2009 Radio and Wireless Week Power Amplifier...

47
1 HIGH HIGH - - EFFICIENCY EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov [email protected] 2009 Radio and Wireless Week Power Amplifier Symposium

Transcript of 2009 Radio and Wireless Week Power Amplifier...

Page 1: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

1

HIGHHIGH--EFFICIENCYEFFICIENCYRF AND MICROWAVE POWER AMPLIFIERS:RF AND MICROWAVE POWER AMPLIFIERS:

HISTORICAL ASPECT AND MODERN TRENDSHISTORICAL ASPECT AND MODERN TRENDS

Dr. Andrei Grebennikov

[email protected]

2009 Radio and Wireless Week

Power Amplifier Symposium

Page 2: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

2

HIGHHIGH--EFFICIENCYEFFICIENCYRF AND MICROWAVE POWER AMPLIFIERS:RF AND MICROWAVE POWER AMPLIFIERS:

HISTORICAL ASPECT AND MODERN TRENDSHISTORICAL ASPECT AND MODERN TRENDS

I. POLYHARMONIC CLASS F AND INVERSE CLASS F I. POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERSPOWER AMPLIFIERS

II. SWITCHEDII. SWITCHED--MODE CLASS E POWER AMPLIFIERSMODE CLASS E POWER AMPLIFIERS

III. III. SWITCHEDSWITCHED--MODE CLASS FE POWER AMPLIFIERSMODE CLASS FE POWER AMPLIFIERS

Page 3: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

3

POLYHARMONIC CLASS F AND INVERSE CLASS F POLYHARMONIC CLASS F AND INVERSE CLASS F POWER AMPLIFIERSPOWER AMPLIFIERS

1. Class F: biharmonic and polyharmonic operation modes1. Class F: biharmonic and polyharmonic operation modes

2. Class F with quarterwave transmission line2. Class F with quarterwave transmission line

5. Inverse Class F: biharmonic and idealized operation modes5. Inverse Class F: biharmonic and idealized operation modes

3. Class F : load networks with lumped elements and 3. Class F : load networks with lumped elements and transmission linestransmission lines

4. Class F: LDMOSFET power amplifier design examples4. Class F: LDMOSFET power amplifier design examples

6. Inverse Class F: load networks with lumped elements and 6. Inverse Class F: load networks with lumped elements and transmission linestransmission lines

7. Inverse Class F: LDMOSFET power amplifier design examples7. Inverse Class F: LDMOSFET power amplifier design examples

8. Practical high8. Practical high--efficiency Class F power amplifiersefficiency Class F power amplifiers

Page 4: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

4

1. Class F: biharmonic and polyharmonic operation modes1. Class F: biharmonic and polyharmonic operation modes

( ) ∑= −

−−−=N

n ntntt

Iti

,...6 ,4 2

0 1 cos 2 2 cos

32 sin

2 1 ωωωπω

( ) ∑=

+++=N

n ntntt

Vtv

,...7,5 0

sin 4 3sin 34 sin 4 1 ω

πω

πω

πω

rectangular voltage waveform

half-sinusoidal current waveform

Fourier series for:

RL

3f0

f0

Third-harmonic peaking

π 2π ωt

i n = 1, 2

I0

0

π 2π ωt

v n = 1, 3

V0

0

D. C. Prince, “Vacuum Tubes as Power Oscillators, Part III,”Proc. IRE, vol. 11, pp. 527-550, Sept. 1923

Page 5: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

5

H. J. Round, “Wireless Telegraph and Telephone Transmission,”U.S. Patent 1,564,627, Dec. 1925

RL

3f0

f0

5f0

1. Class F: biharmonic and polyharmonic operation modes1. Class F: biharmonic and polyharmonic operation modes

π 2π ωt

n = 1, 3, 5

v

π 2π ωt

i

V0

0

I0

n = 1, 2, 4

0

Page 6: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

6

For maximally flat waveformscollector current

v/Vc

π

2.0

1.5

1.0

0.5

0 π/2 3π/2 θ

n = 1, 3

cc1 89 VV = cc3

81 VV =

collector voltage

2 .5

i/I0

π

2 .0

1 .5

1 .0

0 .5

0 π /2 3π /2 θ

n = 1 , 2

01 34 II = 02

31 II =optimum values

1. Class F: biharmonic and polyharmonic operation modes1. Class F: biharmonic and polyharmonic operation modes

Voltage harmonic components Current har-monic compo-

nents 1 1, 3 1, 3, 5 1, 3, 5, 7 1, 3, 5, …, ∞

1 1/2 =0.500 9/16 = 0.563 75/128 = 0.586 1225/2048 = 0.598 2/π = 0.637

1, 2 2/3 = 0.667 3/4 = 0.750 25/32 = 0.781 1225/1536 = 0.798 8/3π = 0.849

1, 2, 4 32/45 = 0.711 4/5 = 0.800 5/6 = 0.833 245/288 = 0.851 128/45π = 0.905

1, 2, 4, 6 128/175 = 0.731 144/175 = 0.823 6/7 = 0.857 7/8 = 0.875 512/175π = 0.931

