limited to lab- oratory settings, the reason being that spin-coating it not scalable up to manufacturing line standards. Essentially, this method per- forms extremely well at the laboratory level and produced most of the record-setting solar cells reported in recent years, but it has some major flaws. Enumerating some reasons for this limitation, Prof. Amassian explained, “Spin-coating ejects 99% of the deposited solution (ink) from the surface to form a very thin (100-200 nm) photoactive layer. The ink contains expensive materials, so the material cost to man- ufacture a solar cell by spin-coating increases one hundred fold. Another reason is that the spinning disk approach isn’t suited for FLEXIBLE COMPUTING | Continued on p3 ORGANIC SOLAR CELLS | Continued on p4 FLEXIBLE AND TRANSPARENT COMPUTING: INFORMATION ANYWHERE AND ANYTIME لعلوم لملك عبدامعة الد بجاهندسة الموام و برنامج علو من أحرز باحثون يشرحة الذية العضوي الشمسييالخاص بالخ في بحثهم ا مذه قنية تقدما والتو منانس الن خليط بمقيالضوءة لمتفاعل الطبقة الية تشكل عمل تفاصيلع الدوراني والتية التوزي عمليل خمستقبلةالمواد الحة وت الممنولكترونا اه علىة لتوزيع بسرعة عالي إلى قاعدة تدورولمحلية من الإضافة كم( تلخص في تهمةنتائج مسائل ملجت ال . وعا) قوة الطرد المركزيستخداملقاعدة با طبقة ا عاليةت كفاءة شمسية ذايانتاج خر في ان لها دور كبيسيكومجال و في هذا ال. roll-to-roll لطباعةت ام تقنياستخدا باة لهذا الشهرلصادر ذائعة الصيت واAdvanced Materials وقد نشرت مجلةس فريق أماسيان رئيفسور أرامه البرولذي قام بئج هذا البحث افها نتا على غ بعد الدكتوراهئية بالجامعة، وباحث ما الضوياية والخت العضولكترونيا اي تشو.ر كانغ و الدكتوشعةتون ات البصرية لسنكرولقياسات وا مرة التشتول ويستعرض البحث على طبقة سفلية تدورولمحليف ال عملية تجفلئق السرعة خلسينية فا اة مبني علىة العضوي الشمسييالخلحالي ل أن الفهم ا من بسرعة. وبالرغمتغلبوا من ال تمكنملك عبدامعة الن علماء جا اعد الترسب إ قياسات ما ب عن حركة جديدة فاقار الذي فتح لهم ام التقنية الرئيسية العقبات على ا ويجف الحبر الشمسينتشر فيها ي التينفصال ومرحلة اتبلورية ال عملسل وتسللضوء.ة لمتفاعلية الشمسية الخل طبقة اليشكلص الدوار لى القر علاف، سريعة الجفوزيع طبقات موحدة طريقة فعالة لتع الدوراني التوزي قد يمثلذهمكن ترقية ه ي برات فقط حيثى بيئة المخت عل أن استخدامه مقتصرا إة قد تعملذه الطريقاعي. و بشكل عام فإن هج الصننتاير اة إلى معاي التقنية في الشمسيياعظم الخجت م و أنتبراتستوى المختلغاية على م بصورة جيد لعض العيوب الرئيسية. أن لديها بخيرة، إ السنوات اة بقوله " يقذف التوزيعذه التقنيض عيوب هور أماسيان بع و يشرح البرفس من السطح)الحبر( المترسبولمحلن كمية الائة م في الم99 نسبة الدوراني. ولكن) نانومتر100-200( بقياس يقة جدالضوء رقة ل طبقة متفاعليشكل لة لتصنيعلماديتكلفة ا يزيد الما م مكلفة جداحتوي على موادستخدم ي الحبر المضافة إلى أن طريقة مرة، باني بمائةزيع الدوراية بواسطة التو الشمسيا الخمكن توسيع ي لذلكroll-to-roll. لطباعةئمة لتقنية ا غير مص الدوار القرع الدوراني".ة التوزي أو ترقية عمليعملية أوسع لعضوية حل الشمسية اليا الخ في مجالن يعمل غالبية م ويفضلمجال. بكثرة في هذا الستخدمةفة والممكللجة الفراغ ال من معااعة بد الطبيا ل ا مراقبة تشكة العضوية الشمسيIMAGINE arriving at the airport, then taking out a fully functional, neatly folded, ultra-thin com- puter device from inside your shirt pocket, and using it to check into a flight. “New research into flexible inorganic electronics could make this happen in the next two decades,” said Assistant Professor of Electrical Engineering Muhammad M. Hussain. In a paper recently published in the high- impact journal physica status solidi RRL and featured on the back cover (7, No. 3 (2013) [DOI 10.1002/pssr.201206490 (2013)]), co-authors Prof. Hussain and his PhD student Jhonathan Rojas from the professor’s Integrated Nanotechnology Group, provide a model for producing a flexible silicon platform for high performance electronics through their breakthrough research. The paper examines the following proposition: “Can we build a truly high-performance computer that is both flexible and transparent?” OBSERVING THE FORMATION OF ORGANIC SOLAR CELLS 4 تمه صفحة تافة:رنة و الشفة اعا ا أي مكان علومات توفر ا و زمانرتك من جيب ست ثم تخرجلمطار إلى ا تخيل أن تصلق ويعمل بأداء وأني يق جدا مطوي رق جهاز كمبيوتر عن بطاقة بدي ف رقمي عر ه كمستخدم عال، ثم ت حسينحمد مفسور البرو يقوللطائرة. ا صعودلعلوم لملك عبدامعة اللمساعد في جاذ استا اق ذلك عن طريق البحوثمكن تحقية " ي و التقنير العضوية المرنةرونيات غيلكت لدة في مجال الجديلقادمين". العقدين ال خفى صفحة الغ عل قة نشرت مؤخرا في ور كر و ذ ذاتphysica status solidi RRL مجلةفي لخل الفسور حسين البر تأليفها و شارك في التأثير الكبير روخاس مناثانلب الدكتوراه جون و تلميذه طاعلماء ل تكاملة ، أن بحثانو الملناجموعة تقنية ا منتاج مبتكرا نموذجا يقدمملك عبدامعة ال جاداء.لية ارونيات عالكت مرنة لصة سيليكون من بناء "هل يمكن فعلتاليقتراح اتبحث الورقة ا و فيافن مرن و شفداء يكولي ا جهاز كمبيوتر عا؟". معا آن4 تمه صفحة تProf. Hussain and his PhD candidate student Jhonathan Rojas examining a flexible silicon piece with devices. Prof. Aram Amassian

description

Beacon Newspaper

Transcript of 2013 April Beacon

Page 1: 2013 April Beacon

InSIDe: news 2 new faculty 5 Community 8Research 1, 3-4, 6-7

King Abdullah University of Science and technology at thuwal, Kingdom of Saudi Arabia

www.kaust.edu.sa

BeAConthe ة املنـار

April 2013 / Jumada Al-thani 1434 Volume 3, Issue no. 8

RESEARChERS from the materials Science and Engineering pro-

gram have conducted breakthrough research on organic solar cells,

detailing the formation of the photoactive layer, a nanoscale blend

of electron donating and accepting materials, during the process of

spin coating. The results address a long debated question in the field

and will help produce efficient solar cells using roll-to-roll printing

techniques. These findings by Assistant Professor Aram Amassian,

head of the Organic Electronics and Photovoltaics group, and post-

doctoral researcher dr. Kang Wei Chou, are being published this

month and featured on the front cover of the high-impact journal

Advanced Materials. (http://onlinelibrary.wiley.com/doi/10.1002/

adma.201370082/abstract)

The research highlights a world-first, high-speed synchrotron X-ray

scattering and optical measurements during the drying of a solu-

tion on a rapidly rotating substrate. While current understanding

of organic solar cells is provided mainly by post-deposition meas-

urements, KAUST scientists have overcome key technical hurdles

allowing them to provide new insights on the kinetics and sequence

of crystallization and phase separation as the solar ink spreads and

dries on the spinning disk to form the photoactive layer of a solar cell.

Spin-coating may represent an effective way of coating uniform

and fast-drying layers, but its usage is exclusively limited to lab-

oratory settings, the reason being that spin-coating it not scalable

up to manufacturing line standards. Essentially, this method per-

forms extremely well at the laboratory level and produced most of

the record-setting solar cells reported in recent years, but it has some

major flaws.

Enumerating some reasons for this limitation, Prof. Amassian

explained, “Spin-coating ejects 99% of the deposited solution (ink)

from the surface to form a very thin (100-200 nm) photoactive layer.

The ink contains expensive materials, so the material cost to man-

ufacture a solar cell by spin-coating increases one hundred fold.

