2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web...

26
BIO301 Industrial Bioprocessing and Bioremediation Chemostat report (Draft) Microbial Fuel Cell Good Report already: (C-D range because of Good understanding. Good work in general Sufficient detail Improvoments could be : Less grammar mistakes Consistent use of tenses (past tense) Better and more complete figures More focused writing of results : Need of experiment (could point out literature) Aim and significance of the aim for each figure followed by how it was done and what was found and concluding wether the aim was reached, then perhaps referring to literature Group 1 & 2 Asiah, Jonathan, Melissa, Ben, Florence, Beatrice Optimization of Graphite-mediated, Acetate-fed Microbial Fuel Cell. 1. INTRODUCTION Energy is the single greatest challenge facing humanity. Microbial fuel cells (MFC) can be used to convert biochemical energy to electrical energy (Allen and Bonetto, 1995).The MFC utilize bacteria that capture and process energy by converting chemical energy from organic matter to electrical energy via both abiotic and biotic catalysis (Bullen et al. , 2006).

Transcript of 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web...

Page 1: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

BIO301 Industrial Bioprocessing and Bioremediation

Chemostat report (Draft)Microbial Fuel Cell

Good Report already: (C-D range because ofGood understanding.Good work in general

Sufficient detail

Improvoments could be :Less grammar mistakes

Consistent use of tenses (past tense)Better and more complete figuresMore focused writing of results :

Need of experiment (could point out literature)Aim and significance of the aim for each figure followed by

how it was done and what was found and

concluding wether the aim was reached, then perhaps referring to literature

Group 1 & 2Asiah, Jonathan, Melissa, Ben, Florence, Beatrice

Optimization of Graphite-mediated, Acetate-fed Microbial Fuel Cell.

1. INTRODUCTION

Energy is the single greatest challenge facing humanity. Microbial fuel cells (MFC) can be used to convert biochemical energy to electrical energy (Allen and Bonetto, 1995).The MFC utilize bacteria that capture and process energy by converting chemical energy from organic matter to electrical energy via both abiotic and biotic catalysis (Bullen et al. , 2006).

Bacteria grow naturally by catalysing chemical reactions and storing energy in the form of ATP. In some bacteria, reduced substrates are oxidized and electrons are transferred to respiratory enzymes by NADH. These electrons flow down the respiratory chain thus producing translocating protons and consequently a proton gradient. These electrons are finally released transferred to soluble terminal electronegative electron acceptors such as sulphate, nitrate or oxygen.

The MFC are composed of an anode, a cathode and the electrolyte. In the MFC, bacteria catalyse the oxidation of reduced substrates thus releasing some of the electrons that are produced from cell respiration to the anode where they flow through an external circuit to the cathode and eventually current is created (Heller 2004). To maximize the deposition of electrons on the anode and to close the electrical cycle, a proton exchange membrane is can be installed to separate the anodic and the cathode compartments. The charge balance is maintained by

S890434F, 10/28/08,
Give full details of group members and year.
S890434F, 10/28/08,
Good writing, but the link between the two paragraphs could be clearer.
S890434F, 10/28/08,
Try to add sources also for big statements like this.
Page 2: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

transferring the protons i.e. H+ through the proton exchange membrane to the cathode chamber where it forms water (Mohan et al., 2007).

Not all the substrate is utilized by the bacteria and therefore not all the high energy electrons will be transferred to the cathode chamber. The coulombic efficiency i.e. the fraction of electrons recovered as current versus the maximum possible recovery is used as a measure of how much usable energy is available during discharging compared with the energy used to charge the cell. The amount of electrons transferred to the cathode chamber is expressed in terms of the coulombic efficiency (%) which calculates the number of electrons transferred to produce electricity over the total electrons oxidized to the cathode chamber. This parameter is a useful measure of the overall efficiency of the MFC (Liu et al., 2004).

A Polarization curve is used to establish the relationship between the anodic potential and the microbial activity in the MFC so that a steady potential of the anode is established. As a result, this measures the power output of the MFC. The use of a larger resistor causes an increase in the anodic potential. Substrate oxidation rate increases with the anodic potential and therefore electron flow from the anode to the cathode is proportional to the rate of substrate oxidation by the bacteria (Serway and Faughn, 2003).