1, 2, 4,…, ∞ π/4 = 0.785 9π/32 = 0.884 75π/256 = 0.920 1225π/4096 = 0.940 1 = 1.000

Page 7: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

7

- fundamental current component

1. Class F: idealized operation mode1. Class F: idealized operation mode

2 max

1II =

- fundamental voltage componentπ

cc1

4 VV =

πmaxcc

1 IVP = - fundamental output power

0cc0 IVP = - dc supply power

100% 0

1 ==PPη - collector/drain efficiency

Harmonic impedance conditions:

0

cc2

max

cc11

8 8 I

VIVRZ

ππ===

0 2π

Imax

ωtπ

i

I0

Ideal voltage waveform

Vcc

π 2π0

2Vcc

ωt

v

Ideal current waveform

- dc current componentπmax

0 II =

nZnZ

oddfor even for 0

n

n

∞==

Page 8: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

8

v(ωt) = 2Vcc – v(ωt + π)

2. Class F with quarterwave transmission line2. Class F with quarterwave transmission line Cb Vcc

λ/4

vin

R

C0L0

iR

x

l

0

vinciinc

vref iref

iTi

v

- collector voltage

iT(ωt) = iT(ωt + π) = IR⏐sinωt⏐

i(ωt) = IR(sinωt + ⏐sinωt⏐)- collector current

- transmission-line current

Assumptions for transistor:

ideal switch:no parasitic elements

half period is on,half period is off:50% duty cycle

Assumptions for load:

sinusoidal current:ideal L0C0-circuittuned to fundamental

i(ωt) = IR sinωt - load current

iT/I0

1.5

1.0

0.5

0ωt, °30024018012060 0

Page 9: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

9

3. Class F: second current and third voltage harmonic peaking3. Class F: second current and third voltage harmonic peaking

L1

Cbypass

C2

Cout

Vcc

L2

Ynet

Matching circuit

with high impedances at harmonics

RL

( ) ( ) 2222

1

222

outnet 1 1 Im

LCLLCLCY

ωωωωω

+−−

−=

out212out

2o

1 512 ,

35 ,

61 CCLLC

L ===ω

( )( )( )

( )( ) 0 9 9 1 9 1

0 4 1

0 1 1

out22022

20out1

20

222201

out22022

20out1

20

=−−−

=+−

=−−−

CLCLCL

LCLL

CLCLCL

ωωω

ω

ωωω

Load network

Circuit parameters

Output reactive admittance:

Three harmonic impedance conditions:

S21 simulation (f0 = 500 MHz)

ImYnet(ω0) = 0

ImYnet(2ω0) = ∞

0.5 1.5 2.0

S21, dB

0

−1

−2

−3

−41.0 f, GHz

0

Qind = 20

ImYnet(3ω0) = 0

Page 10: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

10

6 ,

2 31πθπθ ==

θ1

Cbypass

Cout

Vcc

θ2

θ3

Ynet

Matching circuit

with high impedances at harmonics

RL

0.5 1.5 2.0

S21,

0

−10

−20

−30

−401.0 f, G H z

0

Load network

S21 simulation (f0 = 500 MHz)

⎟⎟⎠

⎞⎜⎜⎝

⎛= −

out0

12 3

1tan31

CZ ωθ

Circuit parameters:

Harmonic impedance conditions at collector (drain):

3. Class F: even current and third voltage harmonic peaking3. Class F: even current and third voltage harmonic peaking

ImYnet(ω0) = 0

ImYnet(2nω0) = ∞ImYnet(3ω0) = 0

ideal transmission lines

Page 11: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

11

out

L RRm =

Load network with impedance matching

Normalized parameters:

