2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures...

download 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

of 8

Transcript of 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures...

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    1/8

    M a t e r i a ls a n d S t r u c t u r e s / M a t e r i au x e t C o n s t r u c t i o n s Vol. 34 August-September 001 pp 418 -425

    A n a lys is an d d es ig n o f F R P ex te rn a l ly re in fo rced

    c o n c r e te b e a m s a g a in s t d e b o n d i n g t y p e fa ilu r e s

    M . M aa lej W . H . Goh and P . Pa ramasi vam

    Departmen t of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117 576

    Paper received:June 22, 200 0; Paperaccepted: M arch 1 , 2 00 1

    A B S T R A C T R I~ S U M I~

    Epoxy -bonding of FR P plates to the tens ile face of

    R C beams has been shown to be an effective repair and

    s t r eng then in g techn ique . H ow ever , loca l f a i lu r e by

    d e b o n d i n g o r r i p p i n g o f c o n c r e t e c o v e r h as b e e n

    reported in experiments to be a likely mode of failure

    due to high interfacial shear and normal s tress concen-

    trations, Predictive mod els for f inding the interracial

    shear s t ress have been reviewed and evaluated us ing

    experimental data reported in the li terature. Th e most

    c r i t i c a l p a r a m e t e r s g o v e r n i n g t h e i n t e r r a c i a l s h e a r

    s t rength and s t ress as determ ined by the models were

    also examined. Th roug h unders tanding of the condi-

    tions that result in debonding failure, a better approach

    towards des igning FRP-plated RC beams agains t th is

    m ode of failure might be achieved.

    Le ren forcemen t externe d e lemen ts en b~ton arme a l ' a ide de

    p laques syn thd t iques ret~rc s de f ib res (F RP ), s ' es t rdvd ld e

    u n e t e c h n i q u e e f f ic a c e d e r a b i l i t a t i o n d e s s t r u c t u r e s .

    Cepend an t , la rup ture loca le par d o l lemen t ou f i ssure du bd ton

    a d td pr en t dan s des essa is comm e le mode de rup ture le p lus

    f rd q u en t a ca u se d e l a f o r t e co n cen t ra t io n d es co n tra in te s d e

    c i sa i l l em en t e t n o rm a les a u x ex t rd m i t d es p la q u e s . D e s

    modules th riques visan t 21 trouve r les contraintes de cisaillement

    on t d td exam in e t a tu en u t i t isan t des donn s exp imen-

    tales rapport s clans la li tt a ture. Les param ~tres les plus cri-

    tiques gou verna nt la contrainte de cisailleme nt et la rdsistance au

    cisa i llemen t de l ' in ter face co l le-bd ton , comm e d d termind par les

    modeles th r iques , on t auss i d td ex am in Pour comprendre les

    ( fre ts qu i r u l ten t de la rup ture par d o l lemen t , une m ei l leure

    mdthode de concep t ion peu t ~ tre r l i s a f in d 'd l iminer ou de

    retarder ce mo de de rupture.

    1 . I N T R O D U C T I O N

    Repair and s t rengthening of RC mem bers with EB -

    FR P (Externally-Bonded Fibre Rein forced Polymer) has

    evolved progressively over the past decade. For beam

    mem bers, failure can occu r due to f lexural compression,

    b e a m s h e a r , F R P r u p t u r e , o r F R P d e b o n d i n g .

    D e bond ing - ty pe f a i lur es a re p reva len t in beam tes ts

    reported in the li terature. Th e prevalence of & bo nd ing

    failures amon g each of the oth er modes emphasizes the

    need either for reliable means of preventing this type of

    f a i lu r e o r f o r a p r a c t i c a l m e t h o d o f p r e d i c t i n g i t.

    Attempts to address this need can be seen in recent pub -

    lications whe re approximate analyses were used to com -

    pute the shear and normal s tress concentrations in the

    adhesive layer of FRP -plated RC beams. Th e recently

    published wo rk was motivated b y observations that pre -

    mature failures may occur because of shear and normal

    stress concentrations at FR P cut -off points and at f lex-

    ural cracks a long the beam , resul t ing in d ebond ing or

    ripping of the c oncrete cover along the level of conv en-

    t ional in ternal re inforceme nt . Th e recent ly proposed

    methods to p red ic t and p reven t p r ematu re f a i lu r e o f

    FRP-plated RC beams are timely; however, such meth-

    ods need further testing and evaluations before the y can

    be relied upon in practice.

    For a given strengthe ning application, the prim ary

    issue is to decide what type of FRP reinforcing system

    and how muc h EB -FRP f lexural re inforcement should

    be used. The ideal system would be one whe re the FRP

    properties are fully utilized. Published data in the litera-

    ture indicate that the efficienc y of FRP external rein-

    f o r c e m e n t a n d t h e d u c t i l i t y o f F R P - p l a t e d b e a m s

    decrease with increasing FR P axial r igidity (area times

    elastic mo dulus) due to prem ature failure [1]. In this

    paper , s ta te-of- the-ar t methods for the analys is and

    design ofFR P-plated RC beams agains t &b ondin g type

    failures are reviewed and evaluated using experimental

    1359-5997/01 9 RILE M 41 8

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    2/8

    Maalej Goh Paramasivam

    d a t a re p o r t e d i n t h e l i te r a tu r e . A n i m p o r t a n t g o a l o f t h is

    s t u d y is t h e n t o u s e t h e p r o p o s e d m o d e l s t o d e r i v e r e la -

    t io n s h i p s b e t w e e n F R P e f f i c ie n c y a n d F R P a x ia l r i g i d i ty

    t h a t d e s i g n e r s c a n u s e t o p r e d i c t f a i l u r e m o d e a n d

    a c h ie v e a n o p p o r t u n e b a l a n c e b e t w e e n s t r en g t h g a i n a n d

    def l ec t ion capaci ty .

    2 . R E V IE W O F P R E D I C T IN G M O D E L S

    A n um be r o f publ i shed a r ti c le s dea l t w i th the top ic of

    p r e d i c t in g t h e f ai lu r e m o d e o f c o n c r e t e b e a m s s t r e n g t h -

    e n e d i n f l e x u r e w i t h e x t e r n a l l y - b o n d e d r e in f o r c e m e n t [ 2 -

    8 ] . A m o n g t h e s tu d i e s t h a t f o c u s e d o n t h e d e b o n d i n g

    m od e of fa i lu re , Robe r t s ' s tudy [2] was the f i rs t t o provide

    specific analyt ical equat ions , w hic h m ay be used to pre dict

    bonding fa i lu re or des ign aga ins t i t . Spec i f i ca l ly , t he

    a b o v e - r e fe r e n c e d s t u d y le d t o t h e d e v e l o p m e n t o f a m o d e l

    f o r p r e d i c t i n g t h e s h e a r a n d n o r m a l s tr e ss e s at t h e

    FRP/concre te in t e r face . Thi s mode l i s cons ide red in t i f f s

    p a p e r f o r t h e p u r p o s e o f r e v i e w a n d e v a l u a t io n u s i n g

    exper im enta l da ta repo r t ed in the l i te rature .