The reactions occurring in the MFC can be analyzed in terms of the half cell reactions, or the separate reactions occurring at the anode and the cathode. The anode potential determines, apart from the metabolic pathway used, the theoretical energy gain for the biocatalyst (Schroder 2007). Thus, the lower the anode potential, the less energy per electron transferred there is available for growth and cell maintenance. A higher anode potential may enhance the growth rate of bacteria, resulting in a higher biocatalyst density, faster starting up of the electricity generation and overall, higher current generation. However, in order to maximize the electrical energy output of a MFC, for a set current the anode potential should be as low and the cathode potential as high as possible (Logan et al.. 2006). This leads to a trade-off between the anode potential wanted for the end user and the biocatalyst, suggesting the existence of an optimal anode potential range satisfying both.

In this study, we aimed to obtain a efficient microbial fuel cells using acetate as the substrate at optimum conditions by

investigating the optimum resistance using a Polarization curve investigating the difference in anode potential investigating the substrate limiting conditions within a microbial fuel

cellquantifying the response of a MFC to a substrate spike by determining the coulombic efficiency.

2. METHODS AND MATERIALS

2.1. Microbial Fuel Cells(MFC) Start upA reactor with one compartment of microbial fuel cell is used in this experiment. The fuel

cell is divided into two chambers where with the anode lined at the bottom of the cells while cathode is at the top. These two electrodes are separated by a cloth membrane.

S890434F, 10/28/08,
Could explain why that is needed.
S890434F, 10/28/08,
This could be explained in one of the paragraphs before. E.g. Polarisation curves are designed to…
S890434F, 10/28/08,
I am missing a link (derivation of aim) between intro and aims.
S890434F, 10/28/08,
This is high level explanations and may not be necessary for the purpose (introducing the aim of your project) of the introduction. Also, is this really designed at fellow students as the readers? Will they be able to get the point?
S890434F, 10/28/08,
All interesting and focused paragraphs. However , the reader would want to know where it is leading. I suggest to give some subheadings (e.g. “fundamental background” or “evaluation of microbial fuel cell performance”
Page 3: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Anode consists of 2/3 the total reactor volume and dimension. Both anode and cathode were filled with conductive granular graphite (provided by Cheng Ka Yu ; Cheng et al.. 2008) which then reduced the total liquid volume of reactor to 160mL. Describe the Material in terms of size Temperature is kept at 30 °C using two aquarium heaters in water bath.

The MFC was operated as a batch mode with sodium acetate as the only electron donor. Yeast extract was added to anode (0.1 g/L final concentration) every three to five days to enhance growth. The anode chamber is managed in an anaerobic condition where limited exposure to air as much as possible.

The activated sludge used as the inoculum in this experiment (provided by Cheng Ka Yu ; Cheng et al.. 2008) has thehad a biomass concentration about 2.0 g/L. Combination of ten percent of this activated sludge (v/v), synthetic wastewater, 1 mL/L of trace element and 50 mM phosphate buffer was mixed and inoculated into the reactor. The composition of the synthetic wastewater and the trace element is shown in Table 1 and Table 2 respectively (Cheng et al.. 2008). Acetate is injected to anode chamber using a sterile syringe to replenish the electron donor in the rector while it was running in a batch mode. Table 1 Composition of different components in synthetic wastewater.

Components Composition (mg/L)NH4Cl 125NaHCO3 125MgSO4 ·7H2O 51CaCl2 ·2H2O 300FeSO4 ·7H2O 6.25

Table 2 Composition of different components in trace element.Components Composition (g/L)ethylenediamine tetraacetic acid (EDTA) 15ZnSO4 ·7H2O 0.43CoCl2 ·6H2O 0.24MnCl2 ·4H2O 0.99CuSO4 ·5H2O 0.25NaMoO4 ·2H2O 0.22NiCl2 ·6H2O 0.19NaSeO4 ·10H2O 0.21H3BO4 0.014NaWO4 ·2H2O 0.050

good

2.2. Calculation and Analysis2.2.1. Determination of Voltage, Current and Power generationGraphite rods were used to connect the external circuit with anode and cathode in the

reactor. A variable resistor is placed between these rods which can be adjusted to determine a known resistant, R in the circuit. Potential difference between the anode and cathode (voltage, V)

S890434F, 10/28/08,
Be consistent with your tense. Use past tense
Page 4: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

is measured using National Instruments LabVIEW 7.1 software connected via LabJack as shown in Figure 1 below. This software also calculated the current, I by using the Ohm’s Law (I = V/R).

2.2.2. Polarization Curve generationPolarizations Curves is were generated to determine the optimum resistancet that gives

rise to maximum power that the MFC can generate. Power is calculated according to P = V x I. While the reactor is was running as in batch mode, the reactori is was leaved left at open circuit for an hour. The resistancet is was changed by switching the variable resistor to smaller resistant in a systematic order. For every resistant, a period of 15 minutes is allowed for the voltage reading to stabilised before changing the next resistant. Reverse polarization curve is generated by using the same known resistorsant but in reinverse order.