3. Class F: even current and third voltage harmonic peaking3. Class F: even current and third voltage harmonic peaking

3

03

L

ZRq =

333

02out ZCn ω=

λ/4

Cbypass

Cout

Vdd

Z02, θ2

Z03

Znet

RL Rout

λ/12

n 0

5

10

15

20

25

θ2, degree

30

0.2 0.4 0.6 0.8

1.5

3.0

4.5

6.0

7.5

q

m

3

5 7 10

5 7 10m = 3

n 0 60

62

64

66

68

θ2, degree

0.2 0.4 0.6 0.8

q

m = 10

57

m = 5

0.8

1.6

2.4

3.2

70

7

10

Page 12: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

12

Drain voltage and current waveforms

4. Class F: LDMOSFET power amplifier design example4. Class F: LDMOSFET power amplifier design example

500 MHz Class F power amplifier with lumped elements

500 Ω

24 V

300 Ω

1.5 kΩ

100 pF

3.5 pF

Pout

1.1 pF6 pF

10 pF

25 nH 2 pF 15 nH

3.6 nH

4.5 nH

Pin

12.5 17.5 20

efficiency, %

10

80

60

20

0 15 Pin, dBm

100

40

22.5

gain, dB 22

20

12

14

16

18

1

2

1

2

0

20

40

vd, V

0 1 2 3 t, nsec

id, A

0.7

0

LDMOSFET:gate length 1.25 umgate width 7x1.44 mm

inductance Q-factor = ∞efficiency - 82% linear power gain > 16 dB

inductance Q-factor = 30efficiency - 71%linear power gain > 14 dB

Output matching

Page 13: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

13

500 Ω

24 V

300 Ω

1.5 kΩ

Pout

4.5 pF

50 Ω 45°

100 pF

2.5 pF

Pin

50 Ω 75°

30 Ω90°

30 Ω12°

50 Ω73°

30 Ω30°

50 Ω13°

20

40

vd, V

0 1 2 3 t, nsec

0

1

id, A

12.5 17.5 20

efficiency, %

10

80

60

20

0 15 Pin, dBm

100

40

22.5

gain, dB 22

20

12

14

16

18

500 MHz Class F power amplifier with transmission lines

LDMOSFET:gate length 1.25 umgate width 7x1.44 mm

output power - 39 dBm (8 W)

collector efficiency - 76%

linear power gain > 16 dB

T-matching circuit for output impedance transformation

Drain voltage and current waveforms

Output matching

4. Class F: LDMOSFET power amplifier design example4. Class F: LDMOSFET power amplifier design example

Page 14: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

14

Fourier series for:

rectangular current waveform

half-sinusoidal voltage waveform

RL

2f0

f0

Second-harmonic peakingInverse voltage and current

waveforms

5. Inverse Class F: biharmonic and idealized operation modes5. Inverse Class F: biharmonic and idealized operation modes

π 2π ωt

v n = 1, 2

V0

0

π 2π ωt

i n = 1, 3

I0

0 ( ) ∑= −

−−−=N

n ntntt

Vtv

,...6 ,4 2

0 1 cos 2 2 cos

32 sin

2 1 ωωωπω

( ) ∑=

+++=N

n ntntt

Iti

,...7,5 0

sin 4 3sin 34 sin 4 1 ω

πω

πω

πω

A. I. Kolesnikov, “A New Method to Improve Efficiency and to Increase Power of Transmitter (in Russian),” Master Svyazi, pp. 27-41, June 1940

Page 15: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

15

Concept of inverse Class F mode was reintroduced for low voltage power amplifiers designed for monolithic applications (less collector current)

- fundamental current

- fundamental voltage

π0max

1 IVP = - fundamental output power

π0max

0cc0 IVIVP == - dc output power

100% 0

1 ==PPη - ideal collector/drain efficiency

I0

π 2π0

2I0

ωt

i

0 2π

Vmax

ωtπ

v

Vcc

ccmax

1 2

2

VVV π==

π0

14 II =Dual to conventional Class F

with mutually interchanged current and voltage

waveforms

Harmonic impedance conditions:

5. Inverse Class F: idealized operation mode5. Inverse Class F: idealized operation mode

0

cc2

0

max11 8

8

I

VI

VRZ ππ===

nZnZ

even for oddfor 0

n

n

∞==

Page 16: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

16

5. Inverse Class F with quarterwave transmission line5. Inverse Class F with quarterwave transmission line

Vdd

Z0, λ/4

vin RL

C0 L0

R1 L

20

1 RZR =

quarterwave transmission line as impedance

transformer

sinusoidal current:shunt L0C0-circuittuned to fundamental

RFC

Vdd RL

f0

3f0 5f0 (2n + 1) f0

device is driven to operate as switch

zero impedances at odd harmonic components

quarterwave transmission line as infinite set of series resonant circuits

Page 17: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

17

θ1

Cbypass

Cout

Vdd

Z2, θ2

θ3

Matching circuit

with high impedances at harmonics

RL

Ynet

Z3

6. Inverse Class F: second current and third voltage harmonic pe6. Inverse Class F: second current and third voltage harmonic peakingaking

4 ,

3 31

πθπθ ==

0.5 1.5 2.0

S21, dB

0

−10

−20

−30

−401.0 f, G H z

0

S21 simulation (f0 = 500 MHz)

Circuit parameters:

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ +=−

−1

out 01

2 31 2 tan

21 CZ ωθ

Load network Harmonic impedance conditions at collector (drain):

