2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER...

71
ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ. Qcr-y L_- 2* Copy No._/—^° f _CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared for DEPUTY FOR DEVELOPMENT PLANS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Hanscom Air Force Base, Bedford, Massachusetts Approved for public release; distribution unlimited. Project No. 6370 Prepared by THE MITRE CORPORATION Bedford, Massachusetts Contract No. F19628-75-C-0001 /TM6'3(C#

Transcript of 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER...

Page 1: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

ESD-TR-75-67 MTR-2948

SSD ACCESSION LIST

ti call KJ. Qcr-y L_-

2* Copy No._/—^°f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE

WAVEFORMS UNDER STEADY STATE CONDITIONS

JUNE 1975

Prepared for

DEPUTY FOR DEVELOPMENT PLANS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release; distribution unlimited.

Project No. 6370 Prepared by

THE MITRE CORPORATION Bedford, Massachusetts

Contract No. F19628-75-C-0001

/TM6'3(C#

Page 2: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or othe-wise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

EMERY J. BOOSE Project Leader MITRE D-92

!£*- KEITH HANDSAKER Project Engineer

FOR THE COMMANDER

C&4 d *3%;jztrtFV CARL A. SEGERST/tOM Acting Director, Technology Deputy for Development Plans

Page 3: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-75-67

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

COMPUTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MTR-2948 7. AUTHORfsJ

R. A. Costa

8. CONTRACT OR GRANT NUMBERfs)

F19628-75-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation Box 208 Bedford, MA 01730

10. PROGRAM ELEMENT. PROJECT. TASK AREA 4 WORK UNIT NUMBERS

Project No. 6370

It. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Development Plans Electronic Systems Division, AFSC Hanscom Air Force Base, Bedford, MA 01731

12. REPORT DATE

JUNE 1975 13. NUMBER OF PAGES

69 14. MONITORING AGENCY NAME ft AODRESSf/f different from Controlling Office) IS. SECURITY CLASS, (of this report)

UNCLASSIFIED 15a. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

COMPUTER SIMULATION MUX BUSES MUX BUS VOLTAGE WAVEFORMS STEADY STATE COMPUTER SIMULATIONS

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

Digital techniques involving multiplex busing are being advocated in many quarters as a means of satisfying the need for greater reliability, decreased modification cost, and simplified maintenance of airborne avionics systems. This paper documents efforts to develop a computer simulation of a shielded, twisted pair cable multiplex bus with multiple subscribers using steady state equations. The simulation predicts

DD , FORM .<.. JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION n F Tuic D « r: c- «.. n»»» Entered)

Page 4: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGEfH7i»n Dutu Bnterud) t

voltage waveforms, driving point impedances, and power distributions for systems compatible with MIL-STD-1553 (USAF). Excellent agreement has been found between laboratory observations and the computer simulation, validating this approach.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGEflfhen Data Entered)

Page 5: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

TABLE OF CONTENTS

LIST Or ILLUSTRATIONS

SECTION I INTRODUCTION

SECTION II

SECTION III

SECTION IV

SECTION V

APPENDIX I

REFERENCES

CONCLUSIONS

MIL-STD-1553 (USAF)

CELL APPROACH

Definition Circuit Analysis of a Cell

Transmitting Cell Receiving Cell

Chaining of Cells

MODEL VALIDATION

SIMULATION SOFTWARE

Page

2

4

5

6

9

9 9 9

13 18

21

29

67

Page 6: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

LIST Of ILLUSTRATIONS

Figure Page

1 Multiplex bus Architecture 8

2 Schematic Diagram of a Transmitter Cell io

3 Input Pulse Waveform 12

4 Schematic Diagram of a Right Cell (RCELL) 15

5 Schematic Diagram of a Left Cell (LCELL) 17

6 Three Cell Multiplex Bus 19

7 Twenty Cell Multiplex Bus 22

8 Comparison of Laboratory Oscillographs and Computer Plotted Waveforms (Transmitter in Cell 6, Receiver in Cell 4) 23

9 Comparison of Laboratory Oscillographs and Computer Plotted Waveforms (Transmitter in Cell 6, Receiver in Cell 9) 25

10 Comparison of Laboratory Oscillographs and Computer Plotted Waveforms (Transmitter in Cell 6, Receiver in Cell 18) 26

11 Cable Inductance Variation Analysis 27

1.1 Computer System Requirements 30

1.2 Flow Chart of TPM0D2 31

1.3 TPMOD2 Input Data Card Format 49

1.4 Input Data Listing 51

1.5 Driving Point Impedance at Xmtr/Stub Junction Vs. Frequency (Xmtr in Cell 14) 54

Page 7: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

LIST OF ILLUSTRATIONS (Continued)

Figure Page

1.6 Driving Point Impedance of a Detached Stub 55

1.7 Stub/Bus Junction Driving Point Impedance 56

1.8 Transmitter to Receiver Power Loss 57

1.9 Flow Chart of PLM0D2 59

1.10 PLM0D2 Input Data Card Format 64

1.11 PLM0D2 Voltage Array Listing 65

1.12 Operational Flow Chart 66

Page 8: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

SECTION I

INTRODUCTION

The bulk of information available regarding the characteristics and performance of multiplex (MUX) bus systems is empirical in nature. Consequently, designers and system planners have had to hedge when asked to estimate voltage waveforms, driviner point impedances and power distribution for a proposed multiplex bus system. Either educated guesses based on past experience are made or a laboratory duplicate of the candidate system is built on which the required parameter measurements can be made. When relying on educated guesses the possibility of error has to be tolerated, especially when the system under consideration is radically different from the majority of existing designs. While measurements on a laboratory system generally give more trustworthy results, they may require considerable time and expense. This paper describes a third alternative, computer simulation, which offers a reasonable compromise between the two extremes.

The use of computer simulation rather than physical realization offers several significant advantages. First, it greatly simplifies system analysis when the bus topology must be changed to investigate various cable routing schemes. In the initial design phase when the optimum bus arrangement and routing is usually uncertain, the use of simulation could eliminate the need for costly laboratory mock-ups. Also, a knowledge of the system's sensitivity to variations in cable or component parameters is of considerable importance but difficult to obtain in the laboratory. Finally, a need for worst-case information in many cases leads to the application of physical "cut and try" analysis. If applied to a complex MUX Bus, this method would likely be excessively expensive and time consuming.

The computer simulation described in this paper may be applied to any MUX Bus which meets the architectural constraints of MIL-STD- 1553 (1) (see Section III). Also, because of the computer program's reliance on steady-state analysis, systems which exhibit significant transient response cannot be completely simulated. However, laboratory investigation has shown that the transient response Is not significant when the bus architecture of MIL-STD-1553 is used.

Page 9: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

SECTION II

CONCLUSIONS

As a result of this investigation, several observations of potential importance to MUX Bus system planners have been made.

1) A digital computer steady-state simulation of MIL-STD-1553 compatible multiplex buses has been developed and tested against laboratory measurements, yielding acceptable levels of agreement. This simulation provides driving point impedances, power distributions and voltage waveforms at various locations throughout the bus. The ability to change both system architecture and component parameters in software makes this simulation a valuable tool for analysis of proposed MUX Bus configurations.

2) Laboratory observations and simulation results suggest that an engineering trade-off must be made between power transferred from transmitter to receiver along the bus and the level of signal distortion in the received waveform. Power transfer is greatest when the stub driving point impedances are low. However, low stub impedances increase the loading on tne bus thereby causing an increase in waveform distortion. Computer simulation may help to make this trade-off a more rational one.

3) It has been found that under certain situations normal manufacturing variation of component parameters may drastically alter bus performance. The only tractable method available for determining these sensitivities appears to be computer simulation.

Page 10: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

SECTION III

MIL-STD-1553 (USAF)

In an effort to define operational characteristics and avionics interfaces for multiplex buses used in intra-aircraft signaling the Air Force Aeronautical Systems Division (AFASD) has published a document entitled "Military Standard for Aircraft Multiplex Data Bus," (MIL-STD-1553 (USAF)). The following is a listing of characteristics defined in the standard which are relevant to tnis discussion.