2.2.3. Measuring the Anodic PotentialBy measuring the potential against the silver/silver chloride reference electron, the anodic

potential can be determined. This reference electron is placed within the anode chamber. The reference electrode is also connected to LabJack and monitored by the software as the anode and cathode.

2.3. Chemostat Start upTo start up the chemostat, the batch culture is was flushed in and out with Medium (with no

electrons donor of acetate). Using the peristaltic pump, medium (containings 1 mM of sodium acetate) with a flow rate of 5mL of medium per hour were adjusted to feed into anode as a fed-batch mode. The medium is sterilised, stirred and placed in ice to avoid contamination.

Current is converted to amount of electron generated by using the following formulaes, 1 coulomb (C) = 1 amp x 1 s and 1 C = 6.24x 1018 electron. Coulombic efficiency is calculated by the integration of current against time plot.

3. RESULTS AND DISCUSSION

3.1. Polarization Curve.

The establishment of a polarization curve enables us to determine fuel cell function based on the steady state conditions at various resistanceresistances. Two polarization curves (Forward and backward) were set up in this study

As shown in Figure 2, the resistor of 100 ohms produced maximum power as for both forward (87.52 mW) and backward polarization (93.55 mW) (Figure 2). In the figure, the optimum resistance for the MFC is found to be 100 ohms. However, there is a significant difference in the level of power output in both curves. This can be attributed to the difference in level of activity microbes to generate electrons.

In the forward polarization curve, the resistor was changed from a higher resistance ( 1 M ohms ) to lower resistance (5 Ohms). On the other hand, backward polarization curve was carried out by altering resistance from lower resistance (5 Ohms) to higher resistance ( 1 M ohms).

S890434F, 10/28/08,
I remember that your group initially did not relate well to the concept of resistors. It would be worthwhile explaining what a large and small resistor means (e.g. in the form of water flow analogy).
S890434F, 10/28/08,
S890434F, 10/28/08,
It is sufficient and general practice in science writing to refer to figures merely in brackets.
S890434F, 10/28/08,
You could explain here (unless done in the intro why a polarization curve allows you to evaluate the capacity of a fuel cell to produce power.
S890434F, 10/28/08,
I am surprised to see now drawing or photo of your neat set-up. Also more detail how the current was monitored by the computer (including the data recording into the spreadsheet).
S890434F, 10/28/08,
Give more detail so that next year’s students can follow your instructions.
S890434F, 10/28/08,
Source?
S890434F, 10/28/08,
Grammar problem
S890434F, 10/28/08,
Please correct this word throughout.
S890434F, 10/28/08,
Please check tense and use past tense for the presentation of own experiments.
S890434F, 10/28/08,
Leaved??
S890434F, 10/28/08,
Some grammar problems on occasions.
Page 5: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Considering the amount of activity the activated sludge have to put in to overcome the resistance, the difference in power output is significant in figure 2. For forward polarisation curve, the MFC is first exposed to a level of high resistance, forcing the cell to increase its activity (substrate degradation). As resistance is lowered at a time interval of 15 minutes, the pressure for the MFC to generate electricity is reduced. Therefore, it is easier for the cell to generate a high level of electricity, giving a higher power output.

On the other hand, if the resistance is increasing (as seen in a backward polarisation curve), the cell would be exposed to a higher resistance every 15mins. Therefore, the MFC have to adapt to the increasing pressure to overcome the resistance, thus giving a lower power output.

0102030405060708090

100

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Current (mA)

Pow

er (m

W) Polarization

curve

BackwardPolarizationCurve

FIGURE 2: Polarization Curve of the microbial fuel cell obtained by plotting power MW against Current mV. 1mV produced the highest power of 87mW operating at 100ohms resistor for the forward curve while 0.68mV produced the highest power of 46.46mW for the backward curve operating at 100ohms resistor.

3.2. Anode Potential

Microbial Fuel Cells (MFCs) are devices involving activated bacterial cells as catalysts in order to oxidise either organic or inorganic matter to generate current. It is established in Logan et al. (2006) that electricity can be generated from any biodegradable material, ranging from pure compounds such as acetate, to complex mixtures of organic matter such as domestic wastewater.

In a microbial fuel cell, electrons produced by the bacteria from the breakdown of substrate (acetate in this case) are drained off and transferred to the anode (negative terminal), through a conductiveon material containing a resistor, and flowing into the cathode (positive terminal), at which the electrons combine with protons and electron acceptor (oxygen) to form water (Logan et al., 2006).

