COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada...

42
UNIVERSITI PUTRA MALAYSIA SYNTHESIS AND CHARACTERIZATION OF STRUCTURE AND MAGNETIC PROPERTIES OF CHROMITE SPINEL NANOPARTICLES PREPARED BY THERMAL TREATMENT METHOD SYUHADA BINTI ABU BAKAR FS 2013 91

Transcript of COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada...

Page 1: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF STRUCTURE AND MAGNETIC PROPERTIES OF CHROMITE SPINEL NANOPARTICLES

PREPARED BY THERMAL TREATMENT METHOD

SYUHADA BINTI ABU BAKAR

FS 2013 91

Page 2: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

SYNTHESIS AND CHARACTERIZATION OF

STRUCTURE AND MAGNETIC PROPERTIES OF

CHROMITE SPINEL NANOPARTICLES

PREPARED BY THERMAL TREATMENT

METHOD

SYUHADA BINTI ABU BAKAR

MASTER OF SCIENCE

2013

Page 3: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

SYNTHESIS AND CHARACTERIZATION OF STRUCTURE AND

MAGNETIC PROPERTIES OF CHROMITE SPINEL NANOPARTICLES

PREPARED BY THERMAL TREATMENT METHOD

By

SYUHADA BINTI ABU BAKAR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in fulfilment of the requirement for the Degree of Master of Science

July 2013

Page 4: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

DEDICATION

I dedicate this thesis from bottom of my heart

to my beloved husband,

family, supervisor and all my dearest friends.

Thanks for your guidance, support,

understanding, caring, love, encouragements

and fulfil my dream.

May ALLAH bless us always.

Page 5: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

i

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in

fulfilment of the requirement for degree of Master of Science

SYNTHESIS AND CHARACTERIZATION OF STRUCTURE AND

MAGNETIC PROPERTIES OF CHROMITE SPINEL NANOPARTICLES

PREPARED BY THERMAL TREATMENT METHOD

By

SYUHADA BINTI ABU BAKAR

July 2013

Chairman : Prof. Elias Bin Saion, PhD

Faculty : Science

The simple preparation of fine-particle nickel chromite, cobalt chromite and

nickel cobalt chromite nanoparticles have been prepared from an aqueous solution

containing respective metal nitrate, chromium (III) nitrate, polyvinyl pyrrolidone

(PVP) as a capping agent and deionized water as a solvent. After proper mixing with

appropriate amount of precursor concentrations, the mixtures were dried in the oven

for 24 hours at temperature of 110°C. The samples were crushed into powder before

putting into furnace for thermally treated at various temperatures from 550°C to

950°C. In thermal treatment, the samples undergo crystallization and become metal

chromite nanoparticles due to calcination process.

Page 6: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

ii

The polymer (PVP) which controls the growth of the nanoparticles by creating a

uniform distribution of the particles size and also preventing their agglomeration;

were gradually removed from the samples and found completely calcined at

temperature of 850°C for NiCr2O4 and Ni0.5Co0.5Cr2O4, while for CoCr2O4 at

temperature of 950°C. The synthesized powders were characterized by X-ray

diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission

electron microscopy (TEM) and electron spin resonance (ESR).

X-ray diffraction results for the calcined samples of the NiCr2O4, CoCr2O4 and

Ni0.5Co0.5Cr2O4 nanoparticles at different temperatures show the reflection planes of

(111), (220), (311), (400), (511) and (440). The main peak were centered at

2θ = 35.74°, 35.70° and 35.80° respectively, corresponds to a crystal plane with

Miller indices of (311), which confirm the presence of single-phase NiCr2O4,

CoCr2O4 and Ni0.5Co0.5Cr2O4 with face-centered cubic (FCC) spinels. The

crystallographic studies of NiCr2O4, CoCr2O4 and Ni0.5Co0.5Cr2O4 show the

intensification in crystallinity of the nanoparticles due to the particle size

enlargement of the nuclei as the calcination temperature increased. The

crystallization of NiCr2O4, and Ni0.5Co0.5Cr2O4 were completed at 850°C, whereas

for CoCr2O4 at 950°C, as publicized by the absence of organic absorption band in

FT-IR spectra measure in a range of 280-4000 cm-1

.

From FT-IR results, the absorption bands of pure NiCr2O4 spinel nanoparticles were

observed at 594 cm-1

for Ni-O and 463 cm-1

for Cr-O at optimum temperature,

850°C. Whereas, the absorption bands of Co-O were observed at 608 cm-1

, 480 cm-1

and Cr-O at 376 cm-1

for pure CoCr2O4 nanoparticles at optimum temperature,

950°C.

Page 7: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

iii

For pure Ni0.5Co0.5Cr2O4 nanoparticles, the absorption bands appear at 604 cm-1

for

Co-O, 478 cm-1

for Ni-O and 373 cm-1

for Cr-O at optimum temperature, 850°C. The

average crystallite size observed from XRD data for NiCr2O4 (9-63 nm), CoCr2O4

(10-57 nm) and Ni0.5Co0.5Cr2O4 (10-51 nm) were found to increase with the

calcination temperature as in a good agreement with the results obtained from TEM

images. Three parameters namely g-factor, peak-to-peak linewidth (ΔHpp) and

magnetic resonance field (Hr) that characterize the magnetic properties of unpaired

electron were measured by ESR. All the samples exhibit paramagnetism.

The results show that the values of g-factor and peak-to-peak linewidth (ΔHpp) of the

nanoparticles increase with the increase of calcination temperature whereas the

magnetic resonance field (Hr) decreases as the calcination temperature increases

according to the equation g = hv/βH. TEM results show the cubical spinel chromite

nanoparticles prepared by thermal treatment method, were uniform in both

morphology and particle size distribution. The average size of the nanoparticles

increases from 7 nm to 63 nm for NiCr2O4, 12 nm to 50 nm for CoCr2O4 and 10 nm

to 51 nm for Ni0.5Co0.5Cr2O4 when the calcination temperature increases. This

advocates that several neighbouring particles fuse together to increase particle sizes

by melting their surfaces.