Transmission Medium: Twisted, shielded pair, Zo = 71 ohms

Bus Discipline: Command/Response, half duplex; bus control exer- cised by a Bus Control Unit

Transmission Bit Rate: 1 Megabit per second

Modulation: PCM, using Manchester II code

Timing: Asynchronous, carried by Manchester Code

Nurrber of Terminals: 33 maximum including Bus Control Unit

IUX Bus Length: 300 ft. max.

Length of Terminal Stubs: 20 ft. max.

Shcrt Circuit Protection: 54 ohms resistor in each conductor of the stub pair.

Stub Driving Point Impedance > 6800 ohms dc to 100 kHz (Receive Mode): >2000 ohms 100 kHz to 1 MHz

Figure 1 depicts the bus architecture, defined by MIL-STD-1553, which was used as a basis for the simulation. For the cases examined in this paper, the following values were chosen for the variables of Ficure 1:

Bus Length: Ij(bus) = 250'

Number of Stubs: N = 20

Page 11: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

Length of each Stub:

Transformer Turns Ratios:

Isolation Resistances:

Receiver Input Impedance:

L(stub) = 20'

N1:N2 1 1:1

N3:N4 = 1:1

R1 = 54 ohms

R2 = 0 ohms

6600 ohms

Pulse Engineering,

Inc.

Type 516 3

To assure that reasonable values were chosen for the cable characteristics employed in the simulation, Haveg Industries type LE-572-0003/0002 cable was used as a guide. This cable, a lightweight version of RG-108A, has been recommended for use in multiplex bus applications on the B-1 aircraft by North American Rockwell. Laboratory measurements on samples of this cable produced the following parameter values:

C = 21.6 pf per foot,

L = . 109 Ph per foot,

R = .0288 ohms per foot,

Zo = 71 ohms

Page 12: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

RTERM=ZO

/I

(BUS)

n—( r~n t >T ?T ! ?f I

r:> c=n

02

c=n #3

SEE DETAILA k BELOW I

»t

N-l

o RTERM=ZO

C=>J «=,,

N<32

"T" SECTION DETAIL

Rl

Nl

Rl (FAULT ISOLATION RESISTORS )

o o

Tl

T2

R2

N2

N3

N4

L(STUB) ^ 20

R2 (FAULT ISOLATION RESISTORS)

MULTIPLEX BUS REMOTE

TERMINAL UNIT

AVIONICS EQUIPMENT

Figure I MUX-BUS ARCHITECTURE

Page 13: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

SECTION IV

CELL APPROACH

definition

In the MUX Bus system of MIL-STD-1553, each Multiplex Bus Kemote Terminal Unit (RTU, see Figure 1) is capable of transmitting information onto the bus. Of course, only one may transmit at a f ime. If the computer simulation is to be sufficiently flexible to allow this type of operation, some form of modularization is required. The "T" section of Figure 1 will be defined as a basic "odule, or "cell", of the MUX Bus. Each cell may contain one RTU, two transformers, four fault isolation resistors and three sections of shielded, twisted pair cable. In addition, the first (leftmost) and last (rightmost) cells each contain a bus termination resistor whose value is equal to the cable's characteristic impedance, Zo. ine division point between adjacent cells is chosen such that only N cells, where N is the number of stubs, are required to represent a riven MUX Bus.

Circuit Analysis of a Cell

Transmitting Cell

Consider the cell shown in Figure 2 whose RTU is transmitting onto the bus. Complex impedances Z(1) and Z(2), the driving point impedances seen looking into the adjacent cells, will be assumed known for the moment. Jhe firsj^step taken by the simulation is to determine values for Z(4) and Z(5) by use of the following relationships:(3)

(1)

(2)

Z~(5) .. Z(2) CoshCrL2) + Zo SinhCrL2)

Zo Zo Cosh(Y*-L2)+ £(1) Sinh(T*L2)

Z(4) n zTl) CoshCy'-Ll)+ Zo SinhCy'Ll)

Zo Zo Cosh(T'Ll)+ zTl) SinhCT'Ll)

where: Y = propagation constant of the cable

Zo = characteristic impedance of the cable

Impedances Z(6), Z(3), Z(3), Z(9), and Z(7) are obtained in a similar manner using the above relationship combined with steady state circuit analysis and the transformer lumped component

Page 14: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

L I L2

*-Z(l) V(l )

o o

V(4)

L3

Rl

1- v

7(4)1 xx

V(5) V(2)

\

| 7(6) jJRI

V(6) Nl

ITI

N2

t 7(8)

T(8)

Z(3)

V(3)

|T2 N3

•UAJLT

R2

m

Z(9)

V(9)

Z(7)

Vl7)

i:RiN ' ft^

1 |Z(2)— I

R2

TRANSFORMER EQUIVALENT [ CIRCUIT

I 1 PR

("TRANSMITTING! L RTU J

Figure 2 TRANSMITTING CELL SCHEMATIC DIAGRAM

10

Page 15: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

equivalent circuit. This procedure must be repeated at each frequency which corresponds to an harmonic component of the RTU output, voltage V(7) of Figure 2. The waveform in Figure 3 is a normalized representation of this unit's output voltaee. The Fourier series for this voltage is:

Vt7) - £ n=l

C cos(nwt) n (3)

where:

Cn = Sin 7T

ntl

ntl

n(to + tl) T

n(to + tl) L T

n = harmonic number = 1, 3> 5, . . .

Therefore, as many odd harmonies of the fundamental frequency as accuracy requirements dictate will have to be considered in the impedance calculations. [NOTE: For rise/fall times consistant with tlIL-STD-1553 and a 1 MHz fundamental frequency, approximately six or more odd harmonies should be considered.]

After the impedances Z(1) through Z(9) are known at each applicable frequency, the next step is to apply^each harmonic component of the JRTU output voltage.waveform V(7) to the cell. Calculation of V(9) and V(3) from V(7) is fairly straightforward and will not Jae explained in detail. Voltage V(8) is found by usinc voltage V(3) and the following equation (3):

vT8) = VO) [CoshGT'L3)- (Z0/Z(3)) SinhC^-L3)] (A)

Using this relationsjiip, the transformer model,_^and AC circuit analysis, voltages V(6), V(4), V(5), V(1) and V(2) may be obtained. As with the impedance calculations, this procedure must be repeated for each of the relevant harmonic frequencies.

The final step in the analysis of the transmitting cell is to determine the composite voltage waveforms, harmonic power distributions, and composite power distributions at each of the nine points shown in Figure 2. The composite voltage waveform at point Q is found by:

v(t) = NN

(n=i7T,: Vn(Q) Cos(nwt) (5)

[composite voltage! )

11

Page 16: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o

Figure 3 INPUT PULSE WAVEFORM (NORMALIZED)

12

Page 17: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

where: n = harmonic number

NN = highest odd harmonic considered

Q = position number (1,2,...,9)

Vn(C) = voltage phasor at point Q for frequency n

In the computer program this summation is done at discrete time increments from t=0 to t=T, where T is the period of the fundamental frequency.

The impedances previously calculated are actually driving point impedances at each of the measurement points indicated in Figure 2. Using this fact, along with the corresponding; harmonic voltages, leads to the following expression for average harmonic power at point Q:

Pn(Q) = lVn(Q)|2 cos (8) 2|C(Q)I

average harmonic power

(6)

where: 6 = angle of impedance ^(Q)

To find the composite average power at point Q requires a summation of the average harmonic powers, i.e.:

n=l,3,5

(Q) composite average power

(7)

The only matter not covered at J:his point is where values for the previously assumed impedances Z(1) and Z(2) come from. This question, addressed in the next two sections, is the basis for the flexibility inherent in the cell approach.

Receiving Cell

Within the framework of MIL-STD-1553, only one RTU can transmit information onto the bus at any civen time. Consequently, (N-1) cells (where N is the number of RTU's) are considered to be receiving cells. For the purpose of this discussion these (N-1) cells will be defined as either Left Cells (LCELL) or Right Cells (RCELL), depending on their location relative to the transmitting cell.