    R o b e r t s ' m o d e l [ 2 ] w a s o r i g i n a ll y p r o p o s e d f o r t h e

    ana lys is o f s t ee l -p la t ed RC beams . Th e ana lys is was pre -

    sen ted in 3 s tages . In the f i rs t s tage, s tresses w ere d eter -

    m i n e d a s su m i n g f u ll y co m p o s i t e a c ti o n b e t w e e n t h e R C

    b e a m a n d t h e a d h e s i v e - b o n d e d st ee l p la te . I n t h e s e c o n d

    and th i rd s t ages , t he ana lys i s was modi f i ed to t ake in to

    account the ac tua l boundary condi t ions a t t he s t ee l p l a t e

    c u r t a i lm e n t . T h e c o m p l e t e so l u t i o n w a s t h e n o b t a i n e d

    by superpos i t ion . In th i s mo de l , a c racked sec t ion t rans -

    f o r m e d i n t o a s t e e l p l a t e e q u i v a l e n t w a s u s e d i n t h e

    a n al ys is . T h e g o v e r n i n g e q u a t i o n s f o r th e s h e a r a n d n o r -

    m al s t res s d i s tr ibu t ions a re g iven by:

    F F x ) , , 1

    ____1- T - - b p d p ( h p - h )

    ( x ) = b a [ + ~ t { _ t l0 sin h ~ x x~ t lo c ~ 1 7 6 t la c o s h ctx ~

    sinh~ta j]

    1 )

    2 )

    w h e r e

    ] 0 . 5

    K ~

    0 t = E p b p d p

    3 )

    _ [

    K n ] 0 . 2 5

    (4)

    t l o = _ M ~ b p d p ( h p - h )

    5 )

    t l a = ~~ - a b p d p ( h p - h )

    (6)

    b a

    K s = O a d--

    K n = E b a

    a d a

    ( E p I p ~

    m 2 0 = M ~ I p + E c I c )

    (7)

    8 )

    (9)

    ( E p l p ] + ( . t l 0 + ~ 2 0 ) b a d p / 2

    f2 0 = F 0 / E p Ip + E c I c

    l O )

    1 : 1 0

    1 [ F o

    = b p d d h p - h

    z2~ = b-~ [ct{t 1~c ~ a a - t l a } ]

    i n h c t a

    a n d

    a =

    b c, bp, b a =

    d c , d[ , da =

    Eo f fp, Ea

    F 0 F a =

    f20 =

    h =

    h P

    Io Ip

    =

    K s

    M 0 , M a

    m20 =

    t l 0 , t l a =

    X =

    ( ~ =

    y =

    o x )

    =

    x ) =

    ~ 1 0 , C 2 0 =

    (11)

    1 2 )

    Len gth of s t eal p l a t e

    W idth of concre te , s t eel p la t e , adhes ive

    De pth of concre te , s t eel p la t e , adhes ive

    E l a s ti c m o d u l u s o f c o n c r e t e , s t e e l p l a t e ,

    adhesive

    Glob al shear force a t x = 0, x = a

    S h e a r f o rc e i n p l a t e a t s o l u t io n d e v e l o p m e n t

    s tage 2 (x = 0)

    S h e a r m o d u l u s o f a d h e si v e

    D e p t h o f n e u t r a l ax is c o m p u t e d b a s e d o n

    cracked sect ion analys is

    Effect ive de pth o f steel pla te

    S e c o n d m o m e n t o f a re a o f th e t r an s f o rm e d

    e q u i v a l e n t s t e e l s e c t i o n a b o u t t h e n e u t r a l

    ax is based o n c racked sec t ion ana lys is

    S e c o n d m o m e n t o f ar ea a b o u t i n d i v id u a l

    cent ro id for con cre te , s tee l p la t e

    Adh es ive nor m al s t if fnes s pe r u n i t l eng th

    Adh es ive shea r s ti ffness pe r u n i t l eng th

    G l o b a l b e n d i n g m o m e n t a t x - - 0 , x = a

    B e n d i n g m o m e n t i n s t e e l p l a t e a t s o l u t i o n

    dev e lop m ent s tage 2 (x = 0)

    Axia l force in s t ee l p l a t e a t so lu t ion deve l -

    op m en t s t age 1 a t x = 0 , x =a

    D i s t a n c e a l o n g s t e e l p l a t e m e a s u r e d f r o m

    p l a te c u t - o f f

    C o e f f i c i e n t u s e d i n ~c ( x ) a n d d e f i n e d b y

    E q u a t i o n ( 3 )

    C o e f f i c i e n t u s e d i n o ( x ) a n d d e f i n e d b y

    Equa t ion (4)

    N orm al s tre ss a t a d i s t ance x f rom pla t e cu t -

    o f f

    In te r fac ia l shea r s t re s s a t a d i s t ance x f rom

    p l a te c u t o f f

    Shear s t re s s in adhesive a t so lu t ion de ve lop -

    m en t s tage 1, 2 (x = 0)

    R o b e r t s [ 2 ] c o m p a r e d t h e s h e a r s t r e s s d i s t r i b u t i o n

    o b t a i n e d f r o m E q u a t i o n ( 1 ) w i t h a m o r e r i g o r o u s s o l u -

    4 1 9

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    3/8

    Materials and Structures/Mat~riaux et Constructions Vol. 34 August-September 2001

    Fig. 1 - Rei nforced concre te beam wi th external ly-bonded F RP show ing impor tant parameters used in

    Rober ts model .

    Fig . 2 - Resul ts predic ted by Ro ber ts for beam C wi t h load P/2 =

    100kN.

    t ion based on partial interaction theory [8] as well as

    with experimental results presented by Jones e t al [4]. It

    w a s c o n c l u d e d t h a t t h e a b o v e s o l u t i o n ( g i v e n b y

    Equation (1)) underestimated the m agnitude of the stress

    conc en t r a t ion by up to 30 , due p r im ar i ly to the

    approximations made during the first stage of the solu-

    tion. Robe rts [2] prop osed a corre ction by replacing M 0

    ( the va lue o f the g loba l m om en t a t x = 0 us ed in

    E qua t ions (5 ) and (9 ) ) by a m od i f i ed m om ent M*,

    whi ch is the value of the global mom en t at x = (dc+dp)/2

    from the end o f the steel plate (see Fig. 1). This co rrec-

    t ion resul ted in sat is factory correlat ion between the

    mode l predict ion and both the more r igorous solution

    based on partial interaction theory [8] and the available

    test data [4]. Th e resulting mode l is referred to in this

    paper as Rob erts' revised model.

    W h e n t h e d e p t h o f n e u t r a l a x is h, t h e s e c o n d

    moment of area of the equivalent steel section I, and the

    second mom en t of area of the concrete about its individ-

    u a l c e n t r o i d I c a re c o m p u t e d o n t h e b a s is o f a n

    uncracked concrete section, Equations (1)-(12) lead to

    Roberts ' uncracked section model, the results of which

    will briefly be touche d upo n in this paper.

    Comparisons were

    initially made between

    the results predicted by

    the above-referenced

    models for a RC beam

    with reported proper-

    t i es o f the concre te ,

    s te e l r e i n f o r c e m e n t ,

    FR P an d adhesive used

    [9]. All mod els pre-

    dicted that stress con-

    centrations are rapidly

    reduced as the distance

    from the plate c utoff is

    increased. However,

    the r es u l t s f rom the

    models differed in the

    following:

    (1) As indicated in

    Fig. 2, Roberts ' revised model predicted shear stress

    conce ntrations at the plate cuto ff that were significantly

    higher than those predicted by Roberts ' original model.