Page 8: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk Ijazah Master Sains

SINTESIS DAN PENCIRIAN STRUKTUR SERTA SIFAT-SIFAT MAGNET

PADA PARTIKEL NANO KROMIT SPINEL DISEDIAKAN OLEH

KAEDAH RAWATAN TERMA

Oleh

SYUHADA BINTI ABU BAKAR

Julai 2013

Pengerusi: Prof. Elias Bin Saion, PhD

Fakulti : Sains

Penyediaan mudah bagi sampel nikel kromit, kobalt kromit dan nikel kobalt kromit

bersaiz nano telah disediakan menggunakan larutan akueus yang mengandungi

logam nitrat masing-masing, kromium (III) nitrat, polyvinyl pyrrolidone (PVP)

sebagai agen penutup dan air ternyahion sebagai pelarut. Setelah bahan-bahan kimia

pada kepekatan tertentu ditambah dan disebatikan, larutan dikeringkan di dalam

oven pada suhu 110°C. Sampel kemudiannya dihancurkan menjadi serbuk sebelum

diletakkan di dalam relau untuk rawatan terma pada pelbagai suhu dari 550°C hingga

950°C. Dalam rawatan terma, sampel mengalami pengkristalan sebelum menjadi

zarah nano kromit logam melalui proses pengkalsinan.

Page 9: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

v

Polimer (PVP) yang mengawal pertumbuhan saiz zarah, mewujudkan pengagihan

saiz zarah yang seragam dan mencegah pengumpulan zarah telah dinyahkan secara

beransur-ansur daripada sampel sehingga dinyahkan sepenuhnya pada suhu 850°C

bagi NiCr2O4 dan Ni0.5Co0.5Cr2O4 manakala bagi CoCr2O4 pada suhu 950°C. Sampel

yang telah siap disintesis, telah dicirikan menggunakan pembelauan sinar-x (XRD),

jelmaan Fourier inframerah (FT-IR), mikroskop elektron transmisi (TEM) dan

putaran resonans elektron (ESR).

Keputusan pembelauan sinar-x untuk sampel NiCr2O4, CoCr2O4 dan Ni0.5Co0.5Cr2O4

pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan

(440). Puncak utama tertumpu pada 2θ = 35.74°, 35.70° dan 35.80° masing-masing,

sepadan dengan satah Kristal dengan indeks Miller (311), yang mengesahkan

kehadiran fasa tunggal NiCr2O4, CoCr2O4 dan Ni0.5Co0.5Cr2O4 dengan padu yang

berpusat muka (FCC) spinel. Kajian kristalografi daripada sampel NiCr2O4, CoCr2O4

dan Ni0.5Co0.5Cr2O4 menunjukkan pengukuhan dalam kristaliniti zarah nano akibat

pembesaran saiz zarah nukleus apabila suhu pengkalsinan meningkat. Kekristalan

telah sempurna terjadi pada sampel NiCr2O4, dan Ni0.5Co0.5Cr2O4 pada suhu 850°C

manakala bagi CoCr2O4 pada suhu 950°C, seperti yang digambarkan oleh ketiadaan

jalur penyerapan bahan organik asing dalam pengukur spektrum FT-IR pada

gelombang antara 280-4000cm-1

.

Daripada keputusan FT-IR, jalur penyerapan bagi spinel NiCr2O4 tulen diperhatikan

pada jalur 594 cm-1

bagi Ni-O dan 463 cm-1

bagi Cr-O pada suhu optimum 850°C.

Manakala jalur penyerapan CoCr2O4 tulen bagi Co-O pada jalur 608 cm-1

dan

480 cm-1

serta Cr-O pada jalur 376 cm-1

pada suhu optimum 950°C.

Page 10: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

vi

Bagi Ni0.5Co0.5Cr2O4 pula, jalur penyerapan muncul pada 604 cm-1

, 478 cm-1

dan

373 cm-1

bagi Co-O, Ni-O dan Cr-O masing-masing pada suhu optimum, 850°C.

Purata saiz kristal yang diperoleh daripada data XRD menunjukkan peningkatan saiz

selari dengan suhu pengkalsinan bagi NiCr2O4 (9-63 nm), CoCr2O4 (10-57 nm) dan

Ni0.5Co0.5Cr2O4 (10-51 nm) yang mana sama seperti keputusan yang ditunjukkan

oleh imej TEM. Tiga parameter yang mencirikan sifat-sifat magnet bagi elektron

berpasangan ialah g-faktor, puncak-ke-puncak lebar (ΔHpp) dan bidang resonans

magnet (Hr) telah diukur oleh ESR spektroskopi yang membuktikan semua sampel

terbabit bersifat paramagnetik.

Keputusan menunjukkan nilai g-faktor dan nilai puncak-ke-puncak lebar (ΔHpp) bagi

sampel NiCr2O4, CoCr2O4 dan Ni0.5Co0.5Cr2O4 meningkat dengan peningkatan suhu

pengkalsinan manakala nilai bidang resonans magnet (Hr) menurun mengikut

persamaan g = hv/βH. Keputusan TEM menunjukkan saiz zarah nano bagi spinel

kromit berkubus dengan seragam dalam morfologi dan taburan zarah. Saiz purata

zarah nano meningkat dengan kenaikan suhu pengkalsinan bagi NiCr2O4, dari 7 nm

ke 63 nm, bagi CoCr2O4 dari 12 nm ke 50 nm dan yang terakhir dan tidak

dilupakan, saiz zarah Ni0.5Co0.5Cr2O4 dari 10 nm ke 51 nm. Ini menyokong pendapat

bahawa zarah-zarah yang berjiran bergabung bersama untuk meningkatkan saiz

dengan meleburkan permukaan mereka.

Page 11: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

vii

ACKNOWLEDGEMENTS

First of all, thanks to Allah, whom with His willing giving me opportunity to

complete my master research. I heartily thankful to my supervisor, Prof. Elias Bin

Saion, and my co-supervisor, Assoc. Prof. Mansor Hashim, whose supervision,

encouragement and support me from preliminary to the concluding level enabled me

to build up my understanding throughout the study.