13

Page 18: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

Right Cells. Figure 4 depicts impedance and voltage conventions within an RCELL. These conventions are applied to all RCELL's except the last, or rightmost cell. The difference in RCELL(LAST) is that Z~(2) is actually equal to RTERM, a known constant, as can be seen from Figure 1. The significance of this point will be discussed in the section on chaining of cells.

As in the transmitting cell case, the first step in the simulation of an RCELL is to determine the drivingjioint impedances throughout the cell. Assuming that the value of Z(2) is known:

Z(5) .. Z(2) Cosh(r,L2)+ Zo SinhXy^)

Zo Zo Cosh(T'L2)+ zTl) Sinh(7*L2)

Note that this equation has the same form as Equation 1.

The receiving input_impedance of the RTU, Z(7), is known. Therefore, impedances Z(*9) and Z(3) can be readily calculated. To find Z(8), ZCi) is used in the following equation:

Z'(8) m Z(3) CoshCrL3)+ Zo Sinh(y-L3)

Zo • Zo Cosh(y*L3)+ Z?3) SinhCy-L3)

Solving for Z(6) using _the transformer model and Z(8) allows the following relation for Z(4):

Z(4) = [Z(6) + 2-Rl]| |z"(5) (10)

With the value of Z(4) determined, Z(1) can be found by:

zfl) .. zT*) Cosh(Y«Ll)+ Zo SinhCy'Ll)

Zo Zo Cosh(Y'Ll)+ Z(4) SinhCy'Ll) (ID

An important point to be made here is that Z(1) of this cell is identically equal to Z(2) of the preceding cell on the left. Conversely, Z(2) is equal to ZTl) of the following cell on the right. This transference of impedance values across cell boundaries provides a "daisy-chaining" effect, supplying values for ZT2) of the transmitter cell, which was assumed known in the previous discussion.

The next step in the analysis is to determine the voltages within the cell. Here the input voltage is considered to be VTi), as opposed to VT7) in the transmitting cell case. Values for this

1*

Page 19: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

TO TRANSMITTING CELL J LI t

I

T(i) | VII)

L2

V(4)

L3

Rl

^4z(5) 2(4)j \

V(5)

Tl

r —

|T2

R2

I

v"(6)

1 2(6)

Nl

R!

N2

j 2(8)

V(8)

V(3)

2(3)

N3

N4

_yi9_L i 2(9)

V(7)

2(7)

R2

RTU

V(2) Z(2)

Figure 4 RIGHT CELL SCHEMATIC DIAGRAM

15

Page 20: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

voltage at the various harmonics are supplied by V(2) of the cell on the immediate left. To find V(4) apply vTT) to:

V(4) = V(l) [CoshCrLl)-(Zo/Z(l)) SinhOy-Ll)] (12)

which has the same form as Equation (2). Using the voltage divider relationship:

Vf6) = V(4) U£L Z(6) + 2-R1

Solving for V(ti) using the transformer model leads to:

(13)

V(3) = V(8) [CoshCY'L3)- (Zo/Z?8)) Sinh^-L3)] (14)

Calculating V(9) from the transformer model, determine the received harmonic voltage at the RTU by:

V(7) = V(9) Z(7)

Z(7) + 2-R2

where: Z(7) represents the RTU receiver input impedance.

(15)

Returning to the bus/stub junction, apply the already determined value for V~H<) to:

V(2) = V(4) CoshtY'L2)- (Zo/Z?5)) Sinhty-L2)

As mentioned earlier, voltage V(2) is the input voltage V(1) for the next RCELL to the right.

After the above procedures have been used to obtain the impedances and voltages for each harmonic, Equations 5, 6, and 7 are used to determine the composite voltage waveforms, average harmonic powers and average composite powers in each of the RCELLS.

Left Cells. The analysis of LCELLS, cells which are to the left of the transmitting cell, is analogous to RCELLS. The voltage and impedance conventions for this case are shown in Figure 5. Again, the difference in the first or leftmost cell is that ZTl) is equal to RTERM, a point that will be discussed further in the next section.

16

Page 21: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

Z(l) I V(l)

Pro TRANSMITTING] L CELL J

LI L2

V(4)

L3

Rl

^N ' Z(5) V(5)

V(6)

i Z"(6)

Rl

R2

V(9)

Jz(9)

Z(7)

V(7)

R2

RTU

V(2)

t I — Z(2)

Figure 5 LEFT CELL SCHEMATIC DIAGRAM

17

Page 22: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

In an LCELL the entry point for impedance calculations is Z(1). Values^or this impedance at each harmonic frequency are obtained from Z(2) in the previous cell to the left. The order of calculation and_ methods used for _an LCELL are the same as for an RCELL, i.e., Z(4) is fojjnd from Z(1) and the ^impedance translation equation; impedances Z(9), Z(3), Z(8), and Z(6) are obtained by using the transformer model, translation equation, and AC circuit analysis; _ZT2) is determined by using the parallel combination of Z(4) and Z(5) in the translation equation. Calculation of voltages within an LCELL^is also analogous to RCELL's. Instead of using V(1) as the input V(2) is used, but the procedure to be followed is equivalent. The main difference between the analysis of an LCELL and an RCELL is the direction of the driving point impedances, and the variables which are used as inputs to the cell. This similarity greatly decreases the complexity of the computer simulation program. Also, it allows complete flexibility of transmitter location--a fact that will be illustrated in the following section.

Chaining of Cells

Having considered each of the different cell types separately, the next step is to show how they may be connected to form a complete multiplex bus. Consider the system of Figure 6 in which a transmitting cell, LCELL, and RCELL have combined to form a three subscriber MUX Bus.

The first step in the analysis of this system is calulation of the driving point impedances. Referring to Cell 3 of Figure 6, an RCELL, several points about the cell boundaries become apparent. In the discussion of impedance calculations in an RCELL, mention was made that the value of Z(2) would be supplied by zTl) of the next RCELL to the right. However, in this case Z~f2) is actually equal to ZTERM, a known constant. Therefore, impedances zTl) through Z?9) can be calculated for this cell without regard to any other cell. If there were more than one RCELL, the value just calculated for Z(1) in the rightmost cell would become the ZT2) of the next RCELL to the left, with the process continuing until all of the RCELLS had been considered. The same procedure is applied to the LCELLs except that calculation begins at the leftmost cell in which Z"H) = ZTERM and then progresses to the right until all LCELLS have been addressed. At that point the only driving point impedances not yet calculated would be those in the transmitting cell itself. Since there is no requirement that the number of LCELLS be equal to that of RCELLS the location of this remaining transmitting cell is completely arbitrary, a major advantage of the cell approach.

Returning to the transmitting cell of Figure 6, having found values for Z(2) of the LCELL on the immediate left and zTl j of the RCELL on the immediate right, calculation of the driving point

18

Page 23: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o

•|-Hh

CM

ISJ

LU O

Is CM

>

LU o

4-3+

cr

00 ce CM

h- cr

CM

>

LU o

15 "IS

Kl

-V/V-

"iT

CM _ cr to •—'

Z5 1- K

LU O

CD

1,1 L£.

I CD

J5 i.

UJ o o 2

CO

CC

_•_? |.

LU O

1 o «-. CM ^~ 1 2 -i CC — > -i

*•"* ,-. LLl Z> LU CJ 1- H -J ce . LU —

CC

2

en

co

X UJ

3 5

UJ c_>

cc X

ID

3

19

Page 24: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

impedances within the transmitting cell follows the discussion in the Transmitting Cell Section.

Calculation of voltages throughout the bus proceeds in an analogous fashion but with an opposite direction of flow. Here the known values are the harmonic voltage amplitudes of the transmitting RTU's output waveform. Since all impedances have been determined, it is a simple matter to find the voltages within the transmitting cell using these amplitudes and the methodsjiescribed previously. The values produced for voltages V(1) and V(2) become the inputs for the cells on the immediate left and right. The chaining process continues until all cell voltages on each side of the transmitting cell have been calculated. This sequence of operations may be summarized as follows: impedance calculations flow from the extremities of the mux-bus inward toward the transmitting RTU, while voltage calculations flow from the transmitting RTU outward toward the extremities of tne bus.

