2001/10/25Sheng-Feng Ho1 Efficient and Scalable On- Demand Data Streaming Using UEP Codes Lihao Xu...

19
2001/10/25 Sheng-Feng Ho 1 Efficient and Scalable On-Demand Data Streaming Using UEP Codes Lihao Xu Washington University in St. Louis ACM Multimedia 2001 Sept. 30 – Oct. 5, 2001
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    1

Transcript of 2001/10/25Sheng-Feng Ho1 Efficient and Scalable On- Demand Data Streaming Using UEP Codes Lihao Xu...

2001/10/25 Sheng-Feng Ho 1

Efficient and Scalable On-Demand Data Streaming Using UEP Codes

Lihao XuWashington University in St. Louis

ACM Multimedia 2001 Sept. 30 – Oct. 5, 2001

2001/10/25 Sheng-Feng Ho 2

OutlineIntroductionUnequal Error Protection Codes UEP Codes Example Theorem

The SchemeResource Consumption Network Bandwidth Client’s Buffer Space Client’s Network Bandwidth

Additional Initial Playout DelayConclusion

2001/10/25 Sheng-Feng Ho 3

Introduction

Streaming Method Unicast : Point-to-point

Resource consumption is proportional to the number of requests.

Multicast : Pyramid or Skyscraper The lowest resource consumption with no

initial data playout delay is proportional to logarithm of the average request arrival rate.

The reliability : Automatic-Repeat-Request 、 Forward Error Correction

2001/10/25 Sheng-Feng Ho 4

Unequal Error Protection Codes

(N,K) block code encodes an original message of K symbols into a codeword of N data symbols of the same size.A data symbol is a general data unit of certain size : a bit, a byte, a packet or a frame.Original K data symbols can be recovered from any M data symbols of its codeword. (M≧K)

2001/10/25 Sheng-Feng Ho 5

Unequal Error Protection Codes

For a UEP code, certain data symbols of its codeword are protected against a greater number of errors than others.For a message m with n data symbols, if the error protection degree of its i-th symbol is Li (i≦1 ≦n), and it is encoded with a UEP code C of N symbols, then any Li symbols of its codeword are sufficient to retrieve the i-th symbol in the original message m.

2001/10/25 Sheng-Feng Ho 6

UEP Codes Example (1)

Message m has 3 symbols of equal size : a, b and c. (m=abc) Partition symbol a into 6 sub-symbols of equal size :

a=a1..a6, b into 9 sub-symbols : b=b1..b9 c into 6 sub-symbols : c1..c6

2001/10/25 Sheng-Feng Ho 7

UEP Codes Example (2)Apply the (6,2) B-Code on a to get a codeword of a : A=A1..A6 (Ai is ½ size of a) A1 = a1, a2+a3, a4+a6, A2 = a2, a3+a4, a5+a1, A3 = a3, a4+a5, a6+a2, A4 = a4, a5+a6, a1+a3, A5 = a5, a6+a1, a2+a4, A6 = a6, a1+a2, a3+a5, and + is the simple bit-wise binary exclusive

or (XOR) operations

2001/10/25 Sheng-Feng Ho 8

UEP Codes Example (3)

Apply a modified (6,3) RS-Code on b to get a codeword of b : B=B1..B6 (Bi is 1/3 size of b) B1 = b1, b2, b3, B2 = b1+b3+b4, b2+b4+b5, b2+b3+b6, B3 = b6+b7, b4+b6+b8, b5+b9, B4 = b3+b6+b7, b1+b4+b7+b8, b2+b5+b9 B5 = b4+b6+b9, b4+b7, ? B6 = b7, b8, b9 “+” is the XOR operation

Let Ci = ci for i = 1 to 6, thus each Ci is 1/6 size of c.

2001/10/25 Sheng-Feng Ho 9

UEP Codes Example (4)

Construct a UEP codeword of the original message m : U = U1..U6, where Ui = AiBiCi for i = 1 to 6.

The protection degrees of the original data symbols a, b and c are La=2, Lb=3 and Lc=6 respectively.

1/La+1/Lb+1/Lc=1

2001/10/25 Sheng-Feng Ho 10

UEP Codes Example (5)

Original Messagem=abc

UEP CodewordU=U1U2U3

U1=A1B1C1,U2=..

Server Multicast Client ReceiveNetwork Transmit

UEP CodewordU=U1U2U3

a=a1..a6,b=b1..

Original Messagem=abc

2001/10/25 Sheng-Feng Ho 11

Theorem

For a message m with n symbols, if there exists a UEP code such that the error protection degree of the i-th symbol in the original message m is Li (i≦1 ≦n), then

1/11

n

iLi

2001/10/25 Sheng-Feng Ho 12

The Scheme (1)

Encoding the original data of n symbols into a UEP codeword of N symbols.Multicast the UEP codeword in a cyclic fashion.Once the number of data symbols in user’s buffer space reaches Li, the user retrieves the i-th symbol of the original data stream and plays it out.

2001/10/25 Sheng-Feng Ho 13

The Scheme (2)

B : normal playout unicast network bandwidthd : the initial playout number of original data symbolsThe peak network bandwidth needed : rpeakB, where rpeak = max(Li/(i+d))The average network bandwidth is raveB, where raveB = Ln/(n+d)

2001/10/25 Sheng-Feng Ho 14

The Scheme (3)

d 0 1 30 60R 12.859 8.87 5.484 4.796C 36.788% 36.790% 36.941% 37.095%

Resource Consumption vs. Initial Playout Delay for Multicasting a 2-hour Video.

d : initial playout delay in seconds

R : normalized backbone network bandwidth

C : normalized client buffer space needed

2001/10/25 Sheng-Feng Ho 15

Resource Consumption (1)

The peak network bandwidth needed :rpeakB, where rpeak = max(Li/(i+d))

Minimize rpeak, set Li/(i+d) = R for all i’s

R=Hn+d-Hd≒αlog2(1+n/d), where ½≦α≦1

12

1,log1/1

1/1

21

1

whereliH

Li

m

im

n

i≦

R≒αlog2(1+n/d), where ½≦α≦1

2001/10/25 Sheng-Feng Ho 16

Resource Consumption (2)

Let Si be the buffer space needed between the retrieval of the i-th and the (i+1)th original data symbols, then

Client’s Buffer Space :n

diHHS didn

ni

)1)((max

10

)(,1,)1

1(1

11 diRlniil

lnS i

i

ji

ji

n

diHHS didn

ni

)1)((max

10

2001/10/25 Sheng-Feng Ho 17

Resource Consumption (3)The normalized network bandwidth a client needs to consume between the retrieval of the i-th and (i+1)th original data symbols is

10, niHHC didni

)(),1

1(1

diRll

RC i

i

jj

i

10, niHHC didni

2001/10/25 Sheng-Feng Ho 18

Additional Initial Playout Delay

d : additional initial playout delay : normalized backbone network bandwidthW : client’s normalized incoming network badnwidth

ddn HHdR )(

)(,

)(),(,/)()(),(

dRWd

dRWdRWnWdRdndWD

))((,))(

11(),( dndRll

dRwddWD nn

2001/10/25 Sheng-Feng Ho 19

Conclusion

Our scheme utilizes nice properties of error control codes, particularly UEP codes.The scheme also tolerates packet loss during transmission, thus further reduces multicast cost.Problem : Fast Seek