    This is expected as the end moment used in Rober ts '

    revised model was a corrected moment (M*) at a dis-

    tance of approximately half-beam depth from the plate

    cut off (see

    Fig. 1 ,

    instead of the global moment at the

    plate cuto ff itself(M0). Th e level of significance of using

    this corrected moment would depend on the depth of

    the beam and plate used. Deep beams and plates would

    require a larger correction, thus making the corrected

    and u ncorrected mom ents significantly more different.

    (2) When an uncracked section is transformed into a

    plate equivalent, and a plate end m om en t M* was used in

    Roberts' model, the predicted results were significantly

    lower than those predicted by both Rober ts ' or ig inal

    model and Roberts' revised model (where a cracked sec-

    tion transform ed into a plate equivalent was assumed).

    3 PARAMETERS AFFECTING INTERFACIAL

    SHEAR STRESS

    Experimental data on thirty FRP-plated RC beams

    with reported failure modes and FRP strains at failure

    were gathered from an experimental database compiled

    recently by Bonacc i and Maalej [1]. Th e original data

    for the beams were reporte d in References [9-18]. Th e

    beams were analyzed using the Roberts' revised model.

    Properties of the adhesives were assumed if they had not

    been reported. In addition to using the mod el for pre-

    dicting the interracial shear stress, flexural analysis was

    performed at the same time to determine the FRP strain

    at the critical beam section for bending and to mon itor

    the strain in the concrete at the extreme compression

    fibre. This enabled the determina tion of whe ther the

    beams would fail by flexural compression of concrete or

    tensile rupture o f FRP prior to debonding.

    Rober ts ' revised model predicted high in ter facial

    shear stresses (compared to Roberts' original model or

    Roberts ' uncracked section model) due to its adoption of

    4 2

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    4/8

    Maa lej , Goh, Paramasivam

    Table 1 - Propert ies of FRP and adhe sive provided b y manufacturers

    Property ProprietarySystem 1 Proprietary ystem2

    Elasticmodulusof adhesive MPa) 12800 1470

    Shearmoduluso f dhes i v e M P a ) 2 0 0 0 5 6 5

    Adhesive ayer hickness mm ) 2 0.636

    Elasticmoduluso f FRP M P a ) 1 6 5 , 2 1 0 ,3 0 0 2 3 0

    Tensilerupturestrengtho f F RP M P a ) 2800 , 2400 , 1300 3400

    Tensile upturestrainof FRP mm /mm ) 0.017, 0 .012, 0 .0045 0.014

    a c ra c k e d s e c ti o n a n d u s e o f a c o r r e c t e d e n d m o m e n t

    M *. Thi s sugges ts tha t the m od e o f fa i lure i s un l ike ly to

    b e f l e x u r a l c o m p r e s s i o n o r F R P r u p t u r e a s t h e h i g h

    in te r fac ia l shea r s t res s is l i ke ly to re su l t i n deb on din g fa i l-

    u r e . I t i s n o t e d t h a t w h e n R o b e r t s ' r e v is e d m o d e l p r e -

    d i c t i o n o f d e b o n d i n g f a il u r e c o r r e s p o n d e d w e l l w i t h t h e

    a c t u a l f a i l u r e m o d e , t h e f a i l u r e l o a d s p r e d i c t e d b y t h e

    s a m e m o d e l w e r e s i g n i f i c a n t l y l o w e r t h a n t h o s e

    r e p o r t e d . I n c as es w h e r e b o t h p r e d i c t e d f a il u re m o d e s

    a n d a c t ua l fa i lu r e m o d e s w e r e b y c o n c r e t e c o m p r e s s io n

    o r F R P r u p t u r e , p r e d i c t e d and ac tua l fa ilure loads we re

    fou nd to be in c lose agreem ent . In these cases , p red ic t ed

    i n t e r f a c i a l s h e a r s t r e s s e s w e r e n o t h i g h

    e n o u g h t o c a u s e b o n d i n g - t y p e f ai lu r es .

    As such , the fa i lure loads and modes f rom

    flexural analys is are expected to be c lose to

    t h o s e f r o m e x p e r i m e n t a l d a ta .

    U s i n g R o b e r t s ' r e v i s e d m o d e l , a p a r a -

    m e t r i c s t u d y w a s c o n d u c t e d t o d e t e r m i n e

    t h e m o s t c r i t i c a l p a r a m e t e r s c o n t r o l l i n g

    in te r rac ia l shea r s t re s ses wi th in the beam.

    T h e f o l l o w i n g p a r a m e t e r s w e r e f o u n d t o

    b e t h e m o s t i m p o r t a n t : ( 1 ) F R P p l a t e

    th icknes s , (2) FR P m odu lus , (3) adhesive shea r m od ulus

    a n d ( 4 ) a d h e s iv e th i c k n e ss . S t u d i es w e r e c o n d u c t e d t o

    f i n d o u t h o w e a c h o f t h e se p a r a m e t e r s a ff ec ts t h e F R P

    e f f i c i e n c y ( d e f i n e d as t h e F R P s t ra i n a t a c t u a l

    f a i l u r e / F R P r u p t u r e s tr a in ) a n d t h e m o d e o f f a i lu r e .

    Factors affect ing the interfacial shear s t rength were a lso

    e x a m i n e d b a s e d o n a m o d e l p r o p o s e d b y C h a a l al

    e t a l

    {6

    3 .1 E f f e c t o f F R P t h i c k n e s s o n F R P e f f i c ie n c y

    a t d e b o n d i n g

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    0.0

    4 ~ o Exp. Data No Anch. )

    ~i , x \ [] E x p. D a t a ( A n c h . )

    i~ i ~ - * - S M 2 CFRP, Type 1 )

    ~o ~

    ~. ~ . ~ -~- B2 CFR P, Type 1)

    i i

    0.5 1.0 1.5 2.0

    ApEp/A~Es

    Fig. 3 - Com parison between experimental da ta an d r e su l t s pre-

    d i c t e d b y R o b e r t s r e v i s ed m o d e l . T h e te r m s

    C, P2, SM2 and B2

    r e f er t o F R P - s t r e n g t h e n e d b e a m s t e s t e d i n s t u d i e s [9], [10 ], [11],

    an d [ 12] , r e sp e c t i ve l y . GF R P r e fe r s t o gl as s f i b r e reinforced poly-

    mer , a n d Type 1 r e fe rs t o t h e a d h e s i v e o f p r o p r i e ta r y s y s t e m 1

    Table 1).

    1.0

    C

    C

    ~.4

    C.2

    .0

    o Exp . Da t a No Anc h . )

    o Exp. Data Anch. )

    -_ . SM2 CFR P, Typ e 2)

    o , - SM2 Propr ie ty Sys tem 2)

    ~ , t~ - - S M 2 C F R P , T y p e 1 )

    q

    0.0 0.5 1.0 1.5 2.0

    A p Ep / A sE~

    Fig. 4 - Effec t of a d h e s i v e p r o p e r t i e s o n F R P e f f i c i e n c y a s p r e -

    d i c t e d b y R o b e r t s r e v is e d m o d e l .

    O n e o f th e m o s t c r i t ic a l p a r a m e t e r s a f f e c ti n g t h e

    i n t e r f a c i a l s h e a r s t r e s s i s t h e F R P p l a t e t h i c k n e s s .