S890434F, 10/28/08,
These paragraphs read like introduction and would only have a place at this point if they introduce the purpose of the next experiment. If not it would be better placed in the introduction
S890434F, 10/28/08,
Use a uniform format throughout. Avoid underlining
S890434F, 10/28/08,
Show the raw data as well either as figure or in appendix. Raw data are Potential, current, resistor for each measurement. Also an example of changing from one resistor to another one over time could be good to be shown.
S890434F, 10/28/08,
Avoid caps
S890434F, 10/28/08,
Frame for figures not desired.
Page 6: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

The microbial fuel cell converts energy available in a bio-convertible substrate (acetate) directly into electricity by bacteria switching from their natural electron acceptor (such as oxygen) to an insoluble acceptor (MFC anode) (Rabaey et al., 2005). Since the difference in potential generated by the electron flow produces electricity in the fuel cell, electron liberation at the anode and subsequent electron consumption at the cathode are the defining characteristics of an MFC.

It is also important to note that electrons within a MFC can be transferred from the bacteria to the anode by either electron mediators or shuttles (direct membrane associated electron transfer) or nanowires produced by bacteria (Logan et al., 2006)

Discussion of Anode Potential

Figure 3: Anode potential, Cathode potential and voltage over time. Addition of sodium acetate as substrate at 2.30pm.

3.2.1. Positive anode potential before acetate addition

From the figure above, it is observed that the anode potential is positive before acetate is pumped in at 2.30pm. It is attributed to the presence of oxygen found within the anaerobic anode section of the MFC. Having just established and starting up a chemostat, oxygen found within the fresh medium, deionised water and tygon tubings may have contributed to the positive anode potential by acting as a strong electron acceptor, taking in any moving electrons found within the anode.

3.2.2. Decreasing anode potential

S890434F, 10/28/08,
This figure seems out of place. It has not been introduced and as such the reader does not know what to do with it. You id better with Figure 2. Also it is very ugly. Avoid the grey excel background and the colours. Also the x axis is not labeled in a user friendly way. Just use the normal way of voltage against time. Finally this figure has not meaningful title. What is it supposed to show? Title could be effect of acetate addition to the MFC running with a resistor of… Ohms over a period of … days.
S890434F, 10/28/08,
The last 4 paragraphs don’t help to explain the results or introduce the aims. They seem to give some background on the principle of MFC. Keep the results section focused by explaining the purpose of the experiment, The experimental design the findings and the conclusions.
S890434F, 10/28/08,
Keep it nice and clear and in your own words not by paraphrasing literatuere
Page 7: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

As the bacterial cells found within the anode breaks down acetate as an electron donor, electrons are transferred to the anode, causing a gradual decrease in anode potential. Since electrons are considered to be negatively charged, the anode potential is observed to be more negative (decreasing anode potential) because the graphite found in the anode is accepting the electrons, before transferring them through the resistor, to the cathode for oxidation.

3.2.3. Decreasing cathode potentialA decreasing cathode potential is also identified in this graph along with the decreasing

anode potential. This observation could be attributed to the presence of a stronger anode as compared to the weaker cathode. In this case, the rate at which the anode is transferring electrons over to the cathode is much faster than the rate at which oxygen accepts the electrons on the cathode. Hence, electrons are said to be accumulated at the cathode, causing a gradual decrease in cathode potential.

3.2.4. Increasing voltageSince voltage is defined as the difference in potential generated by the electron flow

within a microbial fuel cell, a significant decrease in anode potential generated by electron transfer against a gradual decrease in cathode potential generated by oxygen as an electron acceptor would identify a gradual increase in voltage observed within the cell.

Metabolism in microbial fuel cells

Figure 4: Current vs Anode Potential over time after addition of sodium acetate.

Current vs Anode Potential

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 36 3738 39 40 41 42 43 44 45 4647 48 49 50 51 52 53 54 5556 57 58 59 60 61 62 63 6465 66 67 68 69 70 71 72 7374 75 76 77 78 79 80 81 8283 84 85 86 87 88 89 90 9192 93 94 95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

CurrentAnode

Time

S890434F, 10/28/08,
Your report is coming along fine but the figures are of poor quality. This one has NO UNITS! And for all experiments give the resistor used.
S890434F, 10/28/08,
Sentence too long and unclear. Also a paragraph consisting of one sentence is unusual.
S890434F, 10/28/08,
You now go systematic and structured about discussing and explaining figure 3 in detail. Shows good understanding. While the new chapter titles seem a bit over-structured, I would not change it because it helps you and potentially the reader to know what information is where.
Page 8: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