With all voltages and impedances determined throughout the bus, calculation of the composite voltage waveforms, average harmonic powers, and average composite powers for each cell proceed as previously described in the Transmitting Cell Section.

20

Page 25: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

SECTION V

MODEL VALIDATION

Validation of the MUX Bus simulation was accomplished in two stages. First, hand calculation and Smith chart analysis were used r.o check the driving point impedance and power distribution algorithms. Next, the voltage waveforms produced by the simulation were compared with oscillographs taken on a laboratory mock-up of a representative MUX Bus (2). The bus architecture used for this comparison, shown in Figure 7, had the characteristics discussed in Section III with one exception. Since it was possible to obtain only a limited supply of pulse transformers, the staggered transformer placement arrangement shown was adopted.

CASE I. The first comparison between laboratory waveforms and computer simulated plots is shown in Figure 3. The transmitter, a square wave pulse generator with output impedance equal to Zo, was connected to the end of Stub 6. The point at which voltaee waveforms were to be compared was the junction between Stub 4 and the bus (labeled point "A" on Figure 7). The laboratory oscillograph of this waveform when isolation resistors R1 (Fieure 1) were included in all cells is shown on the left of Figure 8. The dashed line on the plot directly above this picture is the computer simulation of the same voltage measured over one time period and normalised to a +1 volt transmitter signal excursion. The solid line in this plot is the simulation plotted waveform for the reference point defined by MIL-STD-1553 (see point "R", Figure 7). For the sake of clarity, the oscillograph of this reference waveform is not snown.

The right half of Figure 8 shows the comparison between laboratory and simulated waveforms for the same measurement point (point "A", Figure 7) when the isolation resistors R1 are shorted out. Again, the dashed line on the computer generated plot represents the simulations approximation of the waveform at this point.

When each set of comparisons is studied, two facts become apparent. First, the computer simulation plotted waveforms aeree very closely with their associated laboratory oscillographs. This implies that the simulation is indeed valid. The second observation involves the utility of the isolation resistors (R1). As shown on the left of Figure 8, the observed and simulated waveforms are relatively free from distortion when R1 is included in each stub. However, as shown on the rieht, when this resistance is removed, there is a significant degree of "ringing" apparent. This distortion is a measure of the mutual interaction between stubs.

21

Page 26: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

-vs^??

o ro (VI 01

00

-0 •Qn -02>

-O

cs o o CO (0

UJ a

-iC- cs

a UJ o.

-o 3 CL

-o o en 3 CD

X UJ

o -o -o 2

en

-o UJ U

o o CO •o o

o o o

\M

3-

m

CM

-O

-o

-o o -o

-o

GO CC

CC

<u k-

,—, -^ , ^ N N- •—- • —' u. > > > UJ UJ Ul CO (0 o <S <x <t 1- 1- h- _l 1 _l O o o > > >

~ ~ ~ * en 00

_i -l -J _J -J _J Ul UJ Ul u o o

@ @©

Ul O

22

Page 27: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

FLPT DMF - 10'!C/71

.

1

. ^

i <\i

•_ . . . ,

1 •

1 fu

i l •

J fe- ll • '- £ •

:-c

• l/\ - i

i

! i i .. -

I

/ S

i i

LINf - »MT^ iffLL S. *PLI 41

IULRTI ON

ClfiSM - HL VR IC f LL 4. ; ' • 4!

Rl = 56ft R2 = Oft

MUX-BUS S1MULRT1HN

INI •" , HC ^R It ( L

Rl = Oft R2 = Oft

HBlSIPlg —eaiMB [WAVEFORMS MEASURED AT POINT "A" OF FIGURE 7]

Figure 8 COMPARISON OF LABORATORY OSCILLOGRAPHS AND COMPUTER PLOTTED WAVEFORMS

23

Page 28: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

Since the degree of interaction is an inverse function of the driving point impedance of the stubs, the "smoothing" caused by the inclusion of resistances R1 is understandable.

CASE II. The second comparison to be discussed refers to the same bus architecture as CASE I, but considers the waveform at point "3" of Figure 7. The laboratory oscillographs and computer simulated waveforms with and without isolation resistances (R1) are shown in Figure 9. As in the previous case, crood agreement between the oscillographs and the corresponding dashed waveforms on the computer plots empirically justifies the simulation algorithm. In addition, the set of waveforms for the R1 = 0 situation graphically displays the type of problem that can occur if a high degree of interaction is allowed between stubs. If a zero-crossing detector were used on this waveform, an erroneous output would probably occur if la; pass filtering were not used. However, since the simulation can predict tnis potential problem the desiener could employ filtering, isolation resistors, or a different type of detector to avoid this situation in an operational system.

CASE III. The final comparison to be made is shown in Figure 10. As in the previous cases, the bus architecture and transmitter location are unchanged. Here the point of observation has been moved to "C" in Figure 7. Good agreement is again shown but, more importantly, the simulation exhibits the same bandwidth limita- tion on a long bus that was found during the laboratory investiga- tion.

By considering the cases discussed above, alone with many others not shown, a reasonable deeree of confidence in the accuracy of the simulation was obtained. Hence, the next step in the investigation was to exercise the simulation beyond the scope of the laboratory effort in an attempt to expose possible problems or improvements in MIL-STD-1553- One of the early results of this study is shown in Figure 11.

The question addressed here was the effect, if any, on voltage waveforms caused by variation in the inductance of the cable used for the bus. A laboratory analysis of this question would be impractical, to say the least. However, as shown by the plotted waveforms in Figure 11, a possible problem area would be missed if this study were not done. In all four plots the dashed waveform is the simulated voltage at point "B" of Figure 7. Case II previously discussed this voltage waveform for a nominal cable inductance of 0.109 Uh per foot. Plots "A" and "B" on the left of Fieure 11 show the waveforms produced by varying the cable inductance +_"[()% about its nominal value when isolation resistances R1 were installed in the bus of Figure 7. Comparing these two plots it is apparent that little sensitivity to an inductance variation of this magnitude

2k

Page 29: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

I_:NF KMTO I - iH - .- • VJJLT 7I

Rl = 56 ft R2 = Oil

T* ir * L L . • I I (. VCi T 71

Rl = Oil R2 = Oil

CO

[WAVEFORMS MEASURED AT POINT "B"OF FIGURE 7]

Figure 9 COMPARISON OF LABORATORY OSCILLOGRAPHS AND COMPUTER PLOTTED WAVEFORMS

25

Page 30: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

- I

Rl = 56 £2 R2 = 0 0.

Rl = Oft R2 = Oft

o

<n~ v i 4

[WAVEFORMS MEASURED AT POINT "C" OF FIGURE 7]

Figure 10 COMPARISON OF LABORATORY OSCILLOGRAPHS AND COMPUTER PLOTTED WAVEFORMS

26

Page 31: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

'----. NL'MBEf OF CFLLS = ?U PLCT PRTF = C9/2S/71

o

i 1 \

:.