ImYnet(ω0) = 0

ImYnet(3ω0) = ∞

ImYnet(2ω0) = 0

ideal transmission lines

Page 18: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

18

500 Ω

24 V

300 Ω

1.5 kΩ

Pout

6 pF

50 Ω 45°

100 pF

2.5 pF

Pin

50 Ω 75°

30 Ω60°

30 Ω44°

50 Ω63°

50 Ω45°

50 Ω22°

0

20

40

60 vd, V

0 1 2 3 t, nsec-20

1.4

2.1

0.7

0

-0.7

id, A

12.5 17.5 20

efficiency, %

10

80

60

20

0 15 Pin, dBm

100

40

22.5

gain, dB22

20

12

14

16

18

500 MHz inverse Class F power amplifier with transmission lines

Drain voltage and current waveforms

LDMOSFET:gate length 1.25 umgate width 7x1.44 mm

output power - 39 dBm or 8 W

collector efficiency - 71%

Output matching

7. Inverse Class F: LDMOSFET power amplifier design example7. Inverse Class F: LDMOSFET power amplifier design example

500 Ω

24 V

300 Ω

1.5 kΩ

Pout

9 pF

50 Ω63°

100 pF

2 pF

Pin

30 Ω54°

30 Ω65°

30 Ω62°

50 Ω45°

Load network with output matching

Page 19: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

19

Optimum load network resistances at fundamental Optimum load network resistances at fundamental for different classes of operationfor different classes of operation

(B)(F)2

1

cc)invF( 2

8

2

RRI

VR πππ===

(B)

1

cc)F( 4 4 RI

VRππ

==Class F :

Inverse Class F :

Class B :

Load resistance in inverse Class F is the highest

(1.6 times larger than in Class B)

Less impedance transformation ratio and easier matching

procedure

1

2cc

1

cc)B(

2

PV

IVR ==

Page 20: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

20

Class F GaN HEMT power amplifier with input harmonic control

Class AB biasing with small quiescent current

RC-circuits at the input for stable operation

characteristic impedances Z2 and Z3 are chosen to

provide conjugate impedance matching at fundamental

85% power-added efficiency for 16.5 W at 2 GHz

Input second-harmonic termination circuit is used to provide input quasi-square voltage waveform minimizing device switching time

Pin Pout

Vg 42.5 V

Z2, θ

λ/4

λ/6Z3

λ/4

D. Schmelzer and S. I. Long, “A GaN HEMT Class F Amplifier at 2 GHz with > 80% PAE,” IEEE J. Solid-State Circuits, vol. SC-42, pp. 2130-2136, Oct, 2007.

8. Practical high8. Practical high--efficiency RF and microwave Class F power amplifiersefficiency RF and microwave Class F power amplifiers

characteristic impedance Z2and electrical length θ is

tuned to form third-harmonic tank with output device

capacitance Cds

Page 21: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

21

8. Practical high8. Practical high--efficiency RF and microwave Class F power amplifiersefficiency RF and microwave Class F power amplifiers

Inverse Class F LDMOSFET power amplifier with quarterwave line

Class AB biasing with small quiescent current

series L0C0-circuit is tuned to

fundamental

L-type input matching circuit

with shunt variable capacitance

60% drain efficiency for 13 W at 1.78 GHz

F. Lepine, A. Adahl, and H. Zirath, “L-Band LDMOS Power Amplifiers Based on an Inverse Class-F Architecture,” IEEE Trans. Microwave Theory Tech., vol. MTT-53, pp. 2007-2012, June 2005.

Pin

9.85 nH

26 V

Z0 = 13 Ω θ = 90°

Z0 = 50 Ωθ = 4.7°

Pout

0.6-4.5 pF

50 Ω

30 pF

Z0 = 50 Ωθ = 9°

0.4-2.5 pF

C0 L0 Z0 = 50 Ωθ = 46.8°

9.85 nH

3.5 V L-type low-pass output matching circuit

with shunt variable capacitance

Page 22: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

22

II. SWITCHEDII. SWITCHED--MODE CLASS E POWER AMPLIFIERSMODE CLASS E POWER AMPLIFIERS

1. Effect of detuned resonant circuit1. Effect of detuned resonant circuit

2. Basic Class E with shunt capacitance2. Basic Class E with shunt capacitance

4. Parallel4. Parallel--circuit Class Ecircuit Class E

6. Class E with quarterwave transmission line6. Class E with quarterwave transmission line

7. Broadband Class E circuit design7. Broadband Class E circuit design

8. Practical RF and microwave Class E power amplifiers8. Practical RF and microwave Class E power amplifiers

3. Generalized Class E load network with finite 3. Generalized Class E load network with finite dcdc--feed inductancefeed inductance

5. Class E approximation with transmission lines5. Class E approximation with transmission lines

Page 23: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

23

G. D. Ewing, High-Efficiency Radio-Frequency Power Amplifiers, Ph.D. Dissertation, Oregon State University, June 1964.

RL

1. Effect of detuned resonant circuit1. Effect of detuned resonant circuit

R

L C0

C

E. P. Khmelnitsky, Operation of Vacuum-Tube Generator on Detuned Resonant Circuit (in Russian), Moskva: Svyazizdat, 1962.

anode efficiency of 92-93% for resonant-circuit phase angles of 30-40°: inductive impedance at

fundamental and capacitive at harmonics

resonant frequency f ≈ (1.4-1.5)f0f0 – fundamental frequency

load current lags collector voltageso that series LC0-circuit must appear

inductive at operating frequency

pulsed excitation with highest efficiency for conduction angles

less than 180°

collector efficiency of 94% for 20 W 500 kHz bipolar power amplifier with

50% duty cycle

Page 24: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

24

• transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless

R C

iC iR i I0

RFC L

v

Vcc

C0L0

Idealized assumptions for analysis:

• total shunt capacitance is assumed to be linear

• loaded quality factor QL of series fundamentally tuned resonant L0C0 -circuit is infinite to provide pure

sinusoidal current flowing into load

• reactive elements in load network are lossless

• for optimum operation 50% duty cycle is used

• RF choke allows only dc current and has no resistance

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

2. Basic Class E with shunt capacitance2. Basic Class E with shunt capacitance

Idealized optimum or nominal conditions

RFC R

L C0

C

Vcc Vbe vin

L0

Page 25: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

25

Optimum circuit parameters :

-1.5 -1

-0.5 0

0.5 1

1.5

60 120 180 240 300

iR/I0

ωt

0

0.5

1

1.5

2

2.5

0 60 120 180 240 300

i/I0

ωt

0 0.5

1 1.5

2 2.5

3 3.5

0 60 120 180 240 300

v/Vcc

ωt

ωRL 1.1525 =

RC

ω1 .18360 =

out

2cc0.5768

PVR =

o945.35 1

tan tan 11 =⎟⎟⎟⎟

⎜⎜⎜⎜

−−⎟

⎠⎞

⎜⎝⎛= −−

CRRLCR

RL

ωωωωφ

R CV1

L I1 IR

φ

- series inductance

- shunt capacitance

- load resistance

Optimum phase angle at fundamental seen by switch :

Load current

Collector voltage

Collector current

2. Basic Class E with shunt capacitance2. Basic Class E with shunt capacitance

Page 26: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

26

Power loss due to non-zero saturation resistance

RC

RFC L

Vcc

C0L0

RC

RFC L

Vcc

C0 L0

rsat

i(τ2)

τ1 τ2

i

2π +τ1

τ

τsw

Rr

VPr

PP sat

2cc

2outsat

dc

sat 365.1 38 ≅≅

12

2sw

dc

sw τ≅

PP

°= 20or 35.0 swτ

Non-ideal switch

For nonlinear capacitances represented by abrupt

junction collector capacitance with γ = 0.5,

peak collector voltage increases by 20%

Power loss due to finite switching time

Nonlinear capacitance

only 1% efficiency loss

For

2. Basic Class E with shunt capacitance2. Basic Class E with shunt capacitance

Page 27: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

27

• load network consists of dc-feed inductance L supplying also dc current, shunt capacitor C, series reactance X, bondwire inductance Lb, series

fundamentally tuned L0C0 resonant circuit, and load R

• shunt capacitor C can represent intrinsic device output capacitance and external circuit capacitance

• active device is considered as ideal switch to provide instantaneous device switching between its on-state and off-state operation conditions

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

Optimum ideal voltage conditions

across switch:

( ) ( ) sin RR ϕωω += tIti - sinusoidal current in load

3. Generalized Class E load network with finite dc3. Generalized Class E load network with finite dc--feed inductancefeed inductance

RL C

Vcc

C0 L0 Lb

jX

• series reactance X can be positive (inductance), zero and negative (capacitive)

Page 28: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

28

- second-order differential equation

where

( ) ( )( )

( ) ( ) 0 cos Rcc2

2

b2 =+−−++ ϕωωω

ωωω tLIVtvtd

tvdLCLL

( ) ( ) ( ) ( )ϕωωωω cos 1

1 sin cos 2

2

2 1cc

+−

−++= tqpqtqCtqC

Vtv

( ) , /1 b CLLq += ω

and coefficients C1 and C2 are defined from initial conditions

, cc

R

VLIp ω

=

3. Generalized Class E load network with finite dc3. Generalized Class E load network with finite dc--feed inductancefeed inductance

- dc-feed inductance

- shunt capacitance

- load resistance2

b

out

2cc

22

2 1/ sin cos2 2

2

1 ⎟⎠⎞

⎜⎝⎛ +⎟⎟

⎞⎜⎜⎝

⎛−+=

LL

PV

pR ϕπϕπ

π

⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟

⎠⎞

⎜⎝⎛ += ϕϕ

ππω sin cos 2 2

/ 1 b

pLLp

RL

RL

LLqCR ωω 1 / 1 b2 ⎟⎠⎞

⎜⎝⎛ +=

Page 29: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

29

q ≤ 0.5: close to Class E with shunt capacitance with positive (inductive) series

reactance (X > 0)

3. Generalized Class E load network with finite dc3. Generalized Class E load network with finite dc--feed inductancefeed inductance

5

10

15

20

0

-5

0

20

40

60

80

-20

p ϕ,°

0.8 1.1 1.4 1.7 q

0.5

1.0

1.25

0.8 1.1 1.4 1.7

0.75

ωCR

0.25

0.5

1.0

1.25

0.75

0.25

q0.5

RPout /Vcc2

Normalized load network parameters versus q = 1/ω√ LC, Lb = 0

0

10

15

-10

-15

0.8 1.1 1.4 1.7

ωL/R

5

-5

1.5

1.0

0.5

0

-0.5

-1.0

-1.5

X/R

q

q = 1.412: parallel-circuit Class E with zero reactance (X = 0) – maximum load resistance R

q = 1.468: maximum shunt capacitance C(maximum operating frequency fmax) with

negative (capacitive) reactance (X < 0)