The determination of metabolic pathways governing microbial electron and proton flow is constantly used to assess bacterial electricity generation. Since current is defined as the flow/movement of electrons, the anode potential can be used to establish bacterial metabolism. A decrease in the potential of the anode after the addition of acetate shows that the bacteria is forced to deliver the electrons through more-reduced complexes, increasing MFC current flow. (Rabaey et al., 2005)

Bacterial cells in the MFC are able to gain energy simply by transferring electrons from a reduced substate at a low potential (acetate), to an electron acceptor with a high potential (oxygen)

Optimisation of Anode Potential

Anode

Since electrons produced by the bacteria are transferred to an insoluble acceptor (graphite anode), anodic materials have to be conductive, biocompatible and chemically stable in the reactor solution (Logan et al., 2006). It is identified by Logan et al. (2006) that the most versatile electrode material is carbon graphite plates or rods as they are relatively inexpensive, easy to handle and have a defined surface area.

In order to improve the anodic performance of a MFC, different chemical and physical strategies could be implemented, including physical (larger surface area with graphite felt electrodes) and chemical strategies (Mn(IV) and Fe(III) to mediate electron transfer) to the anode (Logan et al., 2006).

An experiment by Chaudhuri et al. (2003) identified that increasing the surface area of graphite available for microbial colonization yielded increased power output. Similarly in a study led by Rabaey et al. (2005, 2003) have established faster increases in electricity conversion is observed when larger anode surfaces were available for bacterial growth. Likewise, soluble redox mediators have been added to MFCs to enble bacteria to have a sufficiently high turnover rate in relation to the electrode.

Cathode

Electrons transferred to the cathode are oxidised accepted by the atmospheric oxygen (electron acceptor for MFC) due to its high oxidation potential,

S890434F, 10/28/08,
The figure has no number and has not been referred to . Also figure title / caption is not detailed enough
S890434F, 10/28/08,
Too much reciting of literature so the reader loses sight of the aim. If this is still results section you should get on with introducing the aim of the next experiment and then showing the data
S890434F, 10/28/08,
Point?
S890434F, 10/28/08,
Your chapter numbering is inconsistent. Should be fixed so that it looks like ONE document.
Page 9: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

availability, low cost, sustainability and lack of chemical waste product (as the end product is water) Logan et al. (2006). Therefore, in order to yield a higher voltage output, the cathodic potential has been optimised in order to great a greater difference in potential energy for electricity conversion. Firstly, the surface area of the cathode has been increased by the addition of grooves on the graphite, maximising the surface contact between oxygen in the atmosphere and the electrons to be oxidised accumulated in the cathode.

Figure 5: The effect of increasing surface area of cathode on the voltage yield in the MFC.In the graph above, it is clearly observed that the addition of grooves on the cathode at

around 2.28pm resulted in a net increase of voltage production by the cell through a higher cathode potential. This is because by maximising surface contact between oxygen and the electrons in the cathode, there is a larger potential difference created between the anode and cathode, thus driving the cell to generate more electricity in the form of electron flow.

However, it is also identified that oxygen is a poor electron acceptor on graphite due to its slow kinetics of oxygen reduction, resulting in a large overpotential at the cathode, and it restricts the use of noncatalysed material to systems Logan et al. (2006).

3.3. Determination of Coulombic Efficiency & Results

Coulombic efficiency (CE) can be determined from a closed circuit microbial fuel cell through the introduction of a specified amount of sodium acetate into the anodic chamber of a starved culture. Data required for calculation of CE can be obtained in an excel spreadsheet from National Instruments LabVIEW 7.1 set to periodically record time and voltage.

Two parts of information are needed to calculate CE. These are the coulombs recovered from the addition of acetate which is based on current and time, as well as the theoretical coulombs expected from the oxidation of added acetate (Liu & Logan, 2004). The resistance used was kept constant at 100 ohms based on the results of the polarization curve and 0.5mM of Sodium Acetate was decided upon based on a prior CE trial.

Calculation and of the coulombs recovered are as follows and reliesy on the use of the excel spreadsheet calculations for all recoreded voltage readingsoutput.

1) Using Ohm's Law, the current in amps can be calculated from each recorded voltage:I = V/R

2) Calculate amps from voltage data output from (COMPUTER PROGRAM) using Ohms Law: I = V/R

S890434F, 10/28/08,
Draft version?
S890434F, 10/28/08,
What you mean by XL output is not quite clear.
S890434F, 10/28/08,
Hm, the groove effect did not seem to last long
S890434F, 10/28/08,
Explain why you did it (aim) and how it was done. Also the reader cannot follow from the figure where exactly something was changed. The report becomes a little less user friendly now.
S890434F, 10/28/08,
First introduce the figure with number then show it.
S890434F, 10/28/08,
Grammar of sentence needs improving
Page 10: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

V = I x RWhere I is the current in amps, V is the voltage in… and R is the resistance in ….