^^-' K 1

I

\ I 1

- t t

£ 1

00 0 ICI <J.?V 1 0 .. V: *0 J SFLPND:» - ' Sil D ia 1 o. 60 | o

1 9(1 ]

.• 1 1

\ L^_^-v _^

1 1

/

1/ MUX-3US SIMULATION

NE = XM TH iC I L L h. VQL1 II DH'iH •- RCVBILFLL 9. VOLT 7] LINE - XMTRICELL S. VCI_1 4' * '

Rl = 56ft (A) L=N0M.+ I0% Rl=0& (C

[WAVEFORMS MEASURED AT POINT "B" 1 OF FIGURE 7

" • BU3 SIMULATION

- •• RCVR ce LL 9. V3L T 71

L=NOM. + 10%

SERIAL NO. 08. 39.03

PLOT OBTF - 09/; • TOim. NUKAI R Of CFLLS - JO

STiRJAL NO. 11.14.13

PLOT OHTE = 09/20/73 TOTAL NUMBER OF CFLLS - 20

•"V^-"" p*~~' 1 1

1 1

\ I 1

/

(

" 00 0 10 0 ro 1 o 30 '. 0

\

no 0 SfCONOS • 10 '

1 SO

1

90 1

1

i

~'V-- *^—~ 1 /

1 1

z

s

MUX-BUS SIMULATION

LiNF = XMTR1LFLL 6. VOLT m 0R5M

Rl = 56X1 (B) L

in"

<

MUX-BUS SIMULATION

LINE - XMTRICELL 6. VOLT 4) DRSM - RCVR ICELL 9. VOLT 7)

L = NOM. -10% RI=Oil ID) L = NOM.-IO%

Figure II CABLE INDUCTANCE VARIATION ANALYSIS

27

Page 32: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

would be expected. However, consider plots "C" and "D" on the right of Figure 11. Here a considerable change in waveform is displayed when resistors R1 are removed from the stubs and L is varied over the same ±\0% range. Since cable manufacturing tolerances are within the range considered, it is entirely possible that a designer expecting waveform "D" might instead find waveform "C" when the bus was actually constructed, perhaps causing incompatibility with his detection circuitry. This inherent ability of computer simulation to permit variation of any system parameter by a simple chanre in software provides a powerful tool for analysis of multiplex bus •systems.

28

Page 33: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

APPENDIX I

SIMULATION SOFTWARE

In order to provide a better understanding of the simulation and to facilitate its use by interested parties, the following four topics will be addressed:

Part 1 - The computer system on which the simulation was exercised, including required capacities and peripheral equipment.

Part 2 - The basic simulation routine, called TPM0D2, with a discussion of required inputs and available outputs.

Part 3 - The plotting routine, PLM0D2, which produced the voltage waveform plots shown in Section IV.

Part 4 - The operational steps required to exercise the simulation on a computer installation similar to the author's.

Part 1: Computer System Requirements - The simulation actually consists of two separate programs, TPM0D2 and PLM0D2. Both of these programs were written in FORTRAN IV and run on an IBM 370/155 computer. To exercise the programs without modification, the requirements of Table A1, Figure 1.1 should be met. Table A2 lists the core and CPU demands found during a representative run made for a 32 stub MUX Bus.

Part 2: Description of TPM0D2 - In order to reduce computer core requirements and to increase flexability, the simulation was broken into two parts. The first part, called "TPM0D2", uses the architectural and component parameter inputs to produce a magnetic tape on which the complex voltage "phasors" for each harmonic at each node of Figure 1 are written. The operation of this program can best be explained by reference to the flow chart of Figure 1.2 and the listine of the program immediately following.

TPM0D2 has essentially a three tiered structure. The first level, or main program, handles input and output, generation of the input voltage harmonic components, power calculations, and the sequencing of subroutine calls. Since this analysis is multi- variate, involving both positions along the bus and frequency (harmonic), there are several nested loops in the sequencing portion of the routine. The harmonic number, or frequency, forms the outer loop inside of which the cell number, or position along the bus, is varied. As these parameters take on their allowed doublets, calls

29

Page 34: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

COMPUTER SYSTEM REQUIREMENTS

TO EXERCISE TPMOD2 WITHOUT MODIFICATION TO EXERCISE PLMOD2 WITHOUT MODIFICATION

1) FORTRAN £Z COMPILER 1) FORTRAN EZ COMPILER

2) COMPLEX NOTATION a ARITHMETIC 2) COMPLEX NOTATION a ARITHMETIC

3) 9-TRACK TAPE DRIVE 3) 9-TRACK TAPE DRIVE

4)7-TRACK TAPE DRIVE

5)CALCOMP PLOTTER AND SOFTWARE PACKAGE

TABLE Al

REPRESENTATIVE CORE REQUIREMENTS

AND CPU TIMES FOR A 32 STUB MUX-BUS SIMULATION

STEP TPMOD2 PLMOD2

( 13 PLOTS PRODUCED )

COMPILE

CPU CORE

I5S I20K

CPU CORE

6S I04K

LINK/EDIT 2S I22K 2S I22K

RUN 7S 246K 1 IS 242K

TABLE A2

Figure I.I COMPUTER SYSTEM REQUIREMENTS

30

Page 35: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

INPUT (ARCHITECTURAL/

AND COMPONENT

PARAMETERS

(GO TO \ NEXT HARMONIC J

GENERATE HARMONIC

COMPONENTS OF INPUT

WAVEFORM

(MOVE TO \ NEXT CELL I

ON LEFT J

CALCULATE IMPEDANCES IN CELL TO

THE LEFT OF THE TRANSMITTER

(MOVE TO \ NEXT CELL 1

ON RIGHT J

CALCULATE IMPEDANCES IN CELL TO

THE LEFT OF THE TRANSMITTER

CALL

LCELLZ

SUBROUTINE LCELLZ

_CALL_

IMPDNS

_CALL_

ZFORM

SUBROUTINE IMPDNS

(IMPEDANCE TRANSLATION

ALONG CABLE)

SUBROUTINE ZFORM

( IMPEDANCE TRANSLATION

THRU TRANSFORMER)

CALL

RCELLZ

SUBROUTINE RCELLZ

_CALL_

IMPDNS

_CALL_ ZFORM

SUBROUTINE IMPDNS

SUBROUTINE ZFORM

CALCULATE IMPEDANCES

IN THE TRANSMITTING

CELL

CALL

IMPDNS

CALL

ZFORM

SUBROUTINE IMPDNS

SUBROUTINE ZFORM

Figure 1.2 FLOW CHART OF TPMOD2

31

Page 36: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

CALCULATE THE TRANSMITTER

CELL VOLTAGES

c MOVE TO NEXT CELL

ON LEFT J CALCULATE VOLTAGES

IN CELLS TO THE LEFT OF

THE TRANSMITTER

_CALL_

LVOLT-

c

CALL

SUBROUTINE EMF

( VOLTAGE TRANSLATION

ALONG THE CABLE) EMF

CALL SUBROUTINE VFORM

TRANSLATION THRU THE

TRANSFORMER)

VFORM

CALL EMF

_ _£ALL_

VFORM

SUBROUTINE EMF

SUBROUTINE LVOLT

SUBROUTINE VFORM

MOVE TO NEXT CELL ON RIG

5 "\ LL )

CALCULATE VOLTAGES IN CELLS TO THE

RIGHT OF THE TRANSMITTER

CALL

RVOLT

NO / DONE ALL RIGHT

CELLS ?

CALL EMF "*

_ .CALL m

VFORM

SUBROUTINE EMF

SUBROUTINE RVOLT

SUBROUTINE VFORM

d> DONE

'ALL RELA/ENT" HARMONICS

?

'WRITE \ CALCULATE VOLTAGE \ POWER PHASORS * LOSSES FROM

ON MAG / TRANSMITTER . TAPE /. TO RECEIVERS

PRINT IMPEDANCES AND POWER

RATIOS

Figure 1.2 FLOW CHART OF TPMOD2 ( CONT.)

32

Page 37: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

c c o

UJ o

of I— t

t/> l-t X or of i- • u-. u. >-• UJ f? > < or 1 U.'

UJ O

< >- c I _i ;» o <

O. 2 D C

7? <

2 c

Z ui 5 i-

I -I T <J I- I- 2 OK Oli!