    E x p e r i m e n t a l d a ta h a d b e e n g a t h e r e d a n d c o m p i l e d

    which re f l ec t the FRP s t ra in a t t he beam c r i t i ca l s ec t ion

    for bend ing a t fa i lure . For p rogres s ive ly inc reas ing loads ,

    R o b e r t s ' r e v i s e d m o d e l w a s u s e d t o p r e d i c t t h e i n t e r f a -

    c i al shea r s tre s s a t the p la t e cu tof f . Th e co r respo ndin g

    FRP s t ra in a t t he c r i t i ca l beam sec t ion was a l so ca lcu-

    l a t ed f rom sec t iona l ana lys is . In the absence o f repo r t ed

    v a l u e s o f a d h e s i v e e l a s ti c a n d s h e a r m o d u l i , a d h e s i v e

    proper t i e s f rom two prop r i e t a ry sys tems (adhesive type 1

    and adhes ive type 2) were a s sumed for beams re inforced

    w i t h C F R P ( C a r b o n F i b re R e i n f o r c e d P o l y m e r ) .

    U n l e s s s t a te d o t h e r w i s e , t h e a d h e s i v e u s e d i n p r o p r i e t a r y

    s y s te m 1 w a s a d o p t e d f o r C F R P - p l a t e d b e a m s b y

    defaul t. Th e prop er t i e s of these two propr i e t a rY systems

    and the i r cor respo ndin g adhes ives a re shown in Table 1 .

    R e p o r t e d e x p e r i m e n t a l d a t a a n d r e s u l t s f r o m t h e

    above analysis (solids l ines) are show n in Figs. 3-4. N ot e

    t h a t t h e t h e o r e t ic a l l y - p r e d i c te d c u r v e s h a v e b e e n g e n e r -

    a t e d a s s u m i n g t h a t b o n d i n g f a il ur es ta k e p l a c e w h e n

    t h e m a x i m u m s h e ar st re ss at th e F R P c u t - o f f p o i n t

    e x c e e d s t h e i n t e r f a c i a l s h e a r s t r e n g t h ( t o b e d i s c u s s e d

    l at er ). T h e e x p e r i m e n t a l d a t a s h o w a g e n e r a l t r e n d o f

    dec reas ing FRP e f f i c i ency wi th inc reas ing FRP re la t ive

    axia l r ig id i ty (A E/AsE s ) , w he re A , A s , E and E~ a re

    . P P . P .P

    t h e c r o s s - s ec t io n a l a re a s a n d e l a st ic m o d u h o f t h e F R P

    and lon gi tu din al s teel, respectively. Th is is exp ecte d as

    i n t e r r a c i a l s h e a r s t r e s s c o n c e n t r a t i o n i n c r e a s e s w i t h

    i n c r e a si n g t h i c k n e ss o f t h e F R P p l a t e . A t t h e o n s e t o f

    d e b o n d i n g , t h e s t r e s s i n t h e F R P p l a t e a t t h e c r i t i c a l

    b e a m - s e c t i o n f o r b e n d i n g w o u l d t h u s d e c r e a s e w i t h

    i n c r ea s i n g F R P t h ic k n e s s. E x p e r i m e n t a l d a t a r e v i e w e d

    in th i s s tudy showed tha t measured FRP s t ra ins a t c r i t i -

    c a l b e a m s e c ti o n s f o r b e n d i n g w e r e g e n e r a l ly h i g h e r f o r

    a n c h o r e d b e a m s t h a n f o r t h o s e n o n - a n c h o r e d . T h i s w a s

    4 2 1

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    5/8

    Materials and Structures/M ateriaux et Constructions Vol 34 August-September 0 0 1

    b e c a u s e s t re ss c o n c e n t r a t i o n w a s r e d u c e d a t t h e p o i n t s o f

    a n c h o r a g e , t h e r e b y d e l a y i n g t he o n s e t o f d e b o n d i n g .

    T h i s a l l o w e d t h e F R P p l a t e to d e v e l o p a s ig n i f i c a n t p a r t

    o f i t s te n s i le r u p t u r e s t ra i n p r i o r t o d e b o n d i n g , l e a d i n g t o

    h i g h e r F R P e f f i c ie n c y . F r o m t h e e x p e r i m e n t a l t r e n d , it

    a p p e a r s t h a t l i m i t i n g t h e F R P t h i c k n e s s , a n d h e n c e t h e

    r e la t iv e ax ia l r ig id i ty , w o u ld in c r ease th e FRP e f f ic ien cy

    a t d e b o n d i n g . T h i s w o u l d , h o w e v e r , r e d u c e th e c r os s

    s e c t io n a l a re a o f t h e F R P r e q u i r e d f o r f l e x u ra l s t r e n g t h -

    e n i n g . T h e w i d t h o f th e F R P p l at e s h o u ld , t h er e fo r e , b e

    a s w i d e a s p o s si b l e t o p r o v i d e t h e n e c e s s a r y F R P c r o s s -

    sec t io n a l a r ea r eq u i r e d f o r f l ex u r a l s t r en g th .

    F r o m F i g . 3 , R o b e r t s ' r e v i s e d m o d e l a p p e a r s t o p r e -

    d i c t r e su l t s t h a t a re g e n e r a l l y i n c l o se a g r e e m e n t w i t h t h e

    a c t u a l t r e n d s e t b y t h e e x p e r i m e n t a l d a t a . A t l o w r e l a ti v e

    a x ia l r i g i d it y (A E / A s E s ) , F R P & b o n d i n g t a k e s p l a c e

    p

    a f te r t h e F R P ~ v e l o p s a s ig n i f ic a n t p a rt o f it s te n s i le

    r u p t u r e s t r ai n , l e a d i n g t o a h i g h F R P e f f i c i e n c y .

    H o w e v e r , t h e f a i l u r e l o a d i s g e n e r a l l y n o t h i g h e n o u g h

    t o c a u s e t h e b e a m t o f a i l b y f l e x u r a l c o m p r e s s i o n f i r s t .

    T h e b e a m s r e in f o r ce d w i t h C F R P a d o p t i n g t h e a d h e si v e

    p r o p e r t i e s o f p r o p r i e t a r y s y s t e m 1 ( a d h e s iv e t y p e 1 )

    r e s u lt e d i n l o w e r F R P e f fi c ie n c ie s a t & b o n d i n g f a il u re

    c o m p a r e d t o th e a c t ua l e x p e r i m e n t a l d at a . T h i s c o u l d b e

    d u e t o t h e u s e o f i n a p p r o p r i a t e v a l u e s f o r t h e e l a st ic a n d

    s h e a r m o d u l i o f t h e a d h e s i v e , w h i c h a p p e a r e d t o b e v e r y

    s t i f f( E a = 1 2 8 0 0 M P a , G a = 2 0 0 0 M P a ) .

    A c o m p a r i s o n w a s m a d e f o r b e a m S M 2 t e s t e d b y

    A r d u i n i a n d N a n n i [ 1 1 ] f o r w h i c h a l e s s- s ti f f a d h e s iv e

    ( a d h e s i v e t y p e 2 ) u s e d i n t h e p r o p r i e t a r y s y s t e m 2 w a s

    ad o p te d (see F ig . 4 ) . I t w as f o u n d th a t th e in te r f ac ia l

    s h e a r st re ss i n t h e b e a m w a s l o w e r e d f o r t h e s a m e l o a d .