3) Graph the current (y-axis) vs. time (x-axis) in seconds (Figure 6).

Figure 6: Current as a function of time resulting from the addition of 0.5mM acetate solution into the anode in order to derive the coulombic efficiency.

Because current is equal to coulombs per second (coulombs/sec), coulombs is therefore equal to current (amps) multiplied by time (seconds). From this, the amount of coulombs can be derived from the graph of current vs. time (Figure 6) which is equal to the area under the curve (amps x sec) which is amps x second. The baseline or steady state reached prior to the addition of acetate must also be subtracted from the calculation. This subtraction is very important as it does not represent electrons transferred as a result of the addition of the acetate spike but rather the basal level of electrons transferred from microbial biomass.

Calculation of the area under the curve minus the baseline was performed using excel, resulting in 12.53 coulombs recovered from the addition of the 0.5mM of acetate.

In order to calculate the Coulombic efficiency, we must also know the total coulombs available from the acetate. This was calculated as follows:

1) Calculate moles of acetate added Moles of acetate added = c x v

= 0.5mM x 0.16L (volume of anode)= 0.08 mmoles

= 0.00008 moles of acetate added

2) Calculate electrons available 1 mole of acetate = 8 e- 0.00008 moles of acetate = 8e- x 0.00008 moles = 0.00064e- (Faraday)

S890434F, 10/28/08,
S890434F, 10/28/08,
Always refer to the figure first in the text.
Page 11: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

3) Calculate the number of coulombs expected1 mole of e- = 1 Faraday = 96485 coulombs 0.00064 Faraday = 96485 coulombs x 0.00064 = 61.7504 coulombs

Therefore, in theory 61.75 coulombs should be transferred from the addition of 0.5mM of acetate in our MFC.

Finally, coulombic efficiency may be determined:Coulombic Efficiency (%) = Coulombs recovered from added acetate x 100

Theoretical amount of coulombs in amount of added acetate = (12.53/61.75) x 100 = 20.30%

Discussion of obtained Coulombic EfficiencyA coulombic efficiency of 20.30% from the batch culture means that of the total acetate

added, 20.30% of the energy was transferred to electricity generation in our MFC while the remaining was lost as other forms. The acetate added was metabolised by the bacterial and electrons transferred to the graphite electrode to be re-oxidized in the cathode in the absence of an alternative anodic electron acceptor such as oxygen. This CE is dependent on many factors including MFC setup, inoculums, substrates, oxygen diffusion, anode and cathode material, resistance, the addition of mediators and many others. Because of this and a wide variation in MFC conditions in the literature, it is difficult to directly compare CE’s.

Coulombic efficiencies from other studies have ranged widely from 0.04% up to 97% (Liu & Logan, 2004). One such study by Liu and Logan (2004) obtained a CE of 40-55% in an air-cathode single chamber MFC, though set-up, substrate and inoculums differed to our MFC. In another experiment a high coulombic efficiency of 83% was obtained by Cheng et al., (2008) using a granular graphite anode which is the same used in our experiment. Differences included the use of a ferricyanide catholyte as an electron mediator, as well as operating their MFC over a period of 200 days which would have allowed for the build-up of a highly active microbial biofilm and therefore increased CE.

The inclusion of mediators may also influence the efficiency. An experiment by Park and Zeikus (2002) concluded that the addition of electron mediators such as Mn4+ graphite anode, and a Fe3+ graphite cathode greatly enhanced the electrical energy production and therefore electron transfer capacity compared with conventional graphite electrodes. Another likely reason to explain a low CE is loss of substrate via oxygen diffusion through the proton exchange membrane into the anode which would reduce electrons being passed into the circuit (Liu & Logan, 2004). This could have been enhanced in our MFC such as by purging the anode with N 2

gas. As a final example, the use of alternate substrate also changes the CE such as shown in the use of acetate and butyrate in a MFC where acetate ended up having a higher CE (Liu et al., 2005).

S890434F, 10/28/08,
Excellent use of literature.
S890434F, 10/28/08,
Good, simple and clear writing here.
Page 12: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Please use the comments as shown above to also review the remainder of this report. In particular the coulombic efficiency is very well understood and written.