Another reason is that the spinning disk approach isn’t suited for

fleXiBle comPutinG | Continued on p3 orGAnic solAr cells | Continued on p4

Flexible And TrAnSpArenT CompuTing: inFormATion Anywhere And AnyTime

المواد بجامعة الملك عبداهلل للعلوم أحرز باحثون من برنامج علوم وهندسة والتقنية تقدمًا مذهاًل في بحثهم الخاص بالخاليا الشمسية العضوية الذي يشرح من النانو بمقياس خليط – للضوء المتفاعلة الطبقة تشكل عملية تفاصيل اإللكترونات الممنوحة والمواد المستقبلة – خالل عملية التوزيع الدوراني والتي تتلخص في )إضافة كمية من المحلول إلى قاعدة تدور بسرعة عالية لتوزيعه على طبقة القاعدة باستخدام قوة الطرد المركزي( . وعالجت النتائج مسائل مهمة في هذا المجال وسيكون لها دور كبير في انتاج خاليا شمسية ذات كفاءة عالية

. roll-to-roll باستخدام تقنيات الطباعةوقد نشرت مجلة Advanced Materials ذائعة الصيت والصادرة لهذا الشهر على غالفها نتائج هذا البحث الذي قام به البروفسور أرام أماسيان رئيس فريق الدكتوراه بعد ما وباحث بالجامعة، الضوئية والخاليا العضوية اإللكترونيات

الدكتور كانغ وي تشو.األشعة لسنكروتون البصرية والقياسات التشتت مرة ألول البحث ويستعرض تدور سفلية طبقة على المحلول تجفيف عملية خالل السرعة فائق السينية على مبني العضوية الشمسية للخاليا الحالي الفهم أن من وبالرغم بسرعة. قياسات ما بعد الترسب إال ان علماء جامعة الملك عبداهلل تمكنوا من التغلب حركة عن جديدة افاقًا لهم فتح الذي األمر الرئيسية التقنية العقبات على وتسلسل عملية التبلور ومرحلة االنفصال التي ينتشر فيها الحبر الشمسي ويجف

على القرص الدوار ليشكل طبقة الخلية الشمسية المتفاعلة للضوء.قد يمثل التوزيع الدوراني طريقة فعالة لتوزيع طبقات موحدة سريعة الجفاف، إال أن استخدامه مقتصرًا على بيئة المختبرات فقط حيث ال يمكن ترقية هذه التقنية إلى معايير اإلنتاج الصناعي. و بشكل عام فإن هذه الطريقة قد تعمل بصورة جيد للغاية على مستوى المختبرات و أنتجت معظم الخاليا الشمسية في

السنوات األخيرة، إال أن لديها بعض العيوب الرئيسية. التوزيع يقذف " بقوله التقنية هذه عيوب بعض أماسيان البرفسور يشرح و الدوراني نسبة 99 في المائة من كمية المحلول المترسب )الحبر( من السطح ولكن نانومتر(. 100-200( بقياس جدًا رقيقة للضوء متفاعلة طبقة ليشكل الحبر المستخدم يحتوي على مواد مكلفة جدًا مما يزيد التكلفة المادية لتصنيع أن طريقة إلى باإلضافة بمائة مرة، الدوراني التوزيع بواسطة الشمسية الخاليا القرص الدوار غير مالئمة لتقنية الطباعة .roll-to-roll لذلك ال يمكن توسيع

أو ترقية عملية التوزيع الدوراني".ويفضل غالبية من يعمل في مجال الخاليا الشمسية العضوية حل أوسع لعملية الطباعة بدال من معالجة الفراغ المكلفة والمستخدمة بكثرة في هذا المجال.

مراقبة تشّكل اخلاليا الشمسية العضوية

ImAgINE arriving at the airport, then taking out

a fully functional, neatly folded, ultra-thin com-

puter device from inside your shirt pocket, and

using it to check into a flight. “New research into

flexible inorganic electronics could make this

happen in the next two decades,” said Assistant

Professor of Electrical Engineering muhammad

m. hussain.

In a paper recently published in the high-

impact journal physica status solidi RRL and

featured on the back cover (7, No. 3 (2013) [dOI

10.1002/pssr.201206490 (2013)]), co-authors Prof.

hussain and his Phd student Jhonathan Rojas

from the professor’s Integrated Nanotechnology

group, provide a model for producing a flexible

silicon platform for high performance electronics

through their breakthrough research. The paper

examines the following proposition: “Can we

build a truly high-performance computer that is

both flexible and transparent?”

oBSeRVIng the foRmAtIon of oRgAnIC SolAR CellS

تتمه صفحة 4

املعاجلة املرنة و الشفافة: توفر املعلومات يف أي مكان

و زمانتخيل أن تصل إلى المطار ثم تخرج من جيب سترتك جهاز كمبيوتر مطوي رقيق جدًا وأنيق ويعمل بأداء عال، ثم تستخدمه كُمعّرف رقمي بدياًل عن بطاقة حسين محمد البروفسور يقول الطائرة. صعود األستاذ المساعد في جامعة الملك عبداهلل للعلوم البحوث طريق عن ذلك تحقيق يمكن " التقنية و الجديدة في مجال لإللكترونيات غير العضوية المرنة

خالل العقدين القادمين". الغالف ورقة نشرت مؤخرًا على صفحة ُذكر في و ذات physica status solidi RRL لمجلة الخلفي التأثير الكبير و شارك في تأليفها البرفسور حسين من روخاس جوناثان الدكتوراه طالب تلميذه و لعلماء بحثًا أن ، المتكاملة النانو تقنية مجموعة جامعة الملك عبداهلل يقدم نموذجًا مبتكرًا إلنتاج األداء. عالية لإللكترونيات مرنة سيليكون منصة وتبحث الورقة االقتراح التالي "هل يمكن فعاًل بناء جهاز كمبيوتر عالي األداء يكون مرن و شفاف في

آٍن معًا؟". تتمه صفحة 4

prof. hussain and his phd candidate student Jhonathan rojas examining a flexible silicon piece with devices.

prof. Aram Amassian

Page 2: 2013 April Beacon

CORRECTION: In the march Beacon article on the SEdCO Research Excellence Award Workshop on page 3, mandeep Kaur was incorrectly titled a postdoctoral fellow. The correct title is senior research scientist.

in Brief new eneRgy oASIS AnD SolAR teChnology hIghlIghteD At KAUSt

ThE KINgdOm’S “renewed momentum and commitment to produce solar technology” and KAUST’s

partnerships in the field will help local industry meet Saudi Arabia’s solar energy needs, Amin

Shibani, KAUST Vice President of Economic development, told the audience at the New Energy

Oasis (NEO) Spotlight on SunPower Technology workshop on march 6.

The workshop, which was hosted by KAUST’s Technology Application and Advancement group

(TAAg) and Total, brought together more than 100 executives from local utility companies and

government agencies, technical advisors, industrial representatives, and KAUST community mem-

bers. SunPower, a leading provider of solar technology, profiled its cutting-edge solar cells and

collaborative research work in Saudi Arabia at KAUST during the event.

In April 2010, SunPower – a company now partially owned by Total, the University’s partner

through the KAUST Industry Collaboration Program (KICP) – completed a project at KAUST which

installed a 2 megawatt (mW) photovoltaic (PV) system on the roof of four of the academic buildings.

The University intends to “increase the level of building sustainability at KAUST by integrating this

renewable energy source,” explained Tamer Shahin, Solar Systems Engineer from TAAg. In march

2013, SunPower also completed an installation of a smaller-scale system at the NEO site to test

three of its products: a fixed PV system, a tracking PV system, and a low-concentration PV system.

NEO is run through collaborations between industry and academia at KAUST. The TAAg team

and NEO function as the link between the two, explained Shahin. TAAg monitors and analyzes the

SunPower systems’ performance, as they “operate under the special circumstances of Saudi weather,

including high temperatures, wind, humidity, and soiling rates,” Shahin said. “TAAg is focused on

solving the issue of dust accumulation, which reduces the energy output of solar systems.”

“Work at KAUST is addressing these issues,” said dr. Raed Bkayrat, manager of TAAg, noting

that dust accumulation can reduce a system’s output by 60%. “you have to mitigate [the issues],”

he said. “That’s why we are pushing forward with solar testing at NEO.”

State-of-the-art clean energy technologies can be tested and demonstrated at NEO, and then cer-

tified for use in the challenging environment of Saudi Arabia. “NEO is basically an outdoor test lab

that covers the areas of interest to KAUST and Saudi Arabia,” said dr. Bkayrat.

Through NEO, the University aims to develop and utilize PV technologies that can provide a market

edge “if you have a desert module that is optimized for the weather conditions of Saudi Arabia,” dr.

Bkayrat explained. “We want to provide our industry with recommendations to understand the impact

of soiling and develop dust implication solutions.” The NEO test site “emphasizes the local content of

the projects,” noted Shibani, adding that said he expects it will expand in response to strong demand

by industry to help further the Kingdom’s goals in moving towards solar and renewable energies.