Page 30: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

30

RL C

Vccvin

C0L0 φ

4. Parallel4. Parallel--circuit Class Ecircuit Class E

To define three unknown parameters q, ϕ and p, two ideal optimum conditions and third equation for zero reactive part of fundamental Fourier component are applied resulting to system of three algebraic equations:

412.1 =q

°= 5.1551 ϕ

.2101 =p

( ) 0 2 =

= πωω

ttv ( ) 0

2

== πωω

ω

ttdtdv

0.732 ωRL =

RC

ω685.0 =

out

2cc 1.365

PVR =

Optimum circuit parameters :

- parallel inductance

- parallel capacitance

- load resistance: highest value

in Class E

( ) ( ) ( ) 0 cos 1 2

0X =+−= ∫ tdttvV ωϕωω

π

π

Page 31: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

31

-1

0

1

120 ωt

iR/I0

240

-1

0

1

2.5

180

ωt

iC/I0

RC L

IX

IR

VR

φ

°=⎟⎠⎞

⎜⎝⎛ −=⎟⎟

⎞⎜⎜⎝

⎛= −− 244.34 tan tan 1

R

X1 RCL

RII ω

ωφ

0

1

2.5

180 ωt

i/I0

0

2

3.5

180 ω t

v/V cc

Load current

Collector voltage

Collector current

Current through capacitance

4. Parallel4. Parallel--circuit Class Ecircuit Class E

Inductive impedance at fundamental

Page 32: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

32

5. Class E with transmission lines: approximation5. Class E with transmission lines: approximation

( )o49.052 tan 1 net1 jRZ +=

2

π 2π0 ωt

v/Vcc

3

1

3π 4π

RL

Vcc

CbMESFET output l1

l2Cout

Znet

Optimum impedance at fundamental seen by device :

Two-harmonic collector voltage approximation

electrical lengths of transmission lines l1 and l2should be of 45° to provide

open circuit seen by device at second harmonic

transmission-line characteristic impedances

are chosen to provide optimum inductive

impedance seen by device output at fundamental

T. B. Mader and Z. B. Popovic, “The Transmission-Line High-Efficiency Class-E Amplifier,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 290-292, Sept. 1995.

Page 33: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

33

Znet(ω0)

Znet(2ω0)

Znet(3ω0)

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0 t, nsec

vc/Vcc

3

-1

0

1

0.0 0.2 0.4 0.6 0.8 1.0 t, nsec

ic, A

2

3

on off on

30 Ω , 8°

Cout

3.5 V

5 pF 4 pF 50 Ω

50 Ω 12°

50 Ω , 16° 10 pF

Znet

Transmission-line parallel-circuit Class E GaAs HBT

power amplifier for handset application

Collector voltage

Collector current

Current flowing through collector

capacitor

parameters of parallel transmission line is chosen to realize optimum inductive impedance at fundamental

output matching circuit consisting of series

microstrip line with two shunt capacitors should

provide capacitive reactances at second and

third harmonics

5. Class E with transmission lines: approximation5. Class E with transmission lines: approximation

Page 34: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

34

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

Optimum voltage conditions across switch:

R

λ/4

C

Vcc

v

C0L0

L

i

iC

iRiT

iL

vT

( )( )

( ) ( ) 0 sin 2

RC

2

2C

2

=+++ ϕωωωω tItiqtd

tid - second-order differential equation

( ) ( )πωπω RtC 2 iti ==

( )( ) ( )ϕ

ωωω

πω

cos Rcc

t

C IL

Vtdtdi

−==

Boundary conditions:

649.1

sinusoidal load current

50% duty cycle

=q °= 40.8- ϕ.3021 =p

LCq ω/1 =cc

R VLIp ω

=

6. Class E with quarterwave transmission line6. Class E with quarterwave transmission line

Page 35: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

35

6. Class E with quarterwave transmission line6. Class E with quarterwave transmission line

1.349 ωRL =

RC

ω2725.0 =

out

2cc 0.465

PVR =

Optimum circuit parameters :

- series inductance

- shunt capacitance

- load resistance

Load current

Collector voltage

Collector current

Current through capacitance

Current through transmission line

0

1.5 2.5

60 180 300 ωt,°

i/I0

-2.0

-1.0

0

1.0

2.0

60 180 300

ωt,°

iR/I0

0

1.5

3.5

60 180 300

v/Vc

ωt,°

-1.5

0

1.5

2.5

60 180 300ωt,°

iC/I0

0

1.0

2.0

60 180 300 ωt,°

iT/I0

Page 36: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

36

Optimum impedances at fundamental and harmonics for different Class E load networks