3.4. Chemostat

The addition of acetate to the anode chamber elicited a rapid significant response in the voltage and current of the microbial fuel cell. Within minutes of the addition of acetate, voltage spiked approximately 10-15 mV (see figure 7, below), and the current was observed to have an increase of approximately 10-15 mA (see figure 8, below). This dropped back to the baseline level in a short period of time. It appears from this data that the vast majority of acetate added in one addition was degraded within one hour, so the baseline was re-established before a new addition of acetate occurred.

Chemostat - effect on voltage of hourly acetate addition (resistor = 100 ohms)

60

62

64

66

68

70

72

74

76

78

Time (hours)

Vol

tage

(mV

)

Figure 7: Graph of voltage over time, showing the change in voltage which occurred in response to the hourly addition of 0.1 millimoles of acetate.

Page 13: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Chemostat - effect on current of hourly acetate addition (resistor = 100 ohms)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Time (hours)

Cur

rent

(mill

iam

ps)

Figure 8: Graph of current over time, showing the change in current which occurred in response to the hourly addition of 0.1 mM of acetate.

In addition to the rapid response of current and voltage to the addition of acetate, a longer term effect was also observed. Over a 24 hour period, the baseline voltage and current saw an increase of approximately 20mV and 0.2 mA, respectively. Each individual hourly peak for both current and voltage were of approximately the same height across the 24 hour period, though the baseline which was re-established after each addition was slightly higher each time. Figure 9, below, demonstrates this effect in terms of voltage, while figure 10, below, demonstrates the effect in terms of current. A high peak in both current and voltage was also observed, after approximately 22 hours of chemostat operation. This coincides with a rearrangement of the graphite at the cathode surface, which resulted in an increased surface area.

Page 14: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Chemostat - voltage over a 24 hour period with acetate added hourly (resistor = 100 ohms)

0

20

40

60

80

100

120

Time (hours)

Vol

tage

(mV

)

Figure 9: Graph of voltage over a 24 hour period of chemostat operation (hourly addition of 0.1 mmoles acetate).

Chemostat - Current over a 24 hour period with acetate added hourly (resistor = 100 ohms)

0

0.2

0.4

0.6

0.8

1

1.2

Time (hours)

Cur

rent

(mill

iam

ps)

Figure 10: Graph of current over a 24 hour period of chemostat operation (hourly addition of 0.1 mmoles acetate).

Page 15: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Coulombic efficiency was calculated to be 5.3% at the beginning of chemostat operation (using data from the peak in current resulting from the first acetate addition), and after 24 hours of chemostat operation, the coulombic efficiency was calculated to have increased to 6.8%. At the highest peak (occurring at approximately 22 hours) the columbic efficiency was calculated to be 7.2%. Note that the coulombic efficiency cannot actually be accurately calculated when the system is being run in chemostat mode (as it is unknown whether the acetate from each addition was completely degraded before a new addition of acetate occurred). These coulombic efficiency values are an estimate.

Discussion for ChemostatAfter each addition of acetate, a clear peak in both voltage (figure 7) and current (figure

8) was observed, both of which dropped off sharply to return to a baseline before the next addition of acetate. These peaks coincide directly with the addition of acetate to the system, and the return to the baseline indicates that most of the acetate was degraded by the starved culture before a subsequent addition occurred. This demonstrates that the microbial fuel cell was operating under conditions of substrate limitation (starvation), as is conventional with chemostat systems.

Over a 24 hour period of chemostat operation, the baseline which was re-established after each peak following acetate addition was seen to increase, for both voltage and current.This was mirrored by an increase in the coulombic efficiency, which was 5.3% for the first hour of chemostat operation, and 6.8% in the 24th hour. This increased efficiency could be due to a number of factors, such as increased adaptation to the conditions in the fuel cell by the activated sludge bacteria (leading to more effective transmission of electrons to the anode surface), or an increase in the biomass of the culture (Rabaey et al. 2005). The coulombic efficiency obtained for this microbial fuel cell is considerably lower than coulombic efficiency values obtained in other acetate-fed, graphite mediated microbial fuel cells from the literature (for example in a study by Rabaey et al. (2005), a coulombic efficiency in excess of 75% was obtained) . From the data, excess acetate buildup may be a possible cause of the comparatively low coulombic efficiency obtained. As figure 9 and 10 demonstrate, the peaks in voltage and current tended to level off later in the experiment. This may indicate residual acetate remaining in the system, because the bacteria would not respond as rapidly if they were not completely deprived of substrate.