KAUSt hoStS InteRnAtIonAl ConfeRenCe on ReD pAlm weeVIl

FROm march 16-18, KAUST hosted an international conference on research and management

strategies for the red palm weevil (RPW) Rhynchophorus ferrugineus. This beetle is a major pest

of all the economically important palms tree species, including the date palm that plays such an

important part in the cultural and economic heritage of Saudi Arabia. The insect was inadvertently

introduced into Saudi Arabia, United Arab Emirates, and other gulf countries in the 1980s and is

now established in all date palm growing areas.

RPW is an elusive pest and hard to detect in earlier infestation stages. By the time the obvious

signs of infestation appear, it is often too late for chemical treatment, and the infested tree must

be destroyed. The pest causes great economic losses in the Kingdom, and its control is a serious

challenge for researchers in academia, governmental agencies, and private agricultural enterprises.

The conference brought together scientists from KAUST, Saudi Arabia and the gulf region, the

Americas, Europe, and Asia to explore existing and future research strategies, as well as to lay the

foundation for collaborative research projects. during the conference, participants discussed new

research strategies and control measures to manage the pest, to prevent its further spread, as well

as to identify infested plants in earlier stages. The participants shared their expertise in fighting the

RPW and learned how other insect pests are managed and controlled. The main conference out-

comes were the establishment of a new communication channel and a possible coordination body

that will help foster collaboration.

The conference was organized by dr. Ali m Idris, Prof. Arnab Pain, Prof. Vladimir Bajic, and Prof.

Nina Fedoroff from the Biological and Environmental Sciences and Engineering division, and col-

leagues from Saudi Arabia, US, and the UK.

SAUDI UnIVeRSIty RepReSentAtIVeS meet to DISCUSS teChnology tRAnSfeR In the KIngDom PARTICIPANTS in the Saudi University Technology Transfer Roundtable workshop held at KAUST

on march 13 discussed the best practices, challenges, opportunities, and potential of the technol-

ogy transfer (TT) process to support the introduction of innovative new technologies tailored to

meet the Kingdom’s needs. Representatives from 11 universities, including King Fahd University

of Petroleum and minerals (KFUPm), King Saud University, Umm Al-Qura University, and King

Abdulaziz University, took part in the event.

The workshop marked “the first time all TT offices in the Kingdom came together to discuss their

role in transferring university-based technology to industry and businesses,” explained dr. Sami

Bashir, Senior Technology Portfolio manager from KAUST’s Economic development. “We produced

a learning experience in best practices that could ultimately lead to an effective TT process that is

tailor-made for Saudi society and the Saudi economy.”

Organized into three main discussion blocks, the workshop focused on commercialization of tech-

nology in Saudi Arabia, the challenges of TT in the Kingdom, and intellectual property (IP) rights and

the patenting process. In the first session, participants pointed out TT issues unique to the Kingdom,

including concerns over the infrastructure of engineering and manufacturing, little support by private

investors, and difficulties in bringing inventors and investors together. however, as maria douglass,

Acting director of Technology Transfer and Innovation (TTI), noted at the end of the session, the dis-

cussion showed representatives are “confident of a growing science and research capacity” in Saudi

Arabia, and that there is a desire to cultivate “a culture of economic entrepreneurship.”

Participants agreed one of the major issues facing interactions with businesses in the Kingdom

is that the purpose of TT offices is not to make money – a concept which may be difficult for busi-

nesses to understand. Explained dr. Iyad Al-Zaharnah, director of KFUPm’s Innovation Center and

Assistant Professor at KFUPm, “TT offices want to help in job creation. They often lose money over

a certain period.” Both dr. Zaharnah and dr. Bashir said universities and businesses must focus on

the “long-term vision” of what TT is capable of accomplishing. This vision includes understanding

that technology cannot move from the lab bench to the market in a short time period.

The participants agreed that both universities and the local business community need to understand

the importance of protecting IP, but Saudi universities must also be generous with investors and busi-

nesses. “We need to engage end-users and local stakeholders early in the process,” said dr. Osamah

Alamri, CEO of makkah Techno Valley Co. and Assistant Professor at Umm Al-Qura University.

As the Kingdom continues to move towards an innovation-based economy, TT will become even

more important, noted dr. Alamri. “There is a Saudi market [for technology],” he said, and through

TT the Kingdom should be able to “fulfill its own consumption and also export some technologies,”

with universities contributing to the economic development of Saudi Arabia.

maria douglass, Acting director of Technology Transfer and innovation, moderates a discussion session about technology transfer at the Saudi university Technology Transfer roundtable workshop on march 13.

Abdulaziz baras (left), KAuST alumnus and researcher at the King Abdullah City for Atomic and Renewable Energy (K•A•CARE), discusses solar technology at the NEO site with Abdul-rahman Al othman (right), Vice president of Saudi Cable, during the neo event on march 6.

The participants in the red palm weevil workshop, march 16-18.

news2 April 2013 The Beacon

ThIS issue focuses on some of the exciting research being conducted at KAuST and published in well-

known journals. The topics range from the development of a flexible, transparent computer that you

can fold and put in your pocket to the development of organic solar cells, the harnessing of hydro-

gen using solar energy for water-splitting, a new semi-conductor for water splitting, metal-organic

materials for effective and cost efficient carbon capture, and a catalytic system for recycling Co2.

It also introduces the faculty members who have recently become part of the KAuST family and

describes three important conferences held during the month. Don’t miss the interesting photo of

Earth Day on page 8.

The Beacon, volume 3, Issue 8, April 2013. Published by The Communications Department, King Abdullah university of Science and Technology, Thuwal 23955-6900, Saudi Arabia. Contact Salah Sindi [email protected], or Michelle D'Antoni [email protected] © King Abdullah university of Science and Technology. Printed on partially recycled paper.

—THE BEACON Editorial

Page 3: 2013 April Beacon

SolAR fUel geneRAtIon foR SUStAInABle SoCIety wIth ABUnDAnt mAteRIAlSdR. KAZUhIRO Takanabe is an Assistant Professor of Chemical

Science in the Catalysis Research Center and the Principal

Investigator of the Photocatalysis (Catalysis for Energy

Conversion) Laboratory. his research interests include the devel-

opment of novel nanomaterials for a variety of reactions from

conventional methane conversion to photocatalytic hydrogen

production.

Prof. Takanabe’s current research focus is on the development

of efficient photocatalysis for water splitting to harness hydro-

gen using solar energy. The study requires an understanding of

the band structure of semiconductors and of electrocatalysis on

the semiconductor surfaces. his research group is developing

visible light-responsive photocatalysis to absorb and convert

a significant amount of solar energy, and highly active nano-

structure catalysts that are immobilized on the semiconductor

surfaces to catalyze water redox reactions.

“hydrogen, when generated using renewable energy like solar

energy, is seen as a promising clean alternative to the deplet-

ing stocks of fossil fuels, but its efficient production/harnessing

remains a scientific and technological challenge, and the tech-

nologies are not yet commercially viable,” Prof. Takanabe said.

One of the most economical ways to harness hydrogen is thought

to be through solar-energy powered photocatalytic overall water

splitting (OWS). In this method, water is dissociated into hydrogen

(h2) and oxygen (O2) with the use of light’s energy.

“The photocatalytic OWS process requires a semiconductor

with suitable band positions and cocatalysts for electrochemi-

cal redox reactions. Platinum-group metals have proven to be

the excellent co-catalysts, allowing hydrogen production to take

place efficiently, but their increasing global demand and esca-

lating prices have led researchers to look for more abundant,

low cost materials,” Prof. Takanabe said.

In a recent research effort led by Prof. Takanabe, a group

of researchers investigated nano-sized tungsten carbide as a

potential substitute for noble metals in OWS applications. Prof.

Takanabe worked on the project with his Phd student Angel

T. garcia-Esparza, with dr. dongkyu Cha from the Advanced

Nanofabrication, Imaging, and Characterization Laboratory,

and their colleagues from Prof. Kazunari domen’s group at The

University of Tokyo.

“Although further optimization of the synthetic and reac-

tion conditions is needed, tungsten carbide shows promise in

the search for non-noble-metal cocatalysts for OWS,” Prof.

Takanabe said. “Our findings also show that tungsten carbide

can be used for water splitting without a core/shell structure,

and this opens up new possibilities in the design of cocatalysts

for photocatalytic OWS. This study introduces the great poten-

tial of non-metal/metal oxides, like tungsten carbides, when

made extremely small in size, as a non-noble-metal alternative

for use as a cathode catalyst in water electrolysis, as an anode

catalyst in polymer electrolyte membrane fuel cells, and as a

dual-role cocatalyst in OWS.”

The team is also working on the visible-light-responsive sem-

iconductor materials with improved photocatalytic efficiency.