Z •-• Z _l u 7 -u J5 Jh

t- i/l h- Z

a u.

o ui Q

>• N or

T • LU — a ^j

r m «< — •r •x

^ _T < r.- O n c <\j m N f<i —

3 CO •v Q to z c a < o of a* < co u.

z

7 ^

x z < •- a: O o o. a a z co >

x i- or u »-. ii, _j _i x a Ma H(0O t- < LL jy w ^UJ 7 x _i «

ii. or < t-

X Q£ K C C — Z U- X <

• •< ILI •

z »~ z x> * 3 v z -^ to u: cO T T a X T o z x

O -T O 2* I- 2 < u <

CO C O ' •-« z D <

or to c < x

D '

z c CJ »-H

ixi ec *~ •-. ui Z ar co Z) Ui T CO LU CO

UJ H lU U! Q. ?" -I Z Z < »-, II t-i t_* ^ -I C -J _J t- II Z II II II

C O

»- c

CO LO o <t »-. —I X </• ^*

— > i

— or i

or f*

cO ifi

n a. — or

z LI'

*D O — fr; —

LJ =5 X h-

cr a t- LL CO CO lu z to < O •x. -J

: < C 1 »— m i or — • UJ z : to t-t

< sC u; -3 LJ

. — h- or, • f-J CO -J llflCf »

Wflf XO w-

• o

»J -I r LL, OL

• Z CD : »- u

1*1 VI a — z a. fvi tn ar L. J (- iu »-« r or o x

•D f- < — t- a x I^J to • Ci. z rsj *- _l •• • r\j <r —

cv — c —

- y v z c- U_ U. V * X X" CO

CITUJZ r«i » Q. < — ~ »• or N N MK

r^ >* v Z — z ? CD ar o c s: 3- r r T U. T ST C X O C o t- o u

I-. ^ (?" —

z • tT' •- 5' «— 9 - c r — • •w vT — — r o r~- LU _i V UJ

'jj UJ 2 i-4 L^ t— C • X ^ tx n\ tyi rj *- * c 7-

•^ ^ » » •o cr •0 <r UJ v. "S C C£ —. LU <l ^) z r-j f • t- • _i ^J — — Z — o o> — «— r^ — • — <Sl — N —. m — a •-« LJ x x a: — O i- o —* vP o 1—< -H —•* O rj »— # » « _i • < O "sj of if* o cL o UJ o UJ ^^ i-< # • <i < a o — rsj — a —t u-\ -t -- \f\ •—I ^T- —J N UJ • fM tJ) O 3T — i— — O to

CO N II LU UJ O x ae _l < l_) — ir» t- IT h- IT t- u^ i— t— 1 <ir ii -1 o <• 3 "

• mm •c •— < — <I — < •r t- o o o c a to U.J •—' -3 m c 3: c T Q 7 C T *- — UJ X X UJ r o or < x II < •t <r or < cr < of H II i II II a U II II II J •-t LL a UI C UJ C LL1 c? — O CIJU3 II o o o < o. or LL nr u

c c

at

c

or u,

c —<

t- i- X X X < > ISJ or x o

OOOOOOOOOOOOOUOOOOOOOOUl.)

is

>

or c

*-> rvj n o o o ceo c o c

o c c c c o

ooooccccooccooocccooc ococcoocooooccooooooc

33

Page 38: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o o

c 7-

m

O

3

Z

T x 1/1 <\, a:

4

_i

en 3

a: 3

at

«• . r\j

» — » • • » ae ^r • » j- - * UJ » rj, 'vj • 1— • c — U. •- < » II ^* ^-i 5" O — s. • -t M - T J. UJ ii X — UJ — • • » II 1- •• » li1 » OJ tl O - K a - * u_ •• - — or -H >—i

••- 7 II - O - — ii -j t- Z IM • 3 (u -1 •-* 2 - ii •4 • • *• * » a (/" O -J + < * • • OC - • - ?• t_> ••1 iVi <T - ~ P1 O c IV — V • II ^ » a. * HI U." jf a. — s t- -J t- »~ -c a. » O! U-' * -* *-* _l < (/) 3 Z? • 5 - *• J* - 0< m t— - »-« a o <^J •- it S - 3 II h -

a vC • >-

# »-< K «r # t- » or •» •-* i j «i # K * I # i: o u

— — e ;? ^ ~

^o — or • i or c

< <

o o _i «•» a. •

or: * - ;? -i

»-• a: » < i r£ o

>* < c •> u *

-0 f>- - • - II

"«. U' III ~H 4,T l/J Lu H H » or or

< < or *-*

* -. v e «•« kT> cr ^ »H ll -. - U. It ^ ^ « rr —

<\J IT, — I- — ^ —• or < or *•« a x x sr

< U. Of U. O UJ X C X O nT t- U. K-

l- — - — CL "-

II c «* Q. X -* r * < >-" O T

or O

fTU >- t- C? ar r - uj i x cr _i i- i • in •

*- cr — t- -.1 7" 1*0 U- ' *r D UJ ui

t- n • < -T :

i- i- ? . win;

' < O T -j •-• or : or or ii

7 sD » a n • _l n

B. ^ K — f- r j

• t~t — V1 •

< — < <N

CD t-t K

r- O • ^ . . ... i LI •{> — -C — JD — X — I I t-

f\l X f ^ c •

» -» — -* ai— t— — rsj

• (\i — II -M -* C f. ?. * + - ,0 •

rg u_ li — • QC -I * T - II U-

•• -* X x ? cr

- •

— — T _J tu u

* X

: u' < i- x

) o" C . » u.

* o — sO — !— ' • UI <

rg i- s: i

u1 y C i » Jt u. i

o — c — O -« (- I

O «— ^) — *o — UJ — t- *- I- — K -J • LLJ <r u. < UJ <i I t- y i- r i- x i t-i or •-' or »- or i c c ar n or rr IlillL JU.

of C 3 u. -

^ II o » ^ - •o •• — • — •-» H- LU ^: < t a ^ y; or or -J C 3C H U.

I -» — X

i i/% <i •• II

II II ii^ — T -O

«- i or i-

_• ^ ^ ro

C- : o

M^H v

? X UJ

PSi 3

< D C ~ tK •!>•

a JU c IX - » o

i-^ rj

< >

-4 » f-

or < # -« # t- T •-» X. | X a M : < — K l

o r — 7 » v

• <M a. « -> II II

IIZQ > o -> X X I G < UJUJ

2 fM X * UJ * « X • UJ

rvj il II x x UJ

II 2

Z U.

(M ^- — L) O O ^* ~ o o o

or o*o-«fM m-4-i/N-o K rj fi d m mmmrn or oocc oooo c ooco ooco

r- (n a- c — rvj m -J- IT %r h- <ro-o «• rj

r^ m m ^ <r ^t ^t ^t <r ^ >* >t ^r IT in IT

C J c o o c c c o o O c c o c o c o c o c c o c o c c c o c c c c

ir» * p^ rri u^ ir\ IT. ir o c c c c c c c

OOOOOCOO© ooooooooo

3A

Page 39: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o c o W

3 a.

o

DO IM -r

O M ? t- D of -J W I

a - D • i- x </i r-

Of »

8 o

O -I — T

r

t~ •-. x

»-. of -I

Q. S • X uj

O C i» - 3

—| T QC > X M a V < t—i •c y a »-

2 T or IN Z

g u h- - •v 5. o rr a i/i _J » * • */> —

UJ u> U' •c X' Li. a cc I 1—• « c > X u —1 > U_ C * T o * t— .—• o C 2 X -^ a t- ~. 2 2 •—I UJ i •> z f- < •• — c t- IN 7 Z 2* X </> X \ Ii. » c. ar I-H U_

3 O # — — —> — v. 3 » UJ — O O- O O II IT r- an C » o to a z X X 7i • «" X a. a. IN c -^ U1 5" y r _J *• 4S UJ .-H UJ —• O —i c .—• 3> X cr r t—< •> • Q- O — _J • — UJ UJ ^- — Li O •H —• a CO T — t- • |- II -J D 1 <c — 4) — -D ^r — UJ II 1 * * O x at X U> u. Z Z z — H — t- — — l- • » i- ^ V _J L> II -1 O" UJ • u t—i KH z UJ «i UJ < UJ UJ < OO » -3 » X X c Q. i^ X -5 O t- h- # f- 3: D- r. K K T. > X a. IN • II II LU I U *•* V t- z Z rg t— a: M x t—> t—i X • u^ 3: f\j ^- —1 a. O (1 11 LJ :J o C II a a nr 2 DC DC C* t~t r c 11 _l O ?• II O t—• t—' UUU2 3 u. :* UL jr * u • m u Cl O X X < >- MJ

n "" cr u

c c

-. — o a.