Thanks to all physics lecturers for all your encouragement and vast knowledge you

gave me right from the outset. My sincere thanks and appreciation extend to the

laboratory assistants of physics department, Mr. Zain, who had help me all along.

My deepest appreciation and gratitude goes to my lovely husband, Mr Shukri Samin,

my parent Mr Abu Bakar and Mrs. Suara, my sibling Taqwa, Nasuha and

Adahikmah for their endless support and encouragement for me. Furthermore, I

would like to thank to all my friends Noorhanim, Masni, Fadzidah and others that I

have been blessed with friendly, cheerful and supportive group members. Last but

not least, I offer my regards and blessings to all of those who supported me in any

respect during the completion of this study.

Page 12: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

viii

I certify that a Thesis Examination Committee has met on to conduct the final

examination of Syuhada Binti Abu Bakar on her thesis entitle “Thermal Treatment

Synthesis and Characterization Of Nanosized Nickel Chromite, Cobalt Chromite and

Nickel Cobalt Chromite Spinels” in accordance with the Universities and University

College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A)106]

15 March 1998. The committee recommends that the student be awarded the Master

of Science.

Members of the Thesis Examination Committee were as follows:

Name of examiner

Zaidan Bin Abdul Wahab, PhD

Associate Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Name of examiner

Abdul Halim Bin Shaari, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Internal Examiner)

Name of examiner

Mohd Maarof Bin Haji Abd. Moksin, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Internal Examiner)

__________________________

Name of Examiner

Sahrim Haji Ahmad, PhD ZULKARNAIN ZAINAL, PhD

Professor Professor and Deputy Dean

Faculty of Science and Technology School of Graduate Studies

Universiti Kebangsaan Malaysia Universiti Putra Malaysia

(External Examiner)

Date:

Page 13: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

ix

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Master of Science. The

members of the Supervisor Committee were as follows:

Elias Bin Saion, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Mansor Hashim, PhD

Associate Professor

Faculty of Science

Universiti Putra Malaysia

(Member)

____________________________

BUJANG BIN KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 14: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

x

DECLARATION

I declare that this thesis is on my original work except for quotations and citations

which have been duly acknowledged. I also declare that it has not been previously,

and is not concurrently, submitted for any other degree at Universiti Putra Malaysia

or other institutions.