    T h i s a l l o w e d t h e F R P p l a t e a t t h e c r i t i c a l s e c t i o n f o r

    b e n d i n g t o d e v e l o p h i g h e r s tr es se s a t d e b o n d i n g , l e a d i n g

    t o a n i n c re a s e d F R P e f fi c ie n c y . T h e a c t u a l F R P e f f i-

    c ien c y o f 0 .4 0 a t a r e la tiv e ax ia l r ig id i ty o f 0 .6 0 f o r b ea m

    S M 2 w a s s ti ll h ig h e r t h a n t h e F R P e f fi c i en c y c o m p u t e d

    w h e n R o b e r t s ' r e v is e d m o d e l w a s u s e d . T h i s s u g g e st s

    th a t th e ac tu a l ad h es iv e u sed in SM2 i s p r o b ab ly le s s s t i f f

    t h a n b o t h a d h e s iv e s u s e d i n p r o p r i e t a r y s y s t em s 1 a n d 2 .

    I t c o u l d t h u s b e s e e n t h a t t h e p r o p e r t i e s o f t h e a d h e s i v e

    p l a y a n i m p o r t a n t r o le i n d e t e r m i n i n g t h e i n te r fa c i a l

    s h e a r s tr e ss e s, a n d u l t i m a t e l y , t h e F R P e f f i c i e n c y a n d

    f a il u re lo a d . I n w h a t f o l lo w s , R o b e r t s ' r e v i se d m o d e l

    w a s u s e d a g a i n t o e v a l u a te t h e e f f e c t o f o t h e r p a r a m e t e r s

    o n th e in te r f ac ia l sh ea r s t re s s an d F R P e f f ic ien cy .

    3 2 Ef fec t of adhes ive shear mod ulus on FRP

    ef f ic iency a t debo nding

    T w o a d h e s i v e p a r a m e t e r s , t h e s h e a r m o d u l u s a n d

    t h i c k n e s s , w e r e f o u n d t o a f f e c t t h e F R P e f f i c i e n c y a t

    d eb o n d in g f a ilu re s ign i fican d y . T h e p r o p er t ie s o f th e FR P

    s y s te m u s e d i n b e a m C t e s te d b y S a a d a t m a n e s h a n d E h s a n i

    [ 9] w er e ad o p ted f o r an a ly s is in th i s case . T h e sh ear m o d u -

    lu s o f th e ad h es iv e w as f i r s t v a ried an d i ts e f f ec t o n FR P

    e f f ic i e n c y a t d e b o n d i n g w a s s t ud i e d . A s c a n b e s e e n f r o m

    F i g. 5 , t h e F R P e f f ic i e n c y w a s r e d u c e d f r o m a b o u t 8 5 % t o

    l es s t h a n 7 0 % w h e n t h e s h ea r m o d u l u s o f t h e a d h es iv e w a s

    1 .0

    0 . 8

    .~ 0 .6

    o 0 . 4

    r~

    0 . 2

    0 . 0

    2 4 0 2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    A d h e s i v e s he a r m o d u l u s G a M P a )

    F i g. 5 V a r i a t i o n o f F R P e f f i c ie n c y w i t h a d h es i v e s h ea r m o d u l u s .

    in c r eased f r o m 2 4 0 M Pa to 3 2 0 M Pa . Th is su gg es ts th a t a

    less-s t i f f adhesive sh ould be u sed to redu ce th e in ter racial

    sh ear s tr e sses th a t w o u ld lead to d eb o n d in g . H o w ev er , i t

    sh o u ld b e r ea lized th a t i t m ay n o t b e p o ssib le to in d e p en -

    d e n t l y c h a n g e t h e s h e a r m o d u l u s o f t h e a d h e s i ve w i t h o u t

    c h a n g i n g o t h e r a d h e s i v e - r e l a t e d p r o p e r t ie s s u c h a s t h e

    in te r fac ia l sh ea r s t r en g th . Fo r th e p u r p o se o f d e te r m in in g

    t h e s h e a r m o d u l u s o f t h e a d h e si v e , t h e S t a n d a r d T e s t

    M e t h o d f or S h e a r S tr e n g t h a n d S he a r M o d u l u s o f

    S t r u ct u r al A d h e s i ve s d o c u m e n t e d i n A S T M E 2 2 9 - 9 7

    [ 1 9] , co u ld b e p e r f o r m ed .

    3 3 Ef fec t of a dhes ive th ickness on FRP

    ef fic iency a t debon ding

    T h e o t h e r a d h e s i v e p a r a m e t e r t h a t a f f e c t s t h e F R P

    e f f i c ie n c y at d e b o n d i n g is t h e t h i c k n e s s . P a r a m e t e r s f o r

    b e a m C w e r e o n c e a g a in a d o p t e d . A l l p a r a m e t e r s

    r e m a i n e d u n c h a n g e d w h i l e t h e a d h e s i v e t h i c k n e s s w a s

    v a r i e d. T h e F R P e f f i c i e n c y w a s f o u n d t o in c r e a se s ig -

    n i f ican t ly w i th in c r eas in g ad h es iv e th ick n e ss ( see F ig . 6 ).

    T h i s i s d u e t o a s i g n i f i c a n t r e d u c t i o n i n i n t e rf a c i al s h e a r

    s tr es s c o m b i n e d w i t h a s m a l l i n c re a s e i n i n t e rf a c ia l s h e a r

    s t r e n g t h ( a s p r e d i c t e d b y C h a a l a l

    e t a l

    [ 6 ] . S e e n e x t s e c -

    t i o n ) . I n g e n e r a l , t h e r e q u i r e d t h i c k n e s s o f a d h e s i v e

    d e p e n d s o n t h e t h i c k n e s s o f t h e F R P p l a te , w i t h a

    t h i c k e r p l a t e r e q u i r i n g a t h i c k e r l a y e r o f a d h e s i v e t o b e

    1.0

    s

    g

    [..r.

    0 . 8

    0 .6

    0 .4

    0 . 2

    0 . 0

    0 1 2 3 4 5

    A d h e s i v e l a y e r t h i c k n e s s d a m m )

    F i g. 6 V a r i a t i o n o f F R P e f f i c i e nc y w i t h a d h es i v e l a y er t h i c k n e ss .

    4

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    6/8

    M a a l e j G o h P a r a m a s i v a m

    a p p l i e d f o r f u l l c o n t a c t b e t w e e n t h e F R P p l a t e a n d t h e

    con cre te sur face . Ex per im enta l da ta , how ever , sugges t

    t h a t t h e b o n d s t r e n g t h d e c r e a s e s w i t h i n c r e a s i n g g l u e -

    l ine th icknes s [20] . Ev en tho ugh a th i cke r adhes ive l aye r

    a p p e a r e d t o b e c o n d u c i v e i n r e d u c i n g i n t e r f a c i a l s h e a r

    s t r e s s c o n c e n t r a t i o n s a c c o r d i n g t o R o b e r t s ' r e v i s e d

    m o d e l , t h e n e e d t o c o n t r o l t h e a d h e s iv e th i c k n e s s w o u l d

    s t i l l e x i s t d u e t o p o t e n t i a l l y w e a k e r b o n d s t r e n g t h s f o r

    thick er adhes ive layers .