The examples include highly efficient nano-rod tantalum nitride

as a photoanode for water oxidation reaction, the collaborative

work of which is recently published in the journal Advanced

Materials and featured on the back cover. The solar energy con-

version efficiency using these materials is improving day by

day, and yet breakthrough in the energy efficiency is awaited.

“Recent advances in nanochemistry enable us to develop highly

efficient catalysts for various applications. Understanding the

reaction mechanism and functionality of the active sites, design

of the efficient and stable (photo)catalysts is to be addressed

experimentally, assessing the significant issues of human beings,

such as energy and environment,” Prof. Takanabe said.

The research paper “Tungsten Carbide Nanoparticles as

Efficient Cocatalysts for Photocatalytic Overall Water Splitting”

was published in ChemSusChem, and can be accessed at http://

dx.doi.org/10.1002/cssc.201200780. The Advanced Materials

paper, “Vertically Aligned Ta3N5 Nanorod Arrays for Solar-

driven Photoelectrochemical Water Splitting,” can be accessed

at http://dx.doi.org/10.1002/adma.201202582

Research 3April 2013www.kaust.edu.sa

According to Prof. hussain, three main challenges need to be addressed to create this ultra-light

foldable computer: "First, we have to use silicon; second, we have to match the performance that our

transistors provide on laptops and desktops; and third, the new devices need to be ultra-low power." In

essence, the goal is to create a flexible and transparent device with extremely high computation perfor-

mance that requires very low power.

In addition to the above factors, a central consideration is functionality. For example, how many tasks

can be performed on a foldable computer? By making the transistors small enough, and stacking them

together within a given amount of space, it becomes possible to instruct given sets of transistors to per-

form various tasks. “It’s not possible at all if you don’t use silicon as the substrate,” said Prof. hussain.

It’s an important advantage which silicon processing holds, as applied to flexible inorganic electron-

ics, over organic-based platforms. “A one centimeter square silicon-based platform can have one billion

devices while an organic-based substrate can hardly have a hundred devices,” Prof. hussain further

explained. “Those are the basic reasons why we should focus on flexible inorganic electronics. Basically,

they provide a stronger platform. But can we make them foldable?”

Conventional silicon (high-k/metal gate) microprocessors, holding billions of transistors, used in

today’s computers have 3.1 ghz speed. In order to achieve this novel combination of speed and flex-

ibility, the transistors are scaled down to 25 nm in length and instead have high-k/metal gate stacks.

hussain and Rojas have opted to fabricate those high-k/metal gate capacitors on the cheapest form or

bulk silicon (100) used in the semiconductor industry.

“We’re using the cheapest substrate because industry uses the cheapest substrate. This is why prices

go down every year… industry can simply grab this technology because we're not introducing any new

tools. That’s where its uniqueness is. The standard criteria of today’s traditional electronics (CmOS com-

patibility) are maintained. We're not compromising any of that. We're just adding value by bringing in

the flexibility and transparency components,” Prof. hussain explained.

Using an inexpensive bulk silicon wafer, KAUST scientists, through a series of dry etching steps, peel

off thin layers from the original substrate. This process produces an ultra-thin substrate that is not only

mechanically flexible but also optically transparent. “When we peel the layer off, it’s very thin and retains

all the properties without any loss in performance, material, or lithographic resolution…For the first time

we actually demonstrate how to get ultra-low power devices on a flexible platform,” said Prof. hussain.

Achieving flexibility and display resolution efficiency may suffice for the purposes of an LEd screen,

but more is required to develop a foldable and transparent computer.

Organic-based semiconductor layers on LEd television screens are currently available on the market.

While those are able to provide high-resolution display, the fact that performance levels aren’t optimal

isn’t a major concern. But the requirements are different for an ultra-light computer.

Performance is a crucial characteristic, or metric, in the usefulness on a foldable computer. As Prof.

hussain remarks, “If the performance is compromised, then it doesn’t make any sense.” This comes in

the form of a longer battery life for portable devices. “In addition to being ultra-light-weight, foldable,

and easily deployable (wearable, stored, or easily carried), its battery life will be for weeks and feature

terabyte non-volatile memory.”

guided by the research vision of KAUST’s Integrated Nanotechnology Lab which states: “Information

for everyone, anywhere and anytime,” Prof. hussain sees a future where every single person on earth

will carry a computer. “Because that’s how they will be connected to their information; and really, our

life is driven by information,” he added.

Specific future applications could be the implementation of a unique code or Id to access our medical

records instantly, to have the ability to withdraw money in local currency worldwide without the need

to carry physical documents, or to apply for and receive travel visas online.

In order to achieve these objectives, “we need to have an extremely powerful, ultra-mobile device in

our pocket. That’s where the flexibility comes from,” concluded Prof. hussain.

prof. hussain is holding a flexible silicon piece (2.3 cm x 1.2 cm) with fabricated devices.

phd student Angel T. garcia-esparza and prof. Takanabe

fleXiBle comPutinG | Continued from p1

Copyright wiley-VCh

Verlag gmbh

& Co. KgaA. Reproduced

with perm

ission.

Page 4: 2013 April Beacon

April 2013 The BeaconResearch4

roll-to-roll printing. So spin-coating is not very

scalable for those reasons.”

many in the organic solar cell community

would actually prefer large-scale solution print-

ing as opposed to potentially costly vacuum

processing, even though the latter may emerge

as a strong player in the field. “One of the chal-

lenges right now is that the cost of solar cells is

too high, and a lot of companies are struggling

to stay afloat even in more established thin film

technologies,” added Prof. Amassian.

The challenge then is to devise a more

cost-effective method while also improving pro-

duction yields, efficiency, and lifetimes, Prof.

Amassian explained. “A large part of the organic

solar cell community wants to use solution

printing and aims to get to 15% efficiency and

beyond in order to make this a cost-effective

and exciting technology for industry, investors,

and for customers.”

By understanding the formation of nanoscale

structure during the spin-coating process, the

most successful solution-process for organic

solar cell fabrication, it becomes possible to

transfer lessons from spin-coating to industrial

printing processes, which do not yet perform as

well as lab-based spin-coaters.

"Rather than starting from scratch with printing

processes and ignoring all the lessons of spin-

coating, we now have the tools to learn valuable

lessons from what has worked with spin-coating

and then try to transfer them over to the printing

process much more effectively," Prof. Amassian

elaborated. The research published by Prof.

Amassian and dr. Chou represents a significant

engineering achievement because it demonstrates

the ability to perform synchrotron–based X-ray

experiment in real-time.

By observing the phase separation in the

photoactive blended layer of an organic

solar cell, the nanoscale morphology pur-

ports answers to several elusive questions. For

example: how and when do crystallization and

phase separation happen? how are they related

to each other?

“In the absence of real proof, people have

speculated about how the process evolves

without really knowing with certainty. does

crystallization follow spinodal decomposition

of the polymer or does crystallization of the

polymer drive the phase separation process? I

believe the results of our experiment show that

both processes occur simultaneously and syner-

gistically. Now, our job is to make efficient solar

cells using scalable printing processes, where

conditions may be quite different from spin-

coating,” said Prof. Amassian.

While X-ray scattering has been used in the

past to investigate common organic thin film

deposition processes such as vacuum-deposition,

drop casting, and doctor-blading, studying spin-

coating had thus far posed a particular challenge.

A principal roadblock has been that spin coat-

ers move at high speed, ejecting the solution in

the line of sight of the X-ray beam and tend to

wobble. This makes it especially challenging to

focus a beam of X-rays on the constantly mov-

ing surface.

To overcome this issue, dr. Chou ingeniously

ran the experiment on a miniature spin-coater

converted from an off-the-shelf computer

hard-disc drive. After testing several models,

he created a spin-coater that could be safely

operated remotely in the confines of the pro-

tective hutch. As it turned out, the computer

drive made for a very good and stable minia-

ture spinner.

Advancements in solar cell printing tech-

niques can potentially lead to a myriad of

applications, beyond the traditional rigid solar

panels. In fact, by virtue of controlling the

thickness of the active layer, it becomes possible

to produce much thinner and semi-transparent

solar cells.

By making them low cost, these thin solar cells

could, for instance, be incorporated as energy-

renewing covers for tablet computers. “Every

time your tablet is sitting idly in the presence

of ambient light, the battery will be recharged

-- hence taking the device off the electric grid,”

said Prof. Amassian.

The energy harvested by these organic solar

cells, which could also be used to coat windows

or transparent roofs, can establish decentralized,

very light-weight sources of electricity. This can

make a difference within the Kingdom since, as

Prof. Amassian concludes, “it could be part of

the portfolio of renewable energy technologies

manufactured and deployed in Saudi Arabia and

beyond in the next few years.”