Increasing the surface area of the cathode was also seen to have a significant effect on the current and voltage, and ultimately the coulombic efficiency of the microbial fuel cell. After 22 hours of chemostat operation, the graphite at the cathode surface was rearranged, increasing the surface area in contact with the air. This also coincided with an addition of acetate to the system. The peak observed was approximately twice as high as any of the other peaks, indicating that the increase in cathode surface area resulted in an increase in the coulombic efficiency.

Page 16: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

APPENDIX - Recommendation for next year students:

Picture below show the set up of MFC.

1) Waste water beaker. 2) This bottle is filled with distilled water and clamped upside down touching the surface of

the cathode. It was used to overcome evaporation.3) Feed Bottle filled with medium and electron donor (acetate). It is placed in a beaker filled

with ice and wrapped with foil to prevent contamination. It is also stirred using mechanical stirrer (not shown in the picture).

4) MFC reactor filled with granular graphite and separates the anode and cathode with a membrane cloth as shown in the closed up picture at the side.

5) Thermometer for monitoring temperature at 30 0C.6) Water bath7) Connector wires8) Variable resistor9) Aquarium heater10) LabJack which connects wires from electrodes (reference, cathode and anode) to the

computer.11) Peristaltic pump

1

2

3

4

5

6

78

12

10

11

9

13

Page 17: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

12) Reference electrode 13) Graphite rods as contact between the granular graphite electrodes

(cathode and anode) and the external circuit. The graphite rods for anode is covered with rubber tubing (green) placed down into the anode chamber to avoid cross circuit. The graphite rod for cathode is clamped with aconnector wire.

For in flow to MFC, use Tygon tube and not silicon or plastic tubes because these tubes are permeable to oxygen.

Cover the water bath with polystyrene blocks to avoid evaporation in the water bath.

To have a steady reading by the LabView, the graphite rods are clamped with a connector wire that is sticked onto the water bath and joined to another connector wire.

Test coulombic efficiency at the end of the experiment to maximise biofilm formation and selection for most suitable bacteria.

Page 18: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

References

Atkins, P. & De Paula, J. (2006) Atkins' Physical Chemistry, Oxford University Press.

Chaudhuri S.K., and Lovley D.R. (2003) ‘Electiricity generation by direct oxidation of glucose in meditorless microbial fuel cells’ in Nature biotechnology. Vol 21: No.10.

Cheng, K.Y., Ho, G. & Cord-Ruwisch, R. (2008). Affinity of microbial fuel cell biofilm for theanodic potential. Environmental Science & Technology 42: 3828-3834.

Liu Hong, Ramnarayanan R., and Logan B.E. (2004) ‘Production of Electricity during Wastewater treatment using a single chamber microbial fuel cell’ in Environmental Science & Technology. Vol 38: No.7

Liu, H. and B.E. Logan.  2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38(14):4040-4046.

Liu, H., & Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology 38 (14): 4040-4046.

Liu, H., Cheng, S. & Logan, B.E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology 39: 658-662.

Logan B.E., Hamelers B., Rozendai E., Keller U.S.J., Freguia S., Aelterman P., Verstraete W., and Rabaey K., (2006) ‘Microbial Fuel Cells: Methodology and Technology’ in Environmental Science & Technology. Vol 40. No.17

Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells : Methodology and technology . Environ. Sci. Technol. 40:5181-5192.

Lovley, D.R. 2006. Microbial fuel cells : Novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology 17:327-332

Mohan, S., Raghavulu, S., Srikanth, S. & Sarma, P. (2007) Bioelectricity production by mediatorless microbial fuel cell under acidophillic condition using wastewater as a substrate: Influence of substrate loading rate. Current Science, 92, 1720-1726

Park, D.H. & Zeikus, J.G. (2002). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81 (3): 348-355.

Rabaey K, Clauwaert P, Aelterman P. and Verstraete W. (2005) Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environ. Sci. Technol. 39, pp 8077 – 8082.

Page 19: 2 - Murdoch Universitysphinx.murdoch.edu.au/units/extern/BIO301/teach/download/previ…  · Web viewIt is also important to note that electrons within a MFC can be transferred from

Rabaey K., & Verstraete W., (2005) ‘Microbial fuel cells: novel biotechnology for energy generation.’ In Trends in Biotechnology, Vol 23: No.6

Rabaey K., Kissens G., Siciliano S.D., Verstraete W., (2003) ‘A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.’ In Biotechnology letters. Vol 25, p 1531-1535

Schröder, U. 2007. Anodic Electron Transfer Mechanisms in Microbial Fuel Cells and their Energy Efficiency. Phys. Chem. Chem. Phys. (Invited Article) 9Serway, R. & Faughn, J. (2003) College Physics, Melbourne, Thompson Brooks\Cole.