?• — a „ — r1 X _J cr 3 »-• X t- 3 t- m 1/1 •- VI -* z wor ? 5 CO -J _i — » t-H U' -* * x ^ »— Df # 0 _J — •3 —4 — O # a. aa 2 -J X *

t- < 1 0 M i -J < I^T O O h- 5 c- Q. O < UJ tl tO as # r UJ _J 3! « r^i UJ < u y »o? il t— ta n 0 ^ x •• — UJ — X

11 11 * z UJ T — II Z 3} — • h- a * 1-

z> i r*- D X ~H tn <th3 • a 11 •• <

vflh ^ 3T -^ y -J C -J irt — ^3 _i — -J Q X N M O X N X

— -J — UJ

< 0 Ul

a r r< 0 ••< L>

" ^* _J

"•

3 3 _J O 1- „ h- UJ

0 h-

O 2 O O O * IT »- C — *: — X — ^ — a 0 a: 0- N h- •-< t- 5. _l y IT T- X -l X X • LU Ul • UJ UJ • UJ O 3 O i- t- D O 3 u. z _J _J < Z 1- UJ Z

t~l rx »-< 1-0 • »• 1

Z 1— -J + z LU l- < Z K- ^ ^* Z -1 Z •— Z Z -J — Z II 11 c <• II u. 111 c II u. O z »-< u 0 z »H 13 0 z •-" O

>

r— r— r^-r-- r— r— r^-r^r— r~^ oc- cr o ooooooooocooo oooeoococoooo

m^irONcDO'O^M ODcOcra CO 00 it O- fl> O- cococccoca coooocoooc

m -t \r\ o 0 t> o <> c o o o c o o c

r- a a- o 0> o o^ c 000^ c c o c

^H (\j rO ^ \f\ Jj o c c o o c o c c o c o

35

Page 40: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o o

IB < a

5

o

CO

rv

z a

Z Z Z

•* in ^

¥ * *

C*NI rvj r»si

Z Z — • » Z

-- rj •• — w ^

z a * — — 0T

UJ LU I- D O Z

t-« • C-» 0* _1 I Z (- UI -1? — Z Z < li u. C u o z •-< o o

o Of UJ

II II Z >-i

UJ >

>

IT •• » ¥

" — Z Z *~i i o — » - *

I— + -< c\j z • - z z

O • ¥ :* c* * I li -c ,» J3 . — c* rsj rsl » »

t— *: * tf i/> — t/i t/i — —

I < INI ZZNN -I II C C II II

• UJ i « UJd d »- loozDrxzz ' Z Ui »Z <-• f ' in «Ni" -l-Z »t-_i-i - » :z — * z _J -J * * • C U. — O < < ' IO*-*»^tJOOMhs/

o m CM .N

c\i O u I t- O «» z z o -I •• o C -c —

« ivl • # »-• - •-i in »

— a. » x f\J ^ *sl <— » — X - * — I- CM CM M X • cr tr uei

y — i ~ CM .

• -• Z ui .u

t7; z z >i <

>0 CD

•o a ci .y c-t s£ u

— X csj r-g y~ U. U. «- UI UJ U_ Of n >--'

— _J — a —. ^ t- H- » U- -I ^ •- » K u h- — X UJ >-J » o •^J

•i —. K u_ rvj o (T or X > re vi r ~ (-O 9 + > »- ^0 1- _j » « U) _l — ^M r^i u: •• — -J E

m CJ — —. O • • f^i —. t^j # cr tr f-1 1^' _J X

z » .? .— Z S ^i CC ->j a: # t- t- » • • UJ * » ¥ » • < - + h- a •H r^j X V 3 en r- u -~ r — m t- C. ? —. T t- y or c > • nr u. u •* - t^j » _J 'J. •• 7 X y X i- — ^-1 IX » p or •— *. — *r * a v: m II X — UJ n * — X X t- ^ — Ifl — — 5" ~- a- *• — L5 cf 7 ~ c—• o u^ i *-* T z -•J 7 •—• T D ft -J < — <- —1 c <—1 p^ X UI

PL c ii — a: V t- -» y t- ¥- 1 o m M II 5 UJ fv — a: U1 a UJ •v X UJ t—» or < ^ • "v. fM Ui —. •L Z) I -7- 3" X U- 3 •sj X !Y < o -— # o ^ • t- ^ -^ 1»SI 7 •—t » u *- W >**4 2T II t» II ll i/i II rj *- t~ OC < LJT •>

H »—1 o- X ll t-H IVJ r- <-sl ISJ H O — UJ •tf U- ae t- r- •>- -J t- _i » 60 -j •>- _J t- Q- » cc Of UJ 7 II t- X m UJ i »

m UJ _J z _) * — _J O UJ _J •z. h- •^ t- t- fsj t~ n» «-* or: X Z X X II 00 < c < — U <i ll on < 3 2 — L< X »—i I Of of O o U' II mm

T: _I o o o -"-J ~ O r -> o ci X ^g or o to X u. Ji u. CM L1) Z UJ

-r i^ -H

— ,-J r- o

0"

L) O O I) o

oc <-• rj m 4- iT'Cr,*(DO,OHrui,ft^'ifi

ocooococcoo

co O C PN <NJ m sfr

o o o © o o o ooooococooooo

36

Page 41: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

01 O o o UJ O < o.

& o

Z Z ^ ^, z »

ro kP — ^H rj UJ -— * •? » » a l-H

v- * — ^ V <T » t- a

Ul OJ Of UJ U' » » • # •> » •a —1 < II UJ 2 UJ Z Csl y ^ y T z » Z * + •• » ••

M ft) M st -J ^ rvj z z — H — t- - _J « V 3 Z -^ -J _) "3 *f OC -I _J trl • • r * O — < - - o"> "JJ tr t- ? oc — Q£ rsj Q. ^. —. UJ L3 UJ •» 7

(T cc Z 0 [£ w w 2T i? O < Z) cf *•

f\l x> CO ft)

^J

to — _J J- kP <

—I

a" st < t-

II UJ • — * c — Z -1 - •> _l c > X •.' o *-

5 u V 0- 0?

3 UI - ft' v * c > IT-

r > a *- c

st cf t- J^ z < a LL xn *sj 3 u. </) * £L fSJ isj -J a 1/1 ^r O o X _i - 13 X -j * # * » -I fj o —1 n a u- <r • IU

0» — •. — — — » _l K ro Li: o h «I -j a: CL fM 7 n IL> ^ Z 7 — LL Z M 7. ? z ? LL' u — T » » y. II - • o *• •• » • v" » # » » » •• o 3 — c h- — 0 CL _i ^ •—• Z o t- «-; 5 ro. CC h- <r 7 — -r ^r sf .r Li P1 h* h- (yi z c «T s-

• _i K » •- _J f- » z - ^ » H- — » X <t •• — X 1—' UJ CC — *f « -l * * -*•

• _l V * ^ v ^ if LU — h£ 3 o _l V t~ IU af — 3 C»f C — — — — O —

•* — — _ *_ U! • — c M • s- o-> -I UJ — K h~

UJ ?• > T u. Li- z > 2 • 'ii Ui L'J tL. _J G •- — DC 3 t- < Q. to s- <_0 X II w oc — II — rf ^ II II Ml s— u —i —i u> -1 _l T — — X

— Of UJ 3 UJ u_ — or UJ a Uj w — —. UL U. UJ • ^-1 UI n • u. Ul • —• UJ O • UJ UJ O —• — Q • ^ I X u. 3 T z T. X u. 3 "SI ? Z 3: r t- X 1 3 *> UJ 3 f- oe • 3 > UJ XJ rj O -^ —• UJ o

•• u. i— N > Z Ul » IL i- p—• > ^ II » - LL> UJ < •- cc z -j O Z < i- Of r* or -1 z Z — —- X Ul