العالية التكلفة " أن: بقوله ذلك أماسيان ويؤكد جدًا للخاليا الشمسية هي إحدى التحديات الكبيرة في الوقت الحالي لجميع الشركات في هذا المجال

بالرغم من التقدم في تقنيات الطبقة الرقيقة".غير طريقة ابتكار في هو الفعلي التحدي أن كما مكلفة مع تحسين كفاءة اإلنتاج، ويوضح البروفسور أماسيان ذلك قائال :" يريد غالبية من يعمل في مجال الخاليا الشمسية العضوية استخدام محلول الطباعة و 15% من أكثر إلى الكفاءة رفع إلى يهدف و ذلك لجعل هذه التقنية اقتصادية ومفيدة للصناعة

والمستثمرين والزبائن".ومن خالل فهم كيفية تشكيل البنية النانومترية أثناء عملية التوزيع الدوراني الذي يعتبر أنجح عملية لتصنيع الدروس نقل نستطيع العضوية، الشمسية الخاليا المستفادة منها إلى عمليات الطباعة الصناعية والتي

ليست بمستوى التوزيع الدوراني في المختبرات. األدوات اآلن لدينا " أماسيان: البرفسور ويقول عملية في خبراتنا من قّيمة دروس لتعلم الالزمة التوزيع الدوراني ونقلها إلى عملية الطباعة بداًل من البدء من نقطة الصفر". ويعتبر البحث الذي نشره الهندسة في مهمًا إنجازا وتشو أماسيان من كل نظرًا ألنه يوضح القدرة على أداء تجربة لسنكروتون

األشعة السينية في الوقت الفعلي. و يلقي علم التشكل النانومتري الضوء على العديد من األسئلة المحيرة من خالل مراقبة مرحلة الفصل خلية في للضوء المتفاعلة المخلوطة الطبقة في ومتى كيف المثال: سبيل فعلى عضوية. شمسية تحدث عملية التبلور ومرحلة االنفصال؟ و ما مدى

العالقة بينهما؟ هذه تطور " أن إلى النظر أماسيان البرفسور ولفت البراهين لغياب نظرًا التوقعات قيد كان العملية spinod- التحلل عملية التبلور يتبع فهل )الحقيقة.

al( للبوليمر أو أن تبلور البوليمر هو من يدفع عملية الفصل المرحلي؟ أعتقد أن نتائج تجربتنا تبين أن كلتا العمليتين تحدثان في نفس الوقت وبالتعاون والتوافق الخاليا جعل هي اآلن ومهمتنا البعض. بعضها مع للترقية القابلة الطباعة عملية في فعالة الشمسية

والتطوير ، حيث تختلف الظروف عن التوزيع الدوراني".و بالرغم من استخدام تقنية تشتت األشعة السينية في الماضي للتحقق من تحلل فلم عادي عضوي رقيق doc- و ، واإلسقاط ، الفراغ ترسب مثل بعمليات tor-blading ، إال أن دراسة عملية التوزيع الدوراني العقبة وتكمن اآلن. حتى خاصًا تحديًا تشكل كبيرة بسرعة يدور التوزيع قرص أن في الرئيسية األشعة مجال بإتجاه المحلول ويقذف ويتذبذب السينية مما يعيق عملية تركيز الشعاع على السطح

السفلي المتحرك بإستمرار.تشو الدكتور لجأ المشكلة هذه على وللتغلب قرص على التجربة إجراء وهي بارعة فكرة إلى توزيع صغير جدًا تم تطويره من سواقة قرص صلب لكمبيوتر قديم. واستطاع بعد تجربة عدة نماذج من بأمان استخدامه يمكن دوراني توزيع قرص تطوير ضمن حدود صندوق الحماية. حيث اتضح ان سواقة أقراص تعطينا الشخصي للكمبيوتر الصلب القرص

صغيرة جدًا تدور بثبات. الخاليا طباعة تقنيات في التقدم يؤدي أن ويمكن بخالف التطبيقات من كبير عدد إلى الشمسية األلواح الشمسية التقليدية، كما يمكن كذلك إنتاج بالتحكم شفافة وشبه بكثير أرق شمسية خاليا الخاليا وبجعل هذه النشطة فقط. الطبقة بسماكة أن يمكن التكلفة منخفضة الرقيقة الشمسية تستغل في تطبيقات متعددة مثل دمجها مع غطاء وسيتم للطاقة، متجدد كمصدر اللوحي الكمبيوتر فيها يدخل مرة كل في البطارية شحن إعادة الكمبيوتر اللوحي طور الخمول بوجود إضاءة محيطة وتعطينا الكهربائية. الدائرة عن االستغناء وبالتالي هذه الخاليا الشمسية العضوية والتي يمكن أن تغطي النوافذ أو األسطح الشفافة مصادر كهربائية مستقلة

و خفيفة الوزن. وأوضح البرفسور أماسيان في نهاية حديثه مدى أهمية أن يمكن " بقوله: السعودية العربية للمملكة ذلك استثمارًا في العضوية الشمسية الخاليا تشكل هذه المملكة في تصنع التي المتجددة الطاقة تقنيات

".وتصدر للعالم في السنوات القليلة القادمة

miniature spin-coater constructed from a computer hard disk drive measures only 3 cm diameter and is mounted on an aluminum base.

وفقًا للبرفسور حسين، توجد ثالث تحديات رئيسية يجب معالجتها إلنشاء هذا الكمبيوتر البالغ الخفة والقابل للطي: " أواًل، يتعين علينا استخدام رقاقة السيليكون ؛ وثانيًا يجب أن يجاري نفس أداء الترانزستورات في أجهزة الكمبيوتر المحمولة والمكتبية، وثالثًا، يجب أن يكون الجهاز الجديد ذو استهالك منخفض للطاقة". و بشكل عام، هدفنا إنشاء

جهاز مرن وشفاف، مع معالجة حاسوبية عالية للغاية، وباستهالك منخفض جدًا للطاقة.يعتبر األداء الوظيفي من أهم العوامل المذكورة أعاله. فعلى سبيل المثال، كم عدد المهام التي يمكن أن ينجزها الكمبيوتر المطوي؟ ويمكن من خالل جعل الترانزستورات صغيرة بما فيه الكفاية و رصها معًا في حيز محدد أن تؤدي مهام متعددة. يقول البروفسور حسين "ولكن ذلك غير ممكن دون استخدام رقاقة السيليكون". و هي إحدى المزايا المهمة في المعالجة بواسطة السيليكون و يتبين ذلك من خالل المقارنة بين اإللكترونيات ذات المنصات غير العضوية المرنة مع المنصات العضوية األخرى حيث أن سنتيمترًا مربعًا واحدًا لمنصة من السيليكون يمكن أن تستوعب مليار جهاز في حين أن المنصات العضوية بالكاد تستوعب مائة جهاز. و يوضح البرفسور حسين ذلك بقوله " تلك هي األسباب األساسية التي تدفعنا للتركيز على اإللكترونيات غير العضوية

المرنة حيث أنها المنصة األقوى من نوعها، لكن هل يمكننا أن نجعلها قابلة للطي؟ ". تبلغ سرعة معالجات السيليكون التقليدية )high-k/metal gate( التي تحوي على مليار ترانزستور والمستخدمة في أجهزة الكمبيوتر اليوم 3.1 جيجاهيرتز. ولتحقيق هذه التركيبة الجديدة من السرعة والمرونة، يتم تقليص طول الترانزستورات الى 25 نانومتر واالستعاضة بحزم فقط من high-k/metal gate. وقد خلص البروفسور حسين و تلميذه روخاس الى تصنيع مكثفات high-k/metal gate في أرخص شكل أو خام السيليكون )100(

المستخدم في صناعة أشباه الموصالت. و يضيف البرفسور حسين " نستخدم أرخص الرقاقات ألن المصانع تستخدم أرخص الرقاقات. و هذا السبب في انخفاض األسعار كل عام...ويمكن للمصانع أن تستخدم هذه التقنية ألننا ببساطة ال نقدم أي أدوات جديدة وهذا ما يميزها، حيث حافظنا على المعايير القياسية لإللكترونيات التقليدية الحالية )توافقية CMoS(. لم نغير

في أي من ذلك و لكننا أثرينا قيمتها بإضافة مكونات مرنة وشفافة".