    F rom the pa ram et r i c s tudies , i t was obse rved tha t the

    mos t c r i t i ca l pa ramete rs cont ro l l ing the in t e r fac ia l shea r

    s tre sses a re the F R P plat e th i cknes s, FR P mo dulus , adh e-

    s ive shear modu lus and the adhesive th i cknes s. By c om -

    par ing the t rends s e t by the exper im enta l da ta and resu l ts

    genera ted by the predic t ive mod e l , i t appears tha t Rob er t s '

    r ev is ed m o d e l c o u l d i n d e e d b e u s e d t o p r e d i c t d e b o n d i n g

    type fa ilures . An exper im enta l program , howev er , should

    b e c o n d u c t e d t o d e t e r m i n e t h e e la st ic a n d s h e ar m o d u l i o f

    the adhesive as these pa ramete rs p lay an im por tan t ro le in

    det erm inin g the interfacial shear s t resses .

    4 PARAMETERS AFFEC TING INTERFAC IAL

    SHEAR STRENGTH

    Th e adhes ive in t e r fac ia l shea r s t rength ('Cu) was co m -

    p u t e d b a s e d o n a n e x p r e s s io n g i v e n b y C h a a l a l e t a l [6] .

    T h e p r o p o s e d e x p r e ss i o n to o k i n t o a c c o u n t th e e f f e ct o f

    n o r m a l s t r e s s c o n c e n t r a t i o n a t t h e p l a t e c u r t a i l m e n t a s

    g i v e n b y R o b e r t s ' m o d e l :

    5.4

    Zu - 1+ ' r tan 33 ~ (13)

    wh ere i s 3 ' g iven by E qua t ion (4).

    For a g iven adhes ive , factors tha t in f lue nce "~u inc lud e

    the adhes ive th i cknes s , t he FRP pla t e th i cknes s and the

    F R P e la st ic m o d u l u s . D e b o n d i n g o c c u r s w h e n t h e

    i n t e r f a c i a l s h e a r s t r e s s e x c e e d s t h e i n t e r f a c i a l s h e a r

    s t re n g t h . H o w e v e r , w h e n t h e F R P p l a te t h ic k n e s s i s

    small , o the r m ode s o f fa i lure ( such as con cre te f l exura l

    compres s ion and FRP rupture ) a re a l so pos s ib le be fore

    the in t e r fac ia l shea r s t re s s can excee d the in t e r fac ia l shea r

    s t re n g t h . A s c a n b e s e e n f r o m F i g . 7 b a s e d o n b e a m P 2

    tes t ed by Shar i f

    e t a l

    [10], t he in t e r fac ia l shea r s t rength

    drops wi th inc reas ing FR P pla t e th icknes s . Th e in te r fa -

    c i a l s h e a r s t r e s s , h o w e v e r , i n c r e a s e s a s t h e F R P p l a t e

    t h i c k n e s s i s i n c r e as e d . T h e r a n g e o f F R P t h i c k n e s s a t

    w h i c h & b o n d i n g m i g h t o c c u r w a s f o u n d t o v a ry w i d e ly

    d e p e n d i n g o n t h e t h i c k n e ss a n d t h e m e c h a n i c a l p r o p e r -

    t ie s of the F R P and adhes ive used .

    F igs. 7 -8 show the e f fec t of us ing a s t if fer FR P pla t e

    o n t h e F R P t h i c k n e s s a t d e b o n d i n g . T h e F R P p l a t e

    t h i ck n e s s at d e b o n d i n g d e c r e a s ed f r o m 1 .8 m m t o a b o u t

    0 . 3 7 m m w h e n t h e F R P e l a s t i c m o d u l u s w a s i n c r e a s e d

    f r o m 1 4 .9 G P a t o 4 0 G P a . F o r an F R P p l a te o f 0 .5 m m

    t h i c k n e s s , w h e n E _ i s i n c r e a s e d f r o m 1 4 . 9 G P a t o 4 0

    9 . P .

    GPa, the in t e r rac ia l shea r s tre s s inc reased f rom 2 .0 M Pa

    to 5 .2 M Pa , w hi l e the in t e r rac ia l shea r s trength inc reased

    f r o m 4 . 2 M P a t o 4 .5 M P a . T h i s s u g g e st s t h a t th e

    i n c r e a s e i n i n t e r r a c i a l s h e a r s t r e n g t h d i d n o t o u t w e i g h

    5

    ~ ' , 4

    2

    1

    0

    ~ ~ ~ p ~ 0 0 k N

    S h e ar s tr en gth / ~ - -

    " S h e a r s ~ " ~ / E p = 4 - g G P a

    / ~ E a = 3 0 0 M P a

    J G a = 1 2 0 M P a

    i l l( d a = l m m

    0 0 . 5 1 . 0 1 . 5 2 . 0

    F l i p p l a t e t h i c k n e s s dp r a m )

    2 . 5

    F i g .

    7 - Variation of

    i n t e r f a c i a l s h e a r s t r e n g t h / s t r e s s

    with FRP

    p l a t e t h i c k n e s s f o r

    beam P2.

    5.5

    5.0

    4.5

    4.0

    3.5

    0.25

    - , t

    K / / / - + - Sh ear s u v n ~

    --~- ~ stres s

    F _p= 4 C ~

    0.45 0.65

    p ~ te t h i d ~ s s ~, m )

    F i g .

    8 -

    V a r i a t i o n o f i n t e r r a c i a l s h e a r s t r e n g t h / s t r e s s

    with FRP

    p l a t e t h i c k n e s s f o r b e a m P 2 E p

    = 40 GPa) .

    4.4

    4 2 9

    3 . 8 = 2 m m

    3.6

    "~ 3.4 -- ~ Shear s t rength

    Shear s tress

    3.2

    3 .0

    2.0

    2.2 2.4 2.6 2.8 3.0 3.2

    F R P p l a te t h i c k n e s s d p r a m )

    Fig. 9 - Variation of

    i n t e r f a c i a l s h e a r s t r e n g t h / s t r e s s

    with FRP

    p l a t e t h i c k n e s s f o r

    beam P2 d a = 2mm) .

    t he inc rease in in t e r rac ia l shea r s tre ss wh en a s t if fe r FR P

    pla te was used . Th e s ti ffness of the FR P pla t e i s the re -

    f o r e a n i m p o r t a n t p a r a m e t e r t o c o n t r o l w h e n d e s i g n i n g

    F R P - s t r e n g t h e n e d R C b e a m s ag a in s t & b o n d i n g f a il ur e.

    F igs. 7 and 9 show the e f fect of va ry ing the th ickness of

    the adhes ive laye r on the FR P th ickness a t deb ond m g ( the

    adhesive th i cknes s was inc reased f rom 1 m m to 2 ram) .

    T he effect of this change was to increase the FR P thickness

    a t & b o n d i n g f r o m a b o u t 1 .8 m m t o a b o u t 2 . 7 r a m . T h i s

    is due to a s ignif icant red uct io n in inteffacial shear s t ress as

    4 3

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    7/8

    M a t e r i a l s a n d S t r u c t u r e s / M a t e r i a u x e t

    Const ruc t ions Vol . 34 August -September 2001

    Tab le 2 - E f fec t o f chang ing va r i ous pa r am ete r s

    on the in ter rac ia l shear s t rength and st ress

    Factor Inter racia l she ar stress Inter racia l sh ear strength

    R o b e r t s r e v is e d m o d e l [ 2 ] C h a a l a l

    e t a l

    [ 6 ]

    Ea

    da ~

    ? ? Strong dependenceon the actor , ? Wea ledepende,,a o, the actor,

    predic ted by Rob er t s rev ised mod e l and a smal l i ncrease in

    interracial shear s t rength as pred icted b y Chaalal

    e t a l .

    [6].