____________________________

SYUHADA BINTI ABU BAKAR

Date: 11 July 2013

Page 15: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xi

TABLE OF CONTENTS

Page

DEDICATION

ABSTRACT i

ABSTRAK iv

ACKNOWLEDGEMENTS vii

APPROVAL viii

DECLARATION x

LIST OF TABLES xiv

LIST OF FIGURES xvi

LIST OF SYMBOLS AND ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION

1.1 Introduction of Nanosized Materials 1

1.1.1 Synthesis and Processing of Nanopowders 2

1.1.2 Thermal Treatment Synthesis of Nanopowders 4

1.2 The Spinel Structure 5

1.2.1 Spinel Structure for Industry and Technology 7

1.3 Problem Statement 10

1.4 Significance of The Study 10

1.5 Scope of The Present Study 11

1.6 Objectives of The Study 11

1.7 Layout of Thesis 12

2 LITERATURE REVIEW

2.1 Chromites 13

2.2 Chromites in Malaysia 15

2.3 Established Methods for the Synthesis of Transition Metal

Chromites

16

2.4 Applications of Transition Metal Chromites 19

2.5 Applications of Thermal Treatment Method 24

Page 16: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xii

3 THEORY

3.1 Introduction 28

3.2 Theory of X-ray Diffraction 28

3.3 Theory of Fourier Transform Infrared Spectrometer 30

3.4 Theory of Transmission Electron Microscopy 32

3.5 Theory of Electron Spin Resonance 34

3.5.1 Paramagnetic Materials 36

3.5.2 The Hyperfine Interaction 38

3.5.3 The Super Exchange Interaction 39

3.5.4 The Dipole-dipole Interaction 42

4 MATERIALS AND METHOD

4.1 Introduction 43

4.2 Materials 43

4.3 Samples Preparation 45

4.3.1 Synthesis of Nickel Chromite Spinels Nanoparticles 46

4.3.2 Synthesis of Cobalt Chromite Spinels Nanoparticles 47

4.3.3 Synthesis of Nickel Cobalt Chromite Spinels

Nanoparticles

48

4.4 Calcination Process 50

4.5 Experimental Characterization 51

4.5.1 X-Ray Diffraction Technique 51

4.5.2 Fourier Transform Infrared Spectrometer 53

4.5.3 Transmission Electron Microscope 55

4.5.4 Electron Spin Resonance 56

5 RESULTS AND DISCUSSIONS

5.1 Introduction 57

5.2 Transition Metal Elements and Their Importance for the

Current Study

58

5.3 Interaction between PVP and Transition Metal Ions 59

5.4 Structural and Crystalline Phase Analysis 62

5.4.1 XRD Analysis of Nickel Chromite 62

5.4.2 XRD Analysis of Cobalt Chromite 65

Page 17: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xiii

5.4.3 XRD Analysis of Nickel Cobalt Chromite 68

5.4.4 Summary of Crystalline Phase Analysis 70

5.5 Infrared Spectra Analysis 71

5.5.1 FT-IR Analysis of Nickel Chromite 71

5.5.2 FT-IR Analysis of Cobalt Chromite 73

5.5.3 FT-IR Analysis of Nickel Cobalt Chromite 75

5.5.4 Summary of Absorption Bands 76

5.6 The Morphology and Size Distribution Analysis 77

5.6.1 TEM Image of Nickel Chromite 77

5.6.2 TEM Image of Cobalt Chromite 80

5.6.3 TEM Image of Nickel Cobalt Chromite 83

5.7 Magnetic Properties of Unpaired Electron 86

5.7.1 ESR Measurement on Nickel Chromite 88

5.7.2 ESR Measurement on Cobalt Chromite 91

5.7.3 ESR Measurement on Nickel Cobalt Chromite 92

6 CONCLUSIONS AND SUGGESTIONS

6.1 Introduction 95

6.2 Summary of Main Results 95

6.2.1 Nickel Chromite Nanoparticles 96

6.2.2 Cobalt Chromite Nanoparticles 97

6.2.3 Nickel Cobalt Chromite Nanoparticles 98

6.3 Suggestions 99

REFERENCES 100

APPENDICES 105

BIODATA OF STUDENT 109

Page 18: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xiv

LIST OF TABLES

Table

Page

1 Chemicals used in for the synthesis of transition metal

chromites

44

2 Composition for formation of transition metal chromites 45

3 Average crystallite size of NiCr2O4 nanoparticles calculated

by Scherrer formula

65

4 Average crystallite size of CoCr2O4 nanoparticles calculated

by Scherrer formula

67

5 Average crystallite size of Ni0.5Co0.5Cr2O4 nanoparticles

calculated by Scherrer formula

70

6 Crystallographic data of crystal phase of nanoparticles 70

7 Peaks frequencies (cm-1

) observed in FT-IR spectra of

chromites material

76

8 Average particle size distribution of NiCr2O4 nanoparticles

derived from TEM and XRD results

80

9 Average particle size distribution of CoCr2O4 nanoparticles

derived from TEM and XRD results

83

10 Average particle size distribution of Ni0.5Co0.5Cr2O4

nanoparticles derived from TEM and XRD results

86

11 Calculated and observed magnetic moments of Cr3+

, Ni2+

and

Co2+

ions

87

12 The values of g-factor, linewidth and resonance magnetic

field for NiCr2O4 nanoparticles calcined at 750°C and 850°C

90

Page 19: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xv

13 The values of g-factor, linewidth and resonance field

magnetic for CoCr2O4 nanoparticles calcined at 950°C

92

14 The values of g-factor, linewidth and resonance field

magnetic for Ni0.5Co0.5Cr2O4 nanoparticles calcined at 650°C

and 850°C

94

Page 20: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xvi

LIST OF FIGURES

Figures

Page

1.1 Schematic representation of the ‘top-down’ and ‘bottom-up’

synthesis processes of nanomaterials.

3

1.2 The spinel structure. 6

2.1 The chromite structure. 14

3.1 Bragg’s Law. 29

3.2 Block diagram of FT-IR instrument. 31

3.3 Schematic diagram of TEM. 33

3.4 The analogy of ‘music and song’ to described the basic

principle of ESR.

34

3.5 Transition associated with the absorption of electromagnetic

energy.

35

3.6 Basic equation of ESR. 36

3.7 Magnetic dipole moment alignment in the absence and

presence of magnetic field.

37

3.8 Splitting of the ESR line in Mn2+

due to hyperfine

interaction.

39

3.9 Super exchange for MnO. 41

4.1 Chemicals used for the synthesis of transition metal chromite. 44

4.2 The process of preparing chromite spinel nanoparticles. 49

Page 21: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xvii

4.3 XRD machine (Model XRD 6000). 52

4.4 FT-IR machine (Perkin Elmer model 100 series). 54

4.5 Placing a powder sample onto small diamond crystal. 54

4.6 Applying pressure to a powder sample above diamond

crystal.

54

4.7 TEM machine (Model Hitachi H-7100). 55

4.8 Block diagram of ESR spectrometer. 56

4.9 ESR machine. 56

5.1 A recommended mechanism of interaction between transition

metal ions and PVP in nickel chromite and cobalt chromite.

60

5.2 A recommended mechanism of interaction between transition

metal ions and PVP in nickel cobalt chromite.

61

5.3 XRD diffraction patterns for NiCr2O4 nanoparticles calcined

at different temperatures.

62

5.4 XRD diffraction patterns for CoCr2O4 nanoparticles calcined

at different temperatures.

65

5.5 XRD diffraction patterns for Ni0.5Co0.5Cr2O4 nanoparticles

calcined at different temperatures.

68

5.6 FT-IR spectra of NiCr2O4 nanoparticles calcined at different

temperatures.

72

5.7 FT-IR spectra of CoCr2O4 nanoparticles calcined at different

temperatures.

73

5.8 FT-IR spectra of Ni0.5Co0.5Cr2O4 nanoparticles calcined at

different temperatures.