و تمكن علماء جامعة الملك عبداهلل باستخدام رقاقة من خام السيليكون الغير مكلف واعتمادهم خطوات التنميش الجاف من تقشير طبقات رقيقة من الطبقة السفلية األصلية. و نتج عن هذه العملية طبقة سفلية رقيقة جدًا ذات مرونة عالية و شفافة في نفس الوقت. يقول البرفسور حسين " الطبقة التي تم تقشيرها رقيقة جدًا ومحتفظة بجميع خصائصها دون أي تأثير على األداء أو المواد أو دقة الطبع...حيث استعرضنا فعال و للمرة

األولى كيفية الحصول على أجهزة ذات استهالك منخفض جدًا للطاقة وعلى منصة مرنة".يمكن تحقيق المرونة مع إظهار دقة وضوح كبيرة ألغراض تطوير شاشات من نوع lED، و لكن تطوير جهاز

كمبيوتر قابل للطي وشفاف يحتاج إلى جهد أكبر. طبقات أشباه الموصالت العضوية في شاشات التلفزيون lED متوفرة حاليًا في السوق. و هي تعطي دقة وضوح عالية جدًا اال أن أدائها غير متفوق وهو أمر غير مطلوب بالنسبة للشاشات، لكن االمر مختلف تمامًا عند تطوير كمبيوتر رقيق جدًا. فاألداء من الخصائص المهمة بالنسبة للكمبيوتر المطوي. وقد وضح البرفسور حسين ذلك بقوله " ال معنى لكل ذلك بدون تحقيق األداء، فباإلضافة إلى كون الكمبيوتر خفيف الوزن و قابل للطي و سهل في التعامل

)من ناحية التخزين أو سهولة الحمل( ، يجب أن يكون عمر البطارية لمدة أسابيع و يتضمن ذاكرة بالتيرابايت". انطالقا من رؤية مختبر تقنية النانو المتكاملة في جامعة الملك عبداهلل و التي تنص على: "أن المعلومات للجميع، في أي مكان وزمان", يعرض البرفسور محمد حسين تصوره عن المستقبل بقوله " سيحمل كل شخص على سطح األرض كمبيوترًا يمكنه من الحصول على المعلومات في أي وقت، فحياتنا في واقع األمر تعتمد على المعلومات". قد يكون من تطبيقات المستقبل استخدام شفرة معينة أو رقم هوية ID للدخول إلى سجالتنا الطبية على الفور أو سحب المال بالعملة المحلية في جميع أنحاء العالم دون الحاجة لحمل الوثائق المادية، أو تقديم الطلبات و

الحصول على تأشيرات السفر عبر اإلنترنت. و من أجل تحقيق هذه األهداف يختم البرفسور حسين بقوله " نحن بحاجة إلى جهاز محمول قوي للغاية و فائق

." الدقة في جيوبنا. وهنا تأتي فائدة المرونة

املعاجلة املرنة و الشفافة: توفر املعلومات يف أي مكان و زمان

Reproduced with permission. Copyright 2013, wiley.

orGAnic solAr cells | Continued from p1

Page 5: 2013 April Beacon

new faculty 2012-2013

saliM al BaBili Associate Professor, Bioscience, BESE

habilitation, University of Freiburg,

germany. Phd, Cell Biology, University

of Freiburg, germany. From University

of Freiburg, germany

enzo Di FaBRizio Professor, material Science and

Engineering, PSE. Phd, Physics,

University of Rome “La Sapienza,” Italy.

From Italian Institute of Technology, Italy

hong iM

Professor, mechanical Engineering, PSE

Phd, mechanical and Aerospace

Engineering, Princeton University, US.

From University of michigan, US

ValeRio oRlanDo

Professor, Bioscience, BESE

Phd, Biology, University of Rome “La

Sapienza,” Italy.

From dulbecco Telethon Institute, Italy

MaRk TesTeRProfessor, Bioscience, BESE. Phd, Plant

Sciences, University of Cambridge, UK.

From the University of Adelaide and the

Australian Centre for Plant Functional

genomics, Australia

MooTaz elnozahY

dean of CEmSE

Professor of Computer Science. Phd,

Computer Science, Rice University, US.

From IBm Research, US.

MagDY MahFouz

Assistant Professor, Bioscience, BESE

Phd, molecular genetics, Ohio State

University, US. Previously a Postdoctoral

Team Leader from Center for desert

Agriculture, KAUST, Saudi Arabia

enRico TRaVeRsa

Professor, material Science and

Engineering, PSE. Phd, Chemical

Engineering, University of Rome “La

Sapienza,” Italy. From National Institute

for materials Sciences, Japan

MaTThew MccaBe

Associate Professor, Environmental Science

and Engineering, BESE. Phd, Civil and

Environmental Engineering, University of

Newcastle, Australia. From University of

New South Wales, Australia

ToM wu Associate Professor, material

Science and Engineering, PSE. Phd,

Physics, University of maryland, US.

From Nanyang Technology University,

Singapore

MohaMMaD Younis

Associate Professor, mechanical

Engineering, PSE. Phd, Engineering

mechanics, Virginia Polytechnic Institute

and State University, US. From State

University of New york at

Binghamton, US

oMaR MohaMMeD

aBDelsaBooR Assistant Professor, Chemical Sciences, PSE. Phd, Physical Chemistry, max-Born Institute, germany. From

California Institute of Technology, US

MaRc genTon

Professor, Applied mathematics, CEmSE

Phd, Statistics, Swiss Federal Institute of

Technology (EPFL) Switzerland.

From Texas A&m University, US

PeiYing hong

Assistant Professor, Environmental

Science and Engineering, BESE

Phd, Environmental Science and

Engineering, National University of

Singapore, Singapore. From University

of Illinois at Champaign-Urbana, US

Manuel aRanDa Assistant Professor, marine Science, BESE

Phd, Evolutionary genetics, University

of Cologne, germany. Previously a

Postdoctoral Researcher from Red Sea

Research Center, KAUST, Saudi Arabia

SINCE the academic year began in September, a number of academics and scientists have joined

the faculty furthering the University’s mission to develop scientific leaders of tomorrow, to under-

take groundbreaking research, and to help solve the challenges of Saudi Arabia, the region, and

the world. Some joined earlier in the year, and some arrived only recently. We welcome them all

to the KAUST family and to our community.

http://www.kaust.edu.sa/academics/faculty/faculty.html

April 2013www.kaust.edu.sa 5new faculty

Page 6: 2013 April Beacon

ThE dESIgN and construction of metal-organic materials (mOms)

that can selectively and cost-efficiently separate and capture

carbon dioxide is the focus of a letter in the march 7 issue of

Nature, (http://www.nature.com/nature/journal/v495/n7439/full/

nature11893.html) co-authored by mohamed Eddaoudi, Professor

of Chemical Science and Associate director of the Advanced

membranes and Porous materials Research Center. he and a team

of research scientists from KAUST, including senior research sci-

entist dr. youssef Belmabkhout, postdoctoral fellow dr. Amy

Cairns, and founding Phd student Ryan Luebke, and collabora-

tors from the University of South Florida examined a class of

mOms that can be structurally altered to better “grab” onto CO2

selectively in the presence of other gases, allowing for efficient

and environmentally friendly carbon capture, a process that is

increasingly important in today’s energy footprint-conscious

world. As Prof. Eddaoudi stated, “Reducing CO2 emissions in the

atmosphere is absolutely critical. As scientists, we have to tackle

this issue today. It is a problem of the whole community.”

Previously, porous materials with unsaturated metal cent-

ers (UmCs) or organic amines that can interact with CO2 were

employed as sorbents, materials that can sorb CO2. Sorbents are

commonly used in other important processes, such as oil spill

removal. however, these classes of sorbents have several draw-

backs: as sorbates load onto the sorbent, selectivity for CO2

decreases; water vapor “competes” with the CO2 for adsorption;

and most importantly, an energy penalty (parasitic energy) is

associated with the reactivation, regeneration, and recycling pro-

cess of the sorbent. These issues indicated to the researchers that

the discovery and development of new sorbents that can capture

CO2 efficiently over a range of conditions and in various gas sep-

aration processes was of great importance.

mOms are a “new emerging class of solid state materials. Their

organic and inorganic constituents can be tuned to construct a

made-to-order functional porous material,” Prof. Eddaoudi said.

“The ability to assemble mOms from molecular building blocks,

or ‘LEgO chemistry,’ permits the tuning of the resultant material

porosity and internal properties.”

This on-demand “tuning”

procedure is made possible by

crystal engineering or isoretic-

ular chemistry, and allows the

production of modular three-

dimensional frameworks. The

class of mOms Prof. Eddaoudi’s

research examines are square

grids “pi l lared” via SiF62-

(SIFSIX) anions.

When metal nodes are connected to organic “linkers” to make

mOms, the materials provide very large surface areas for CO2

loading, which is advantageous for CO2 capture. however, the

large surface area does not necessarily mean the material can sep-

arate CO2 efficiently under practical conditions. The researchers

discuss three variants of one SIFSIX cubic net, called [Cu(4,4’-

bipyridine)2(SiF6)]n, or SIFSIX-1-Cu, that can take up CO2 in a

“highly selective” manner, and how best to utilize these SIFSIX

variants for CO2 separation.

The researchers report how the binary gas adsorption selectivity

was “dramatically higher” for variant SIFSIX-2-Cu-i compared to

variant SIFSIX-2-Cu. They attributed this to the enhanced isosteric

heat of adsorption (Qst) of SIFSIX-2-Cu-i compared to SIFSIX-2-Cu.