6. Class E with quarterwave transmission line6. Class E with quarterwave transmission line

Class E with shunt capacitance

Class E with parallel circuit

Class E with quarterwave transmission line

f0 (fundamental) Class E load network 2nf0

(even harmonics)(2n+1)f0

(odd harmonics)

C

L

R

C

L

R

C L R

C C

C L C L

C L C

Page 37: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

37

Input load network admittance

7. Broadband Class E circuit design7. Broadband Class E circuit design

Rout C L R

C0 L0

Zin

Device output

ω0

ω

2 1

Xin = ImZin

⎟⎟⎠

⎞⎜⎜⎝

⎛′+

++=0

in 1

1

LjRLjCjY

ωωω

1 2

20⎟⎟⎠

⎞⎜⎜⎝

⎛−=′ωωωω 000 /1 CL=ω

( ) 0 Im

0

in ==ωωω

ωdYd

0 2 1 20

2 =−+RL

LC

ω

1.026 0 ωRL =

02

0 1/ LC ω=

Reactance compensation load network

Reactance compensation principle

1 - impedance provided by series L0C0 resonant circuit

2 - impedance provided by parallel LC resonant circuit

summation of reactances with opposite slopes results in constant load phase over broad frequency range

To maximize bandwidth:

Optimum parameters for series resonant circuit in Class E mode

Page 38: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

38

7. Broadband Class E circuit design7. Broadband Class E circuit design

20 nH

28 V

50 Ω

1.5 kΩ10 nF

20 pF Pout

10 pF10 pF

10 nF

50 nH 1 nF 64 nH

62 nH

Pin

110 nH10 pF

300 Ω

120 160 180

efficiency, %

100

74

72

70

68140 f, MHz

76gain, dB

9.5

10.0

10.51

2

20

40

60

80

vd, V

0 3 6 9 t, nsec0

1.0

1.5

0.5

0

-0.5

id, A

Broadband Class E power amplifier with reactance compensation

f0 = 120…180 MHz

Drain voltage and current waveforms

LDMOSFET:gate length 1.25 um

gate width 7x1.44 mm

1 - drain efficiency > 71%2 - power gain > 9.5 dB

input power - 1 Winput VSWR < 1.4gain flatness ≤ ± 0.3

Page 39: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

39

High power LDMOSFET RF Class E power amplifier

Class B with zero quiescent current

L-type output transformer to match optimum 1.5 Ω output

impedance to 50 Ω load

series inductance and ferrite 4:1 transformer is required to match

device input impedance

70% drain efficiency for 54 W at 144 MHz

Pin

12 nH 24 nH Pout

50 Ω

120 pF

55 pF

MRF183

100 nH

20 V

4:1

100 pF

required value of Class E shunt capacitance is provided by device

intrinsic 38 pF capacitance and external 55 pF capacitance

quality factor of resonant circuit was chosen to be sufficiently low (∼ 5 ) to provide some

frequency bandwidth operation and to reduce sensitivity to resonant circuit parameters

H. Zirath and D. B. Rutledge, “An LDMOS VHF Class-E Power Amplifier Using a High-Q Novel Variable Inductor,” IEEE Trans. Microwave Theory Techn., vol. 47, pp. 359-362, Dec. 1999..

8. Practical RF and microwave Class E power amplifiers8. Practical RF and microwave Class E power amplifiers

Page 40: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

40

8. Practical RF and microwave Class E power amplifiers8. Practical RF and microwave Class E power amplifiers

74% power-added efficiency for 11.4 W at 2 GHz

H. G. Bae, R. Negra, S. Boumaiza, and F. M. Ghannouchi, “High-Efficiency GaN Classs-E Power Amplifier with Compact Harmonic-Suppression Network,” Proc. 37th European

Microwave Conf., pp. 1093-1096, 2007.

Pin Pout

Vg 50 V

λ/4

λ/12Z3

λ/4 TL1

Z2 λ/8

Transmission-line low-harmonic GaN HEMT Class E power amplifier

Class C biasingπ-type

low-pass input

matching

short transmission line TL1provides required series

inductive reactance

output open-circuit stubs are tuned to be quarterwave

at 2nd and 3rd harmonics and capacitive at

fundamental

characteristic impedances Z2and Z3 are chosen to provide load matching together with

series line TL1

Input second-harmonic termination circuit is used to provide input quasi-square voltage waveform

minimizing device switching time

Page 41: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

41

III. SWITCHEDIII. SWITCHED--MODE CLASS FE POWER AMPLIFIERSMODE CLASS FE POWER AMPLIFIERS

1. Basic load network and operation principle1. Basic load network and operation principle

2. Load network parameters and voltage and current 2. Load network parameters and voltage and current waveformswaveforms

3. Design approximations with second3. Design approximations with second--harmonic control harmonic control (Class EF(Class EF22) and third) and third--harmonic control (Class E/Fharmonic control (Class E/F33))