76

Page 22: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xviii

5.9 (a) TEM images and particles size distribution histograms of

NiCr2O4 calcined at 550°C

78

5.9 (b) TEM images and particles size distribution histograms of

NiCr2O4 calcined at 650°C

78

5.9 (c) TEM images and particles size distribution histograms of

NiCr2O4 calcined at 750°C

79

5.9 (d) TEM images and particles size distribution histograms of

NiCr2O4 calcined at 850°C

79

5.10 (a) TEM images and particles size distribution histograms of

CoCr2O4 calcined at 650°C

81

5.10 (b) TEM images and particles size distribution histograms of

CoCr2O4 calcined at 750°C

81

5.10 (c) TEM images and particles size distribution histograms of

CoCr2O4 calcined at 850°C

82

5.10 (d) TEM images and particles size distribution histograms of

CoCr2O4 calcined at 950°C

82

5.11 (a) TEM images and particles size distribution histograms of

Ni0.5Co0.5Cr2O4 calcined at 550°C

84

5.11 (b) TEM images and particles size distribution histograms of

Ni0.5Co0.5Cr2O4 calcined at 650°C

84

5.11 (c) TEM images and particles size distribution histograms of

Ni0.5Co0.5Cr2O4 calcined at 750°C

85

5.11 (d) TEM images and particles size distribution histograms of

Ni0.5Co0.5Cr2O4 calcined at 850°C

85

5.12 ESR spectra for NiCr2O4 nanoparticles calcined at 750°C 88

Page 23: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xix

5.13 ESR spectra for NiCr2O4 nanoparticles calcined at 850°C 89

5.14 ESR spectra for CoCr2O4 nanoparticles calcined at 950°C 91

5.15 ESR spectra for Ni0.5Co0.5Cr2O4 nanoparticles calcined at

650°C

93

5.16 ESR spectra for Ni0.5Co0.5Cr2O4 nanoparticles calcined at

850°C

94

Page 24: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xx

LIST OF SYMBOLS AND ABBREVIATIONS

XRD X-Ray Diffraction

FT-IR Fourier Transform Infrared

TEM Transmission Electron Microscopy

ESR Electron Spin Resonance

PVP Polyvinyl Pyrrolidone

FCC Face-centered-cubic

IR Infrared

AEP Atmospheric Poroellipsometry

AFM Atomic Force Microscopy

g Gyromagnetic ratio

μB Electron Bohr Magneton

H0 Applied magnetic field

Ms Spin state

DE Energy difference

h Planck’s constant

v Frequency of the radiation

Hr Magnetic field resonance

μs Magnetic moment

r Electron distant

Cr(NO3)3 Chromium(III) nitrate

Ni(NO3)2 Nickel (II) nitrate

Co(NO3)2 Cobalt (II) nitrate

H2O Deionized water

NiCr2O4 Nickel Chromite

Page 25: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

xxi

CoCr2O4 Cobalt Chromite

NiCoCr2O4 Nickel Cobalt Chromite

Cr2O3 Chromium oxide

Ni Nickel

Co Cobalt

Cr Chromium

MW Molecular weight

Å Angstrom

d Inter-planar spacing

ATR Attenuated total reflection

ΔHpp Peak-to-peak line width

Fd3m Space group in cubic structure

χ Susceptibility

g-factor Geomagnetic ratio

Page 26: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Introduction of Nanosized Materials

In nanotechnology, a particle is defined as a small object that behaves as a whole

unit in terms of its transport and properties. It was further classified according to size

in terms of diameter. Ultrafine particles or nanoparticles have the size between 1 and

100 nanometers. Nanosized materials and their aptitude have revealed up a world of

potential with even tiny nanosized particles, making them even more useful for a

variety of applications.

The applications of it in a variety of industries and scientific deeds was the focus of

much research in the last few years because of nanotechnology are fundamentally a

set of techniques that allow the manipulation of properties at very small size.

According to Hobbs (2012) from Savannah River National Laboratory (SRNL), by

making each particle smaller, the amount of surface area will increase compared to

the large volume of the particles. Since the surface of particle where the reaction

takes place, it will increase the nanosized material’s working area. The large surface-

to-volume ratio and quantum size when the size shrinks to the nanoscale will affect

the materials to give rise to unique electrical, optical, magnetic, mechanical and

chemical properties of the materials.

Page 27: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

2

Furthermore, they can be used in diverse applications such as optoelectronics,

sensors, catalysts, medical cures and have been proposed as the building blocks of

future electronics. Nanoparticles actually have a very long history although they

were generally considered a discovery of modern science. In fact, nanoparticle

materials were used since 19th

century to spawn the effect on the pot’s surface

mainly in Mesopotamia (Jessica et. al., 2006).

1.1.1 Synthesis and Processing of Nanopowders.

At present, researchers have found two advances way, which are ‘top-down’ and

‘bottom-up’ approaches, in synthesizing and fabricating the nanomaterials and

nanostructures in order to developed the potential of nanopowders for technology

(Vincent, 2004). The breakings down of bulks materials into nanosized structure of

particles are called ‘top-down’ approach. The ‘top-down’ approach is one of the

techniques that were extension of those who are being used in producing microsized

particles such as high-energy ball milling.

The more economical and creating less waste of chemicals is ‘bottom-up’ approach.

Building up materials from the bottom by means of atom, molecule or cluster is

referring to ‘bottom-up’ manner where the techniques are still under development.

But, some of them are being practise and used for commercial production of

nanopowders; for example thermal treatment method.

Page 28: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

3

Figure 1.1: Schematic representation of the ‘top-down’ and ‘bottom-up’

synthesis processes of nanomaterials

Getting simply a small size is not the only requirement for nanotechnology. They

should have identical size of all particles also called mono sized or with distribution

and identical shape or morphology. Furthermore, it should have identical chemical

composition and crystal structure that are yearning among different particles, for

instance core and composition must be the same also should have individually

dispersed or mono dispersed or else no agglomeration.

Page 29: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

4

1.1.2 Thermal Treatment Synthesis of Nanopowders

Thermal treatment method is one of the ‘bottom-up’ approaches to synthesis of

nanopowders. Thermal treatment as well as heat-treating is a term used to represent

all of the controlled heating and cooling operations performed on a material in the

solid state for the intention of altering its nanostructure or properties. A simple

thermal treatment method to synthesize transition metal oxide has been introduced

for the first time in this laboratory last three years ago. Thermal treatment offer good

advantage of producing nanopowders such as high flexibility, constant quality,

environmentally friendly process and clean, uniform surfaces and easy to handle

(Mahmoud et. al., 2010).

It is important to first understand about fundamental principle of metal structure to

fully understand the advantages of heat-treating process. The atoms orient

themselves into a repetitive pattern as a molten metal solidifies that we call a crystal

structure. Face centered cubic (FCC) is one of the most common crystal structure

instead of body centered cubic (BCC) (Herring, 2012). Each of metal has a specific

chemical composition hence the structural and physical properties of the different

metals will change at crucial temperature when they are respond to treatment at

different temperature. By reason of some movement of dislocations or even

increasing and decreasing in solubility of atom, it will change the atomic structure or

microstructure of the materials. In detail, the formation of new grains of different or

same phases, rise in grain size or other mechanisms also change the structure of

materials.

Page 30: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

5

All of the changes in mechanism of the structure are depending on the thermal

treatment used. Even ‘carbon’ as a small percentage of elements in the metal

compositions will affect the time, method, temperature and rate of cooling that in the

heat treatment process it needs to be used (NDT Resource Center).

1.2 The Spinel Structure

The spinel structure of material have the general composition formula of AB2O4,

where A is a cation with +2 charges be fond of Mg, Cr, Mn, Fe, Cd, Ni, Cu, Zn, Co,

Sn and B is a cation with +3 charges akin to Al, Ga, In, Ni, V, Co, Mn, Fe, Cr, Ti

which crystallise in the cubic crystal system. Oxygen atoms in spinel have cubic

close-packed structure. It is essentially cubic with the oxygen ions forming a face-

centered-cubic (FCC) lattice. Two types of spinel structures at ambient conditions

are normal spinels (AB2O4) and inverse spinel (B2AO4). For normal spinels, the

cations (usually metals) occupy only 1/8 of the tetrahedral sites and one-half of the

octahedral sites and there are totally 32-O ions in the unit cell while there are ex-

changed places of cations in inverse spinels structure (Jeremy et. al., 1982).