    For an F R P p late of 2 mm thickness , the interfacial shear

    s tre ss accord ing to Ro ber t s rev ised mo de l dec reases f rom

    4 .5 M P a t o 3 . 4 M P a w h e n d a is in c re a se d f r o m 1 m m t o

    2 m m . T h e c o r r e s p o n d i n g i n c r e a se i n i n t er r a c ia l s h e a r

    s t rength accord ing to C haalal

    e t a l .

    [6] is f rom 4 .0 M Pa to

    4.1 MPa. As pointed o ut earl ier , the la t ter resul t is inc on -

    s is ten t wi th ex per im enta l da ta sho wing dec reas ing bo nd

    s t r e n g t h w i t h i n c r e a s i n g g l u e - l i n e t h i c k n e s s [ 2 0 ] .

    W hen eve r pos s ib le, d i rec t measurem ent s of the in te r rac ia l

    b o n d s t r e n g t h b e t w e e n t h e F R P p l a t e a n d t h e c o n c r e t e

    s u r f a c e s h o u l d t h e r e f o r e b e u n d e r t a k e n f o r t h e t y p e o f

    adhes ive to be used. Fro m a pract ical s tandpoint , how ever,

    m o s t p r o p r i e ta r y s ys te m s h a v e r e c o m m e n d e d a d h e s iv e

    t h i c k n e s s e s t h a t s h o u l d b e u s e d a n d f o r w h i c h d a t a o n

    in te r rac ia l bond s trength m ay be obta ined f rom the m anu -

    facturer.

    T a b l e 2 s h o w s a s u m m a r y o f t h e e f fe c t o f c h a n g i n g

    di f fe rent FRP and adhes ive pa ramete rs on the in t e r fac ia l

    shea r s t re ss and s t rength . Th e t ab le shows tha t the fac -

    tors tha t a f fec t the in t e r rac ia l shea r s t re s s would a l so

    affect the interfacial shear s t rength, but to a lesser extent .

    Th e e f fec t of these pa ramete rs , pa r t i cu la r ly on the in t e r -

    facia l shea r s tre ss , should the re fore be t aken in to a cco unt

    w h e n d e s i gn i n g a n F R P - s t r e n g t h e n e d R C b e a m .

    Bonacc i and Maa le ] [1] s tudied the behaviora l t rends

    o f R C b e a m s s t r e n g t h e n e d i n f le x u r e w i t h e x t e rn a l l y -

    b o n d e d F R P b y c o m p i l i n g a n d a n a ly z in g a n e x p e r i m e n -

    t al d a t a b a se . T h e d e f l e c t i o n r a ti o f o r s t r e n g t h e n e d

    b e a m s ( d e f i n e d as th e m i d s p a n d e f l e c t i o n a t p e a k l o a d o f

    a s t r e n g t h e n e d b e a m d i v i d e d b y t h e m i d s p a n d e f l e c t i o n

    a t p e a k l o a d o f a c o n t r o l b e a m ) w a s f o u n d t o i n c r e a se

    w i t h i n c r e a s i n g F R P e f f i c i e n c y r a t io . F i g . 3 su g g es ts

    t h a t t h e l a t t e r d e c r e a s e s w i t h i n c r e a s i n g r e l a t i v e a x i a l

    r i g i d it y ( A p E p/ A sE s ). T h e r e f o r e , o n e w o u l d e x p e c t t h e

    def l ec t io n ra t io to dec rease w i th inc reas inr A E /A E

    I D p S S

    r a ti o . B y l im i t i n g A E / A s E , i t w o u l d b e p os s ib l e t o

    p 13 s

    preve nt o r de lay debo nd lng type fa ilures a s we l l a s ensure

    adequa te de f l ec t ion capac ity .

    F o r a g i v e n s t r e n g t h e n i n g a p p l i c a t i o n , a p r e - d e t e r -

    m i n e d s t r e n g t h e n i n g r a ti o ( d e f i n e d as th e s t re n g t h o f th e

    b e a m w i t h e x t e r n a l l y b o n d e d F R P d i v i d e d b y t h e

    s t re n g t h o f t h e c o n v e n t i o n a l l y r e i n f o r c e d c o n t r o l b e a m )

    w o u l d b e ta r g e te d . G i v e n th a t n u m e r o u s p r o p r i e t a r y

    FRP s t rengthening sys tems a re cur rent ly ava i l ab le , t he

    o p t i m u m s y s te m t o u s e w o u l d b e o n e t h a t m e e t s th e t a r -

    g e t e d s t r e n g t h e n i n g r a t i o w h i l e l i m i t i n g t h e A E / A s E ~

    9 . P

    ra t io . In th i s case , i t w ou ld be pos s ib le to achieve an

    o p p o r t u n e b a l a n c e b e t w e e n s t r e n g th g a i n a n d d e f l e c t i o n

    capaci ty . For th i s purpo se , F RP e f f i c i ency- re l a t ive ax ia l

    r i g i d i t y t r e n d s ( s u c h a s t h o s e s h o w n i n F i g . 3 ) c a n b e

    e s t a b l i s h e d f r o m e x p e r i m e n t s a n d / o r a n a l y t i c a l m o d e l s

    ( such as Ro ber t s rev i sed mo de l ) and used to guide the

    o p t i m u m d e s i g n o f F R P - s t r e n g t h e n e d R C b e a m s .

    W h i l e t h e f o c u s o f t h e p r e s e n t p a p e r w a s o n o n e

    a sp e ct o f t h e s h o r t - t e r m s t ru c t u r a l p e r f o r m a n c e o f F R P

    s t r e n g t h e n e d b e a m s , t h e l o n g - t e r m p e r f o r m a n c e i s a l s o

    very impo r tan t . Spec if ica lly , the durabi l i ty of an FR P

    s t r e n g t h e n i n g s y s t e m u n d e r c y cl ic f r e e z i n g a n d t h a w i n g ,

    aggres s ive subs tances, and fa t igue needs to be co ns ide red

    in design . In addi t ion , the des ign er should be aware tha t

    F R P p l a t e s g e n e r a l l y d o n o t h a v e s u f f i c i e n t f i r e r e s i s -

    t a n c e f o r m a n y a p p l i c a t i o n s , a n d t h e r e f o r e o f t e n n e e d

    addi t iona l pro tec t ion .

    5 C O N C L U S I O N S

    In th i s s tudy , predic t ive mode l s for de te rmining the

    i n t e r f a c i a l s h e a r s t r e s s d i s t r i b u t i o n i n F R P - p l a t e d R C

    b e a m s h a v e b e e n r e v i e w e d a n d e v a l u a t e d u s i n g e x p e r i -

    m enta l da ta repo r t ed in the l it e ra ture . Th e m os t c r it i ca l

    p a r a m e t e r s g o v e r n i n g t h e i n t e r f a c i a l s h e a r s t r e s s ( a n d

    s t re n g t h ) a s d e t e r m i n e d b y t h e r e v i e w e d p r e d i ct i v e m o d -

    e ls w e r e a ls o e x a m i n e d . R o b e r t s r e v is e d m o d e l , d e r i v e d

    o n t h e b a s is o f a c r a c k e d b e a m s e c t io n a n d a m o d i f i e d

    m o m e n t M * , p r e d i c t e d re su lt s t h a t w e r e i n c l os e a g r e e -

    m e n t w i t h a c t u a l t r e n d s e t b y t h e e x p e r i m e n t a l d a t a .