When they compared variant SIFSIX-3-Zn to SIFSIX-2-Cu-i, it

showed much higher selectivity for CO2 than SIFSIX-2-Cu-i, and

the CO2 was retained for a longer period of time.

Importantly, CO2 adsorption selectivity of SIFSIX-3-Zn in

binary gas separation was found to be “unprecedented,” and

SIFSIX-3-Zn “outperform[ed]” mg-dobdc, another metal-organic

framework material with an unsaturated metal center, the Nature

letter stated. SIFSIX-3-Zn adsorbed CO2 in a highly selective

manner over h2, which may enable scientists to use it in h2

purification or pre-combustion capture in the oil and gas indus-

try. Indeed, when they tested SIFSIX-3-Zn with gas mixtures,

they found it adsorbed CO2 more strongly and quickly than N2,

O2, Ch4, and h2, “excluding

all other gases.” SIFSIX-

3-Zn “fulfills the demanding

attributes required for eco-

nomical and efficient CO2

post-combustion separa-

tion,” the researchers report.

“my research group’s main

focus is to make functional

materials by design,” said

Prof. Eddaoudi. “We develop

new strategies to assemble

materials in a rational way

and target specific applications with these materials, including

CO2 capture.” his group’s work with mOms reveals that pore size

control and electrostatic interactions enabled by inorganic anions

gives porous materials – like the three variants of SIFSIX-1-Cu

– the ability to have “exceptional selectivity, recyclability, and

moisture stability,” important characteristics for industry, where

the process of CO2 separation is essential. “I believe now more

than ever that mOms will provide the needed sorbents, and it is

only a matter of time before mOms find their way to key indus-

trial separation applications,” Prof. Eddaoudi said. “The route is

paved to access unique, highly selective, and economical mOms

for CO2 capture, exclusively based on physical adsorption.”

“I dON’T want you to ever write a business plan again because it’s a waste of time,” said author

and entrepreneur dr. Alexander Osterwalder during a recent Entrepreneurship Center lecture series.

dr. Osterwalder’s book Business Model Generation, co-authored with yves Pigneur, has sold over

600,000 copies and has been translated into over 26 languages.

Referring to dwight d. Eisenhower’s famous quote, “plans are worthless, but planning is every-

thing,” dr. Osterwalder believes that while there’s nothing inherently wrong with a business plan,

an unreasonable amount of time is often invested in going into irrelevant details. “A business plan

is basically made up,” he said, adding “no business plan survives the first contact with customers,”

a quote from Silicon Valley entrepreneur Steve Blank.

dr. Osterwalder argues that regardless of how smart entrepreneurs are, they need to learn about

the customers and their real needs very quickly. Success often comes after series of failures. “I think

entrepreneurship and innovation in general cannot happen if there’s no willingness to fail,” he said.

In fact, dr. Osterwalder believes that if a startup receives too much funding too quickly, there is a

great probability that it will fail because founders are less likely to thoroughly test their ideas in

the market.

Once an entrepreneur has identified a business opportunity, the first step is to search for the right

business model. This does not mean writing a plan but rather devising a tested strategy to interact

with customers. At the heart of dr. Osterwalder’s bestselling book, based on his Phd thesis, is the

business model canvas.

The benefit of working with a business model canvas is that it makes use of visual language. By

organizing specific action plans into a series of defined boxes such as value propositions, channels,

key partners, key activities, cost structure, and revenue stream, entrepreneurs and business leaders

are able to engage in “clear and tangible strategic conversations,” he explained.

The second step is to do a mVP (minimum Viable Product). While prototyping is routinely done

in certain professions, such as design, business schools have not traditionally adopted this creative

approach for startups. “We taught people how to do accounting, how to do finance, and that's per-

fect because that’s what it’s about when you execute an existing business model. But creating new

concepts is something different,” said dr. Osterwalder.

“We need to use visual language to have a better understanding. To clearly know what we’re talk-

ing about when we’re reviewing the business model…Using visual tools to make things clearer is

crucial. It’s a game changer,” dr. Osterwalder said.

Entrepreneurs who have really made their mark in business have not only been very good at

responding to customer needs but they have also been visionaries. As dr. Osterwalder remarks, “the

task of an entrepreneur is asking himself or herself what could be and what could be possible. But

then always checking with users to see if their ideas really create value or not.” As an example, he

quoted pioneering automaker henry Ford who said if he would have asked people what they wanted

“they would have said a faster horse.”

True entrepreneurial game-changers therefore need to have vision and the ability to offer the right

value proposition within an effective business model.

dr. Alex osterwalder demonstrating the workings of the business model canvas.

how to SUCCeeD In BUSIneSS wIthoUt A BUSIneSS plAn

Research6 The BeaconApril 2013

metAl-oRgAnIC mAteRIAlS foR effeCtIVe AnD CoSt-effICIent CARBon CAptURe

(l-r) Co-authors Amy Cairns, ryan luebke, and youssef belmabkhout close the high pres-sure cell of the magnetic Suspension balance (mSb) after loading novel metal-organics framework materials for a low-high pressure single and mixture gas adsorption study.

Image: vincent Guillerm, ryan luebke, Ekaterina Mikhaylova

Page 7: 2013 April Beacon

ThE PROdUCTION of hydrogen fuel from sunlight and water by

semiconductor-based photoelectrochemical (PEC) water splitting

is proven to be a sustainable solution to the energy crisis and

greenhouse problem.

“Titanium dioxide (TiO2) has been the semiconductor of choice

due to its remarkable photo-stability, nontoxicity, and the high

abundance of titanium,” said Professor Peng Wang, Assistant

Professor of Environmental Sciences and Engineering, and the

Principal Investigator of Water desalination and Reuse Research

Center’s Environmental Nanotechnology Laboratory. “many

researchers, including myself, devote significant effort to pro-

moting TiO2’s water splitting efficiency. however, due to its big

band gap (3.2 ev), TiO2 is only photoactive under ultraviolet

light, which accounts for only 5% of the total solar energy, and

the progress in extending the responsive range of TiO2 into vis-

ible light has been sluggish.”

Very recently, small band-gap semiconductor cuprous oxide

(Cu2O) has gained considerable attention in the field of water

splitting. due to its small band gap (2.0 eV), it is photoactive in

the significant portion of visible light and its theoretical water

splitting efficiency is nine times that of TiO2.

“There is good news and bad news about Cu2O, and the bad

news is that something is in the way of pushing cuprous oxide

to practical application,” said Prof. Wang. “Under illumination,

Cu2O is extremely unstable, and it loses almost all of its photo-

activity in less than a minute, which makes it practically useless.

This fast photo-activity degradation is technically referred to

as ‘photo-corrosion,’ a common problem facing many semicon-

ducting materials.”

Although considerable research efforts have been invested in

coming up with methods to synthesize a stable Cu2O photoelec-

trode for PEC water splitting, they are met only with limited success.

A recent effort in Prof. Wang’s group proposed a new strategy

to combat this common problem of photo-corrosion. The work

was published in the high impact nanoscience/nanotechnology

journal ACS Nano.

“Like many other photo-corrosion prone semiconductors, the

photo-corrosion of Cu2O occurs at the interface between elec-

trolyte solution and Cu2O,” explained Prof. Wang. “Naturally,

an effective strategy would be to keep the Cu2O from contacting

the electrolyte solution while

making sure the photo-generated

electrons from Cu2O can still be

transported into the electrolyte

solution to produce hydrogen

gas there.”

The KAUST research team’s

effort led to a proposal that

pho to-co r ro s ion cou ld be

addressed with a solution-based

carbon precursor coating and a

subsequent carbonization strat-

egy that would result in a thin

protective carbon layer on

unstable semiconductor nano-

structures. A proof-of-concept

was provided by using glucose

as the carbon precursor to form

a protective carbon coating onto Cu2O nanowire arrays, which

was synthesized from copper mesh.

Prof. Wang’s group has been working with both carbon mate-

rial and Cu2O since the inception of the group. A Phd student in

Prof. Wang’s group, Rubal dua, works on pore size modulation

of porous carbon using glucose as precursor for water purifica-

tion, and postdoc dr. Zhonghai Zhang started his first project

at KAUST on Cu2O for water splitting. “Looking back, it seems

evitable that the two materials would come across to generate

the spark of this carbon-layer protection strategy for Cu2O,” said

Prof. Wang. dua and dr. Zhang shared the first authorship for

the published ACS Nano paper.

“Carbon is naturally a great choice for the protecting layer as

it is conductive. With our approach, due to the solution-based

precursor, one can readily control the thickness of the carbon-

protective layer so it has so appropriate to block the electrolyte

solution from accessing the semiconductor surface, but at the

same time not to negatively interfere with the light absorption

of the semiconductor,” Prof. Wang said.

“The carbon-layer protected Cu2O nanowire arrays exhibited

remarkably improved photo-stability, as well as considerably

enhanced photocurrent density,” Prof. Wang said. In fact, the

carbon-layer protected Cu2O generated the highest photo-sta-

bility ever reported for a Cu2O-based photoelectrode.