Page 31: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

6

The ideal structure of normal spinels (Figure 1.2) show the divalent A2+

ions dwell in

the tetrahedral voids, whereas the trivalent B3+

reside in the octahedral voids in the

close packed arrangement of oxide ions. In the inverse spinels, the A2+

ions dwell in

the octahedral voids, whereas half of B3+

ions reside in the tetrahedral voids. The

number of octahedral sites occupied may be efficient or arbitrary therefore leads to

defected spinels. The inversion degree (λ) for spinel where only divalent and

trivalent cations are present is defined as a fraction of A-sites occupied by trivalent

ions (Jeremy et. al., 1982).

Figure 1.2: The spinel structure.

Page 32: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

7

In the preparation of spinel materials, there are some factors affecting the structure of

spinels. For example, the relative size of A and B in tetrahedral and octahedral site

where the smaller cation prefers to occupy the site of lower coordination, tetrahedral

site. Ligand-field stabilization energies or LFSE would affect the structure of spinels

by their relative values of metal ions. In fact, the ion with more LFSE value in

octahedral site when compared to LFSE in tetrahedral site leans to occupy octahedral

sites (Jeremy et. al., 1982).

Thermal treatment offers a good manner in preparing spinel type material because of

their ability to control the movement of the metal ions during heating process. The

arrangement of oxygen atom and A2+

and B3+

ions preserved to occupy either

tetrahedral or octahedral site as attest with the work done by Kalendova (1998),

Manova et. al., (2006), Mahmoud et. al., (2011) also Yue and Kaimin (2012).

1.2.1 Spinel Structure for Industry and Technology

The spinel structures of material which are binary oxide occur in an abundant

industry processes and draw in the earlier substantial consideration and research

effort. The catalytic and physical properties of the spinel oxides may be influence by

the nature of their distribution in the spinel structure, and not only persuade by the

oxidative state of transition metal ions which the intention of the cation distribution

in the spinel expands a great significance on their chemical and physical properties.

Page 33: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

8

Sanghera et. al., (2009) described that the availability of high-optical-quality spinel

ceramic in different shapes and sizes makes it an excellent window material for

many applications. Spinel (MgAl2O4) is a cubic crystalline material with a unique

combination of ruggedness and excellent transmission from the ultra-violet (0.2μm)

to the mid-infrared (5μm) region. DDG 1000 destroyer, photonic mast for virginia

class submarine, high energy lasers and domes for missile protection system are

some of the applications of spinel that being pursued.

Manova et. al., (2006) discussed about the potential of spinel oxides as catalysts for

methanol decomposition on supporting the activity of the bulk analogues and carbon

materials. They were successfully synthesis the iron and iron-cobalt spinel oxides in

nanosized as catalyst by thermal treatment method. They reported that the reaction

medium extensively effects the phase transformation of the catalytic and reductive

properties of the samples. The reaction medium containing the merging of spinel

Fe3O4 with cobalt ions and binary metal ferrites formation is a well-defined

propensity for increasing the catalytic activity; and the selectivity of CO was found

for the cobalt containing spinels as compared with the monocomponent.

Page 34: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

9

Kalendova (1998) reported that the stability of spinel-like compound of

pigment in anticorrosive heat-resistant coating, will improve the stability of

physicochemical structure and the constancies of colour and application properties of

the pigment. The preparation of spinels coating Ca, Zn and Fe cations were allowed

by the high-temperature synthesis procedure running in the solid state. The

anticorrosive pigments based on the spinels compound are nontoxic and the

pigments are suitable for both solvent-type and water-dilutable coating compare to

the phosphate-based pigments.

Ahmed et. al., (2011) in their studies were successfully fabricated the refractory

ceramics of single phase crystalline cyan NixMg1-xAl2O4 spinels which was the one

of the application of spinel-like structure as being heat resistant pigment. The work

was done by using urea as a fuel followed by the low temperature combustion

method. Undergoes severe condition of temperature’s elevated and chemical attack,

the design for colouring enamel and glaze were specially comes from the ceramic

pigments as well as thermoresistant pigments. Spinel-type structure would make

some modification in physical properties of the resistant pigment with the change of

defect in the structure of compound and associated with the dopant cation of the

solid solution.

Page 35: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

10

1.3 Problem Statement

Novel routes were recently explored to attain innovative technique for producing

nanoparticles. Many of the methods come with some disadvantages for examples

difficulty in their preparation and difficult to control either size or size distribution,

not being homogenous and sometimes takes a long time period in the furnace. The

aim of this current study was to apply a low temperature (below 1000°C) thermal

treatment route to synthesis nanosized nickel chromite, cobalt chromite and nickel

cobalt chromite spinels and environmentally friendly (lack of by-product effluents).

In addition, attempts are made to characterize the structure of nanosized nickel

chromite, cobalt chromite and nickel cobalt chromite spinels at different calcination

temperature because less attention has been paid to their structure and properties in

spite of the importance in applications to the industry such as catalyst and industry of

pigment.

1.4 Significance of the Study

The thermal treatment method suggest the advantages of low cost production,

simple, comparatively low reaction temperature, an alternative of environmentally

friendly and lack of by-product effluents to the mixture solution. It also has

significance capability to amend the chemical structure of material resulting in

desirable properties such as controlling size of metal nanoparticles.

Page 36: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

11

1.5 Scope of the Present Study

A main goal of this work is to synthesize and characterize the nanosized nickel

chromite, cobalt chromite and nickel cobalt chromite spinels by using thermal

treatment method. In this research, a low temperature (below 1000°C) thermal

treatment route was used to synthesis nanosized nickel chromite, cobalt chromite and

nickel cobalt chromite spinels at different calcination temperatures.