CC X II i—i •o X II n—< -1 st tl> Of r h- •—< —< • >—< -jf 5T »- •—• ^H • •-H i—• Ul Ui L'J o • » cc _J 1- _J o- J » H _» h- _J •- _l ^ * -J _J LL X 5^ •- .J i ^,

h- UJ X I" t- _J •»• ^, 1— H- t- h- H <I z

*r — -I m UJ _i Z _J V — _j NP UJ _J Z Cf X ^ _1 -J Z — X z -j z ~- 7 Z — X z -J z — z z IH t—1 •-H H — — »- LL <• II i/) < D -i — LL i II 1/, «j r <S s- — «* < nj u II r < II U- G UJ LL II a <4 II UL c c nr- oc a; UJ It UL UJ t—• o y -j o U O Ul •"• o r _j O LJ a OJ UJ o o O •- ?" u <~J z H U O

M 2- o t-> e "- o o -e t i CJ Z •-•

CO O c m c un rj

N N r-~> n <J sf

>

CC" O -« fM i_ IT u> in Of <-" -^ -^ O o o o

m sj in JJ IN on •o >o «o *o »o «c

o o o o o o

O O «-< f\j rO st in -o r- h- r- f- r^ r-

c c c c o c o COOCOOOO

37

Page 42: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o c

IS

a

0> •»

IT'

3

3

< e U T

2

o

I of

a w •J Z -

I — >

N a a X

a UJ

1- • n -5 • lO - 2 CH 2 ^ •- + rr f J o X » M h- O iyi - UJ — z ft r--i s: • Z — ar: a - •> i •s ftH - r-l •• O X UJ

T ** ^,. # UJ X

Q. rj l!- 1 )

> . * aj 41

Lfl UJ Z •— »-* - * z t nr UJ N # 2 » -J — a. */) <\j ^' # < Cl u -1 u_ M •-

M X t*» —i — s, • • f- — —• Q X o U»' — a. X > P- z or (V M l-sl (Tj r —. o — Ui • U - ^ nr N ^ c. M —• < # * —. X U. X r^ 7 V a c » < II # — — ac - - * * 'J I_> * 1- < — r o X - 0* # -* ly

c, ^ ft fsj ^J UJ •• X UJ ? — iT K-" T h- ft z ^ -SI a - v. X + — X cr »N* •£> O X -1 a. • —i X » — X UJ •-• -I » * <f — — o ft W » — < » — 3 oe h- _J » • o r — —» CJ CC IJ—

-I X - .-) —1 7* + "-J CC i*"1 ^J 1- •~- h- Nl IJ* t- ^ < x "v — t^ -f » —. z + m < t—1 O > ft t— Z «\J X » • • UJ X » — U. # r ftH •—• C » » II II ^ Z rM N re cr" ~- o - -- ^- » I * (J O a.- r- > (- •^ —1 N or H X ~ a: t-t N » J" J- *• • y. # X uj •> •p UJ » • T K * w QC U1 IL < r ~- l^s, rr ft KT> + a UJ » •--< I" K "Vj X pi # o CC U) Z S UJ C z ^M » V hm IN] u> * » X X Ul o- t- N z a in Z "v » CJ —• — "V — •• *r r~4 — U' ~ —. s D D Z # it — UJ Z -• X X LLi z * — f- 2 X o re (.3 -^ — 'v » -J rt. Q' • CC it w UJ rj a K in •• O K- •* rsj cc < sfi «P IT ~ ft h- Ul I X U L) t- Z a r- ft l- h- t- •—• t- — N ^ Z O ro o m U1 •—» _t -H N — •— *~ o — —i 1- o — » •r X — — II 1 t— c rj c —i _i M T 3 o * T ^ — — < Q.

a T cc Z II 1 — Li »— < o •• •I • II V < —' Cl 'NJ — X > • ^^ a- T _j Z X X • —« X — O »- i- UJ - u. O *: ^ _l < cc •• s r\i UJ u. c. V u -I < z it i~ bj LJ c UJ (J Hi Q • -i < Cf < U'

3 ^ •6 —• < « < 5 o It o — • =3 K II N — < I «I — II 3 •c =) II •C, >c — o < *~ •- 3 II 1 O < T <T» —• 1- Z — —- y- • T o N UJ i—i V, c —• h- ao *.- < a m II II U_i M *- or a z C± Z a" — — t- X _l O Z ar * UJ ut *— CO II < t-t UJ UJ < l/l • in —' It < II Z ai •< u •— or Of J- ^^ >- e* < < a. TC K-1 •-. t —. UJ UJ < QT * • • M jt i—i » • CC < II o If »- t- h X > ft o- II II 11 UJ cr. *- r » I- UJ t- cr n. l^ H II II cc t- •" U' t- a. • 1- t- X JJ ft z Z t- D. + fN T II II UJ z UJ Z "-• !—• a • X * r> N i"*j Kl 5 M CC X i -P. X >~ z hj ^ c >- J z D c z i- z k-l •-i CC LL x *o — — O Z rt at — — r-J rsj fv( a z O a- or r C II Q Q UJ X M t- CL C' o o UJ X D i a u: X z y X Q r M c o II CC re a <- II U- u II c < ii II u. U X ft z III

l_) 2 3 a - m r C U or: O 1/1 IS> jX u. nj O 19 l- Cl X o Q£ L} < X t- <-) z z o *- z I •% u. * <N T t-t »-< * O X * U. i-i a O ul < o

>

CO O O —* rjrn-*iT'0'>-at>0 <-<

oooo ooooooooo o

OOCOOOOOff Psll\jlMPg(MIM(M{\|(Nrj OOCOOOOOOO

r\j m ^ \f\ o I f«iNPs.rjrgi\jfM(M(\j(Nir4n*ri iNjMrjrgfsj^pjiMfNiisipyiNtra OOCOOOOOOO coo

38

Page 43: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o c o

a.

9. o

00

1 O - O. -

uj or

z jt uj O a a

— o UJ o a c t- Z T.

X

CC

Z

•*r

o O.

2 O

o

c - z - X X

II UJ ' O O I 1-1 ? I

•-• II *

2 — m. y~ -^i - x c H U' * or 0 •> *— O ~ •3 ac X •x -A cc *3 2 T 2 2 ¥ 2£ 1 O <c _i o> Of O UJ ac 3 » » —• < w — CL »• m • — •- QL X UJ t- _J

•tf T >sj — V c Cf •^1 r«i fsi O X 0 <T • h- Jl «t —• » or t/1 Q. -* < UJ • • l~ cc «—• QC * - O 3 — lU^Cf 0 a 0 I of 00 r- K 0 f- x • Cl. O of — » vt a + B. U' u. O J" 0 O O X UJ ~ UJ fvj _J cC u. » • 0 X _J t- «-' U> _l — 1*1

Of ~ X t- x < -* -* X X *~ < —« •> -• < t- — •- I/) O LTi V * Q. 0 -0 0 •— ^s, # lA "^ » H CO CD TCD- 2 Of • t- -* —' — 2 Of • •-H N* V O < rj x < IM O t c O a » * 2 ^ 0 O V • K- _J ^

• O 2 U Q. —• t~ M "V r\j • Q. —1 •• V • - • - a — < 11 or M U vO — • h- t- 11 .© — CD * h- -0 UJ II *- QC < H 3t — h- 00 _J O (~ — t- a x _J — •»- < * X < X Lll < LL • t- < UJ < c • UJ 2 to II a. 11 a. a. f- r •> *: 11 CC K T 2 ** 2 H — 2 0 cc »- cc t~ M ae x —• t- h- t- CC I-- » •- »-i u. 0 2 «r •< .1 c a 0 0 u. •c r Or: O v. u. or •-» 0 < T Of a J- 3 U- ~t *-t CC »- 3 U- * v. •-• 3

I 2 * 2 ft

•• rj -- II II «•*

a 1/1 < —

— »-« 2 it- 02 1 2 r- — : • II c a 1 u r. a M

z ** f 2

y •• •• ^

— cc c 2 u