    Exper imenta l a s we l l a s mode l re su l t s revea led tha t the

    F R P e f f i c i e n c y i n c re a s e s w i t h d e c r e a s i n g F R P r e la t iv e

    axia l r ig id ity . In addi t ion , da ta repo r t ed in the l i t e ra ture

    sugges ted a d i rec t re l a t ionship be tween beam def l ec t ion

    c a p a c i t y a n d F R P e f f i c ie n c y . W i t h t h e a v a i l a b il it y o f

    n u m e r o u s p r o p r i e t a r y F R P s t r e n g t h e n i n g s y s t e m s , i t

    would be pos s ib le to s e l ec t an FRP s t rengthening sys tem

    w h i c h o f f e r a n o p p o r t u n e b a l an c e b e t w e e n s t r e n g t h g a i n

    and de f l e c t ion capac i ty for a g iven appl i ca tion .

    REFEREN ES

    [1] Bonacci, J . F. and M aalej, M., Behavioral trends of RC beams

    st rengthened wi th external ly bond ed F RP , A S C E J o u r n a l o f

    Com posites f}r C o,s t r , c tion,

    Accepted May 2000, in press.

    [2] Robe rts, T . M ., Appro ximate analysis of shear and norm al stress

    concentrations in the adhesive layer of plated R C beams ,

    T he

    Structural En giueer 67 (12/20) (1989) 229-233.

    [3] Malek, A. M., Saadatmanesh, H. and Ehsani, R. M ., Prediction

    of failure load of

    R / C

    beams strengthened with F RP plate due to

    stress concen tration at the plate end , A C I s tructural ournal 95 (1)

    (1998) 142-152.

    [41 Jones, R. , Sw ainy, R. N. and Sharif , A. , Plate separation and

    anchorage of reinforced concrete beams strengthened by ep oxy-

    bonde d steel plates , The Structural Engineer 66 (5/1) (1988) 85-94.

    [51 Buy ukozturk , O. and Hear ing, B. , Fa i lure behavior ofp re -

    c r a c k e d c o n c r e t e b e a m s r e t t ro f i t te d w i t h F R P ,

    J o u r n a l o f

    Com pos i t e sf } r C o , s t r , c t io , 2 (3) (1998) 138-144.

    [6] Chaallal , O. , Nollet . M. J. and Perraton, D. , Strengthening of

    reinforced concrete beams with externally bonded fibre rein-

    4 4

  • 8/11/2019 2001 Analysis and Design of FRP Externally-reinforced Concrete Beams Against Debonding Type Failures by Maalej

    8/8

    M a a l e j G o h P a r a m a s i v a m

    forced plastic plates: design gnidelines for shea r and flexure' ,

    C an.

    J. Cir . Eng. 25 (1998) 692-704.

    [7] Triantaf i l lou, T. C. and Plevris N., 'Post s t rengthening of R / C

    b e a m s w i t h e p o x y - b o n d e d f i b e r c o m p o s i t e m a t e r i a l s ' , i n

    'Advanced C om posi te M ater ia ls ', Proceedings o f the Special ty

    Conference, A SCE , Las Vegas, 1991 (American Society of Civi l

    Engineers , N ew Y ork, 1991) 245-256.

    [8] Roberts , T. M . and H aji-Kazem i, H., 'A theoret ical s tudy of the

    behaviour o f re inforced concrete beam s s trengthened by exte r-

    nally bon ded steel plates' ,

    Proc. Institution of Civ il Engineers, Part 2

    87 (1989) 39-55.

    [9] Saadatmanesh, H. and Ehsani , M ., 'R C beam s s trengthened with

    GFRP plates-I : experimental s tudy ' , ASC EJo ur na l o f St ruc tur al

    Engineering 117 (11) (1991) 3417-3433.

    [10] Sharif , A., M -Sulaimani , G. J . , Basunbul , I . A., Baluch, M . H.

    and Ghaleb, B. N., 'S trengthening o f in i t ia l ly loaded reinforced

    concrete beams using FRP plates ' , ACI Structural ournal 91 (2)

    (1994) 160-168.

    [11] Arduini , M. and Nanni , A . 'Behaviour ofprecra cked R C beams

    strengthened with carbon FRP sheets ,Jouma l of Composi tes or

    Construction

    I (2) (1997) 63-70.

    [12] Bonacci , J . F . and M aalej, M., 'External ly-bonded FR P for reha-

    bi l ita t ion of corrosion damaged concrete beams' , ACI Structural

    Journal 97 (5) (2000) 703-711.

    [13 ] Spa a , G. , Ben ca rd ino , F . and Swamy, R . N. , ' S t ruc tu ra l

    b e h a v i o u r o f c o mp o s i t e R C b e a ms wi t h e x t e r n a l ly b o n d e d

    C F R P ' , A SC E Jourual of Composi tes or Construction 2 (3) (1998)

    132-137.

    [14] Varastehpour, H. and Ham elin , P . , 'Experimental s tudy of R C

    beams s trengthened with CFRP plate ' , in 'Advanced Composi te

    Mater ia ls in B ridges and Structures ', Proceedings of the Second

    AC M BS In te rna t iona l Confe rence , Mon t rea l , Augus t 11 -14 ,

    1996 (CSCE, Montreal , 1996) 555-563.

    [15] Missihoun, M , 'Ren forcem ent en f lexion de poutres en b~ton

    arm~ ~ l 'aide de m at6riaux com posites : optimisation de l 'orienta-

    t ion des f ibres ' , M dm oire de Maitr ise Sciences Appliqu s ,

    Ddpt . de G ~nie Civi l , Univ. de Sherbrooke, 1995.

    [16] Djelal , C., David, E. and Buyle-Bodin, F . (1996) . 'Ut i lisa tion de

    p laques en comp os i t e pou r la rdpa ra t ion de pou t re s en b on

    a r m~ e n d o mma g ~ e s ' , i n ' Ad v a n c e d C o mp o s i t e M a t e r i a l s i n

    Br idges and S t ruc tu res ' , P roceed ings o f the Second ACM BS

    I n t e r n a t i o n a l C o n f e r e n c e , M o n t r e a l , Au g u s t 1 1 - 1 4 , 1 9 9 6

    (CSCE , Montreal , 1996) 581-588.

    [17 ] Me ie r , U. and Ka i se r, H . , ' S t r eng then ing o f s truc tu res w i th

    C F R P l a m i n a t e s ' , i n ' A d v a n c e d C o m p o s i t e M a t e r i a l s ' ,

    Proceedings of the Special ty Conference, ASC E, Las Vegas, 1991

    (American Society of Civi l Engineers , N ew York, 1991) 224-232.

    [18] Mu khopadhyaya, P. , Swam y, N. and Lynsdale , C., 'Optimizing

    structural response of beams s trengthened with G FR P plates ',

    ASC EJou rnal of Composites or Construction

    2 (2) (1998) 87-95.

    [19 ] ASTM S tanda rd E 229-97 , ' S tanda rd t e s t me thod fo r shea r

    s trength and shear modulus of s t ructural adhesives ' , Annual B ook

    of AST M Standards (Am erican Society for Test ing and M ateria ls,

    Philadelphia, 1997).

    [20] Defrayne, G., 'High performance adhesive bonding ' , 1s t Edn.

    (Societyof M anufictur ing E ngineers , Dearborn, Michigan, 1983) .

    i i i i i l i i

    4 5