Page 42: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

42

1. Basic load network and operation principle1. Basic load network and operation principle 2Vcc

C0

R

Cb

L0

C

C

L

Vcc

C0

R

Cb

L0

Z0, λ/4

C

L

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

Idealized optimum conditions

transistor has zero saturation voltage, zero on-resistance, infinite off-resistance and its switching action is instantaneous and lossless

Class E idealized optimum conditions applied to Class F mode affected by shunt parasitic

capacitance, with added series inductancesymmetrizing action of shunt quarterwave line provides

its voltage inverter mode resulting in similar waveform as in Class D or Class DE: it stores voltage waveform in

traveling wave along its length which returns delayed by one-half fundamental period and inverted due to reflection

from short-circuited end

Class DE Class FE

Page 43: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

43

1. Basic load network and operation principle1. Basic load network and operation principle

C

iC iR

iT L

Vcc

C0 L0

VR

VL

v

i

Sw R

λ/4

0 ωt

0

iC/I0

ωt

0 ωt

0 ωt

π 0 ωt 2π

τd τd

iT/I0

i/I0

3.0

2.0

1.0

v/Vcc

1.0

2.0

π 2π

1.5 1.0

0.5

π 2π

π

1.5 1.0

0.5

iR/I0

-0.5

-1.0 -1.5

C

iC iR

iT L

Vcc

C0L0

VR

VL

v

i

Sw R

λ/4

switch is turned on

switch is turned off

dead time during charging or discharging process when current flow through shunt

capacitance

zero initial phase and duty cycle D < 0.5

half-wave symmetry of transmission-line current waveform: line attempts to do same

work in first and second halves of cycle

Page 44: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

44

2. Load network parameters and voltage and current waveforms2. Load network parameters and voltage and current waveforms

Class E with shunt capacitance

Class F with quarterwave line

f0 (fundamental) High-efficiency mode 2nf0

(even harmonics)(2n+1)f0

(odd harmonics)

C L

R C C

R short open

C L

R Cshort Class FE with quarterwave line

Vcc

C0

R

Cb

L0

Z0, λ/4

C

L

RC

ωπτ 1 sin d

2

=

ωττττ RL

d2

dd d

sincossin −

=

( )out

2cc

2

2dcos 1 2

PVR

πτ+

=

timedead - dτ

- series inductance

- shunt capacitance

- load resistance

Optimum circuit parameters :

Optimum impedances at fundamental and

harmonics for Class F, Class E and Class FE

load networks

Page 45: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

45

Class E2F (or F2E) power amplifier

Vdd C

C0

R

L0 L

L2

C2

v

i I0

0 ωt

π 0 ωt

i/I0

4.0

2.0

v/Vdd

1.0

2.0

π 2π

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

Idealized optimum conditions

transistor has zero saturation voltage, zero on-resistance, infinite

off-resistance and its switching action is instantaneous and lossless

ideal Class E load network with shunt capacitance

series resonant L2C2 circuit tuned to second harmonic

3. Design approximations with second3. Design approximations with second--harmonic control harmonic control (Class EF(Class EF22) and third) and third--harmonic control (Class harmonic control (Class E/FE/F33))

D = 0.35

Z. Kaczmarczyk, “High-Efficiency Class E, EF2 and E/F3 Inverters,” IEEE Trans. Industrial Electronics, vol. IE-53, pp. 1584-1593, Oct. 2006

Page 46: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

46

Class E/F3 power amplifier

3. Design approximations with second3. Design approximations with second--harmonic control harmonic control (Class EF(Class EF22) and third) and third--harmonic control (Class harmonic control (Class E/FE/F33))

( ) 0 2 =

= πωω

ttv

( ) 0 2

== πωω

ω

ttdtdv

Idealized optimum conditions

transistor has zero saturation voltage, zero on-resistance, infinite

off-resistance and its switching action is instantaneous and lossless

ideal Class E load network with shunt capacitance

series resonant L3C3 circuit tuned to third harmonic

Vdd

Z. Kaczmarczyk, “High-Efficiency Class E, EF2 and E/F3 Inverters,” IEEE Trans. Industrial Electronics, vol. IE-53, pp. 1584-1593, Oct. 2006

C

C0

R

I0

L

L3

C3

v

i

0 ωt

π 0 ωt

v/Vdd

1.0

2.0

π 2π

3.0

1.0

i/I0

D = 0.55

Page 47: 2009 Radio and Wireless Week Power Amplifier Symposiumpasymposium.ucsd.edu/papers2009/Andrei_presentation.pdf · HISTORICAL ASPECT AND MODERN TRENDS Dr. Andrei Grebennikov grandrei@ieee.org

47

ReferencesReferences

Andrei Grebennikov and Nathan O. Andrei Grebennikov and Nathan O. SokalSokalSwitchmode RF Power AmplifiersSwitchmode RF Power Amplifiers

NewnesNewnes 20072007

Andrei GrebennikovAndrei GrebennikovRF and Microwave Power Amplifier DesignRF and Microwave Power Amplifier Design

McGrawMcGraw--Hill 2004Hill 2004