1.6 Objectives of the Study

To synthesize and characterize the nanosized nickel chromite, cobalt

chromite and nickel cobalt chromite spinels using thermal treatment method.

To determine the influences of different calcination temperatures on the

structure and properties of prepared nickel chromite, cobalt chromite and

nickel cobalt chromite spinels.

Page 37: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

12

1.7 Layout of the Thesis

The synthesis and characterization of nanosized nickel chromite, cobalt chromite and

nickel cobalt chromite spinels by thermal treatment method are the core aspect of the

study in this thesis. In the beginning, an overview of nanosized material as well as

spinel structure arrangement together with problem statement, significance of the

study, scope of the present study and objectives of the study are given in chapter 1.

Chapter 2 provides the information about chromites and the work done by the

previous researchers. Chapter 3 deals with the theory that characterized all the

samples in this study. Chapter 4 discussed about the methodology and all materials

used. Chapter 5 focuses on the result of synthesized and characterized nanosized

nickel chromite, cobalt chromite and nickel cobalt chromite spinels. Last but not

least, chapter 6 gives conclusions and some suggestions.

Page 38: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

100

REFERENCES

Allen D.C. White, B.S.M.E (2005). Master Thesis. High pressure study of spinel

chromite. Texas Tech University.

Ali B. and Mustafa K. (2007). Theoretical approach to the magnetic properties of

Mn(III), Cr(III) and Cu(III) complexes in the newly reported 12- and 15-

membered macrocylic ligands. Indian Academy of Sciences. Vol. 69, No. 2,

pp:301-306.

Ahmad, M., Shoaib, K.A., Shaikh, M.A., and Akhtar, J.I.(1994). Identification of

surface carbides and spinels in welded austenitic stainless steels. Journal of

Materials Science, Vol. 29, pp: 1169-1173.

Ahmed. I.S, Dessouki. H.A, Ali. A.A (2011). Synthesis and characterization of

NixMg1-xAl2O4 nano ceramic pigments via combustion route. Vol. 30, pp:

584-591.

Athawale A.A. and Desai P.A. (2011). Silver doped lanthanum chromites by

microwave combustion method. Ceramics International. Vol. 37, Issue. 8,

pp: 3037-3043.

Bilger S., Blaβ G. And Forthmann R. (1997). Sol gel synthesis of lanthanum

chromite powder. Journal of the European Ceramic Society. Vol. 17, Issue.

8, pp: 1027-1031.

Berry F.J., Constantini N., Smart L.E., (2002). Synthesis of chromium-containing

pigments from chromium recovered from leather waste. Waste Management

22, pp: 761-772.

Charles S. Hutchison, (1972). Alphine-type chromite in North Borneo, with

reference to Darvel Bay. America Mineralogist, Vol. 57, pp 835-856.

Chatwal G. R. and Anand S. K. (2002). Electron spin resonance spectroscopy, in

Instrumental methods of chemical analysis. 5th

edition, Himalaya publishing

house, pp 2.245 – 2.245.

Daliya S. and Ruey-Shin J. (2007). An overview of the structure and magnetism of

spinel ferrite nanoparticles and their synthesis in microemulsion. Chemical

Engineering Journal. Vol.129, pp: 51-65.

Page 39: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

101

Davis R. And Mauer L.J. (2010). Fourier transform infrared (FT-IR) spectroscopy:

A rapid tool for detection and analysis of foodborne pathogenic bacteria.

Technology and Education Topics in Applied Microbiology and Microbial

Biotechnology. pp:1582-1594.

Dettmer A., Nunes K.G.P., Gutterres M., Marcilio N.R., (2010). Obtaining sodium

chromate from ash produced by thermal treatment of leather wastes.

Chemical Engineering Journal. 160, 8-12.

Durrani S.K, Hussain S.Z., Saeed K., Khan Y., Arif M., Ahmed N.,(2012).

Hydrothermal synthesis and characterization of nanosized transition metal

chromite spinels. Turk J Chem 36, 111-120.

Edrissi M, Hosseini S.A, Soleymani M. (2011). Synthesis and characterization of

copper chromite nanoparticles using coprecipitation method. Micro & Nano

Letters. Vol. 6, Iss. 10, pp:836-839.

Griffin. W.L and Ryan. C.G, (1995). Trace elements in indicator minerals: Area

selection and target evaluation in diamond exploration. Journal of

Geochemical Exploration, Vol. 53, pp 311-337.

Herring D. H (2012). The Heat Treat Doctor. The HERRING GROUP, Inc. Illinois

Institute of Technology.

Hobbs D. T. (2012). Reducing ion exchange particles to nano-size shows big

potential. Savannah River Nuclear Solution, LLC. Aiken. SC. USA 29808.

Hoffman S.K., Hilezer W., and Goslar J. (1994). Weak long-distance super exchange

interaction and its temperature variations in copper (II) compounds studied

by single crystal EPR. Applied Magnetic Resonance. Vol. 7, pp:289-321.

Jennifer D., Rudi C., Olivier D., Natacha K., Benedicate V., Catherine H., (2012).

Microstructural evolution of TiO2 mesoporous single layer film under

calcination: Effect of stabilization and repeated thermal treatments on the

film crystallization and surface area. Thin Solid Films.

Jeremy K.B., Geoffrey D. P., Sarah L. P. (1982). Role of the crystal-field theory in

determining the structures of spinels. Journal of American Chemical Society.

104, 92-95.

Jessica E. K., Nikhil C. T., James M. B., Stanley T. K., (2006). Industrial minerals &

rocks: Commodities, markets and uses. 7th

Edition. Society for Mining,

Metallurgy and Exploration (U.S), 1548 pages.

Page 40: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

102

Junjiro K., (1959). Super exchange Interaction and symmetry properties of electron

orbitals. Journal of Physic and Chemistry Solids, Pergamon Press, Vol. 10.

pp: 87-88.

Kalendova A., (1998). Anticorrosive spinel-type pigments of the second generation.

Anti-corrosion Methods and Materials, Vol. 45 Issue: 5 pp: 344-349.

Khandelwal B.L. (2007). Inorganic Chemistry: Chemistry of transition element.