The team believes that the facile strategy presented in the

work is a general approach that can address the stability issue

of many nonstable photoelectrodes, and “it has the potential to

make a meaningful contribution in the general field of energy

conversion,” Prof. Wang said.

The research paper, “Carbon-Layer-Protected Cuprous

Oxide Nanowire Arrays for Efficient Water Reduction,” can be

accessed at http://dx.doi.org/10.1021/nn3057092.

“ThE STEAdILy increasing atmospheric carbon dioxide (CO2)

concentration has reached unsustainable levels. As a measure to

tackle global warming, part of the CO2 generated through fossil

fuels combustion should be recycled,” said dr. Valerio d’ Elia,

a research scientist from the KAUST Catalysis Research Center.

“CO2 is in fact a promising alternative to fossil carbon for the

preparation of commodity chemicals such as urea, organic

carbonates and pharmaceuticals. however,

only the processes that are able to functional-

ize CO2 under mild conditions of temperature,

pressure, and CO2 concentration can achieve

actual CO2 recycling,” he added.

A recent KAUST-Technische Universität

münchen (TUm) research effort aimed to iden-

tify efficient yet inexpensive catalytic systems

for the synthesis of industrially relevant chemi-

cals such as cyclic organic carbonates from CO2

and epoxides. The research was conducted at

the KAUST Catalysis Research Center under the

supervision of Center director, Professor Jean

marie Basset. The research was carried out by

Center research scientist dr. Valerio d’ Elia,

research engineer dr. Jeremie Pelletier, post-

doctoral fellow dr. hailin dong, and Antoine

monassier (a visiting TUm Phd student), in col-

laboration with TUm partners dr. mirza Cokoja

and Prof. Fritz E. Kühn.

“Niobium (Nb) is an inexpensive non-toxic

metal, but so far, molecular niobium compounds

had not been used for the catalytic conversion of CO2,” said dr. d’

Elia. “We explored readily available group 4–6 transition-metal

complexes in combination with standard nucleophilic co-catalysts

such as N, N-dimethylaminopyridine (dmAP), and tetrabutylam-

monium bromide (TBAB). NbCl5 revealed an extraordinary catalytic

activity towards the coupling of CO2 and epoxides.”

The research work resulted in a niobiumbased catalytic system

that allows for CO2 to be converted to value-added chemicals at

room temperature and at low CO2 partial pressure. The system

retained its activity at CO2 concentrations that were in the order

of flue gas from a power station, which means that waste CO2

could be recycled directly from a power plant. The research paper,

“Synthesis of Cyclic Carbonates from Epoxides and CO2 under

mild Conditions Using a Simple, highly Efficient Niobium-Based

Catalyst,” was published in the journal ChemCatChem, and can be

accessed at http://dx.doi.org/10.1002/cctc.201200916.

The team’s current research is directed to the elucidation of the

reaction mechanism, with a special focus on CO2 activation, and

to the application of the catalytic system in flow reactors for the

direct conversion of waste CO2.

Research 7www.kaust.edu.sa April 2013

A StABle SemIConDUCtoR foR effICIent wAteR SplIttIng

A CAtAlytIC SyStem foR ReCyClIng Co2

dr. Valerio d'elia, dr. hailin dong and dr. Jeremie pelletier (From right to left), examining the 'in situ' ir reactors used for the catalytic conversion Co2

prof. peng wang

Page 8: 2013 April Beacon

my universityAhmAd ShowAll AhmAd Jameel Showall is one of the University’s founding students. he

earned his master’s degree at the first graduating ceremony in 2010 and

is currently pursuing his Phd in Computer Science. As a member of the

Networking Lab (NetLab), Ahmad’s research focuses on wireless networks,

specifically on finding the optimal buffer size in multi-hop wireless networks.

Ahmad left a position as a system engineer in 2009 to join KAUST.

“Working in an industrial business is really nice, but I missed the human

touch. I love to interact with people, so I decided to go into academia and

pursue a Phd in order to have the opportunity to teach students and help them develop,” said

Ahmad. After completing his studies, he hopes to join the faculty ranks of one of the Saudi

universities to share the fruits of his experience at KAUST and to push higher education devel-

opment in Saudi Arabia.

Ahmad participated in several internships over the last few years. he interned at Texas A&m

University in 2011 where he initiated a project called SmartBelt, which is a comprehensive hajj

pilgrimage solution using Wireless Sensor Networks. In 2010, he conducted a research project at

Oxford University’s e-Research Center. The main goal of the project was to enable multi-level

parallelism in Parallel mATLAB. Ahmad was also an intern at Saudi Aramco, working with the

medical computer services group within the IT department to support chronically ill patients.

AccolAdes for srsi GrAduAtes

April 2013 Community8 The Beacon

CONgRATULATIONS to 20 KAUST Saudi Research Science

Institute (SRSI) alumni who won top positions in the Research

Track for male and female students at the IBdA’A National

Olympiad held in Riyadh on march 20. Over 5500 high schools

participated in the competition.

The SRSI program is managed by Saudi Initiatives, under

the leadership of dr. Najah Ashry, VP, Saudi Initiatives, and

is designed to inspire a select group of talented Saudi high

school students to pursue careers in science, technology, engi-

neering, and mathematics. For six weeks, students are engaged

in a rigorous program of lectures, research, and intensive aca-

demic writing. The goal is to develop budding young scientists

as a resource pool of talent for the Kingdom. The program has

been held at KAUST in the summers of 2011 and 2012 and now

has 65 alumni. Forty more inquisitive students will take part in

SRSI this coming summer from June 11-July 26.

Acknowledgement and thanks go to the KAUST professors

and research scientists who have invested their hard work and

efforts into mentoring students’ projects each year, enabling

them to achieve these excellent results.

The 20 winners are:

ReseaRch TRack Males, 11 winneRs

abdullah Bukhamsin – 2nd place

mentor: Professor Nina Fedoroff

nawaf alFawzan – 3rd place

mentor: Professor Jörg Eppinger

ammar alkhouli – 4th place

mentor: Professor Xabier Irigoien

photo of the month

"this photo was taken on earth Day to show KAUSt’s efforts to help promote global awareness about saving our environment. turning the lights off for just one hour all over the globe makes a big difference.”

phot

o by

Ron

ald

m. S

erat

o, K

AUSt

It D

epar

tmen

t

ON SATURdAy, march 23, KAUST joined Earth hour 2013 to raise awareness

about our planet’s environmental issues, sustainability, and climate change.

Earth hour is a worldwide event organized by the World Wide Fund for Nature

(WWF). The first event was held in Sydney, Australia, in 2007, and it has grown

ever since. This year’s event was adopted by a global community of more than

150 countries.

KAUST has taken part in the event every year since its inauguration. This

year, the Facilities & Community department helped community members take

part by broadcasting several documentaries in discovery Square. The films

included “Earth hour,” the award-winning documentary film “An Inconvenient

Truth,” and a feature of a KAUST project, “Ideal house.” The Ideal house, a

KAUST green building, is designed to reduce the overall impact of the build-

ing’s environment on human health and the natural environment by using

energy, water, and other resources efficiently and by reducing waste, pollution

and environmental degradation.

The day’s activities culminated in Earth hour. From 8:30 to 9:30 p.m.,

the KAUST website was dimmed, and all unnecessary lights were turned

off in the community.

EArTh hour, A GloBAl InITIATIvE To SAvE our PlAnET

annas alFadda – 4th place

mentor: dr. John Archer

nawaf alhowaish – 4th place

mentor: Professor Vivek Polshettiwar

Bader alMubarak – 5th place

mentor: Professor Jörg Eppinger

ahmed halawani –6th place

mentor: Professor Iman Roqan

ammar alameer – 6th place

mentor: Professor Osman Bakr

Mohammed lahiq – 6th place

mentor: Professor mohammad mustafa hussain

hamad aleidi – 6th place

mentor: Professor Aram Amassian

Redah al ibrahim – 6th place

mentor: Professor Aram Amassian

ReseaRch TRack

FeMales, 9 winneRs

Reem alRabiah – 1st place

mentor: Professor Christian Voolstra

sheikha alshuwaish – 2nd place

mentor: Professor Jürgen Kosel

alma alhussaini – 4th place

mentor: Professor gilles Lubineau

hanan wali – 4th place

mentor: Professor Xabier Irigoien

shyma alhuwaider – 4th place

mentor: Professor Christian Claudel

sarah alsawaf – 5th place

mentor: Professor Kuo-Wei (Andy) huang

Yara Jan – 5th place

mentor: Professor Christoph gehring

arwa alangry – 6th place

mentor: Professor Udo Schwingenschlögl

lujain alhibshi – 6th place

mentor: Professor Kazuhiro Takanabe