Disha Institute of Management and Technology.

Kim. D., S. IHM*, (2001). Application of spinel-type cobalt chromite as a novel

Catalyst for combustion of chlorinated organic pollutants. Environmental

Science & Technology, Vol. 35, No. 1, pages: 222-226.

Li N., Chen Y., Hu C., Hsieh C., Lo S. (2011). Stabilization of nickel-laden sludge

by a high-temperature NiCr2O4 synthesis process. Journal of Hazardous

Materials 198, 356-361.

Liang X., Min J., Wang C., Sang W., Gu Y., Zhou Y., Zhou C. (2009).Optimized

process of thermal treatment of Au/CdZnTe contacts. Rare Metal Materials

and Engineering 38(12): 2055-2088.

Mahmoud G. N., Saion E., Hossein A. A., Hashim M., Shaari A.H. (2010). Simple

synthesis and characterization of cobalt chromite nanoparticles by a thermal

treatment method. Journal of Nanomaterials.

Mahmoud G. N., Saion E., Hossein A. A., Hashim M., Shaari A.H. (2011).

Synthesis and characterization of manganese ferrite nanoparticles by thermal

treatment method. Journal of Magnetism and Magnetic Materials 323, pages:

1745-1749.

Mahmoud Goodarz Naseri. (2012). Ph.D. Thesis. Synthesis and characterization of

structure and magnetic properties of ferrite nanoparticles prepared by thermal

treatment method. Universiti Putra Malaysia.

Manova E., Tsoncheva T., Estournes CI., Paneva D., Tenchev K., Mitov I. and

Petrov L., (2006). Nanosized iron and iron-cobalt spinel oxides as catalysts

for methanol decomposition. Applied Catalysts A: General 300, 170-180.

Manoharan S.S and Patil K.C. (1992). Combustion synthesis of metal chromite

powders. Journal of American Ceramic Society. Vol. 75, Issue. 4, pp: 1012-

1015.

Masashi M. and Nigel M.S (2002). Sintering and thermal expansion characterization

of Al-doped and Co-doped lanthanum chromites synthesized by the Pechini

method. Solid State Ionics. Vol. 146, Issue. 3-4, pp: 301-312.

Page 41: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

103

Mendelson M.I. (1969). Average grain size in polycrystalline ceramics. Vol. 52,

no. 8, pp: 443-446.

Parashu Ram Kharel (2008). PhD Thesis. The synthesis and characterization of

multifunctional oxide thin films. Wayne State University, Detroit, Michigan.

Priyadharsini P., Pradeep A., Sambasiva R., Chandrasekaran G. (2009). Structural,

spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrite. Material

Chemistry and Physics. Vol:116, pp:207-213.

Rashmin B. P. and Mrunali R. P. (2008). The electrons spin resonance (ESR):

Principle and application. Pharmaceutical Information. Vol. 6, Issue. 5.

Rodziah Binti Nazlan (2012). Master Thesis. Parallel evolutions of morphology and

magnetic properties and their attendant relationships in polycrystalline

yttrium iron garnet. Universiti Putra Malaysia.

Rubie D.C., Duffy T.S., Ohtani E. (2004). New developments in high-pressure

mineral physics and applications. Elsevier. San Diego, CA.

Sanghera J.S., Villalobos G., Kim W., Bayya S., and Aggarwal I.D. (2009).

Transparent Spinel Ceramic. Optical Sciences Division. Naval Research

Laboratory, Washington. DC 20375. pp: 215-217.

Sayonara A.E., Jeferson M.A., Severino J.G.L., Carlos A.P., Luiz E.B.S., Hammer

P.,Longo E., Antonia G.S., Ieda M.G.S. (2011). Black and green pigments

based on chromium-cobalt spinel. Materials Chemistry and Physics 129.

619-624.

Sui Y., Huang X., Ma Z., Li W., Qiao F., Chen K., Kunji C. (2003). The effect of

thermal annealing on crystallization in a-Si/SiO multilayers by using layer by

layer plasma oxidation. Journal of Physics: Condensed Matter. Vol: 15, pp:

5793-5799.

Vincent M.R. (2004). Nanoparticles: Building blocks for nanotechnology.

Technology & Engineering. 284 pages.

Wan Norailiana Bt Wan Ab Rahman.(2012). Master Thesis. Physical interpretation

of magnetic behaviour in nickel zinc ferrite based on dielectric study.

Universiti Putra Malaysia.

Wang Y., Yang P., Liu G., Xu L., Jia M., Zhang W., Jiang D. (2008). Stability and

deactivation of spinel-type cobalt chromite catalysts for ortho-selective

alkylation of phenol with methanol. Catalysis Communications 9, 2044-2047.

Page 42: COPYRIGHTpsasir.upm.edu.my/id/eprint/67373/1/FS 2013 91 IR.pdf · dan Ni 0.5 Co 0.5 Cr 2 O 4 pada suhu yang berbeza menunjukkan refleksi (111), (220), (311), (400), (511) dan (440).

© COPYRIG

HT UPM

104

Woodgate, Gordon K. (1999). Elementary atomic structure. Oxford University Press.

Yang Y., Wen T., Tu H., Wang D. And Yang J. (2000). Characteristics of lanthanum

chromite prepared by glycine nitrate process. Solid State Ionics. Vol. 135,

Issue. 1-4, pp: 475-479.

Yue H. and Kaimin S. (2012). Nano-indentation on nickel aluminate spinel and the

influence of acid and alkaline attacks on the spinel surface. Ceramics

International. Vol. 38, Issue. 4, pp:3121-3128.

Zhang Q., Zhou Y., Gong Y. and Zhou M. (2007). Matrix isolation infrared

spectroscopic and theoretical study of dinuclear chromium oxide cluster,

Cr2On (n = 2, 4, 6) in solid argon. Journal Physical Chemistry of American,

Vol. 111, No. 39, pp: 9775-9780.

Zhou, X.B., De Hosson, J.Th.M. (1991). Spinel/Metal interfaces in laser coated

steels: A transmission electron microscopy study. Acta Metallic Materials,

Vol. 39, No. 10, pp: 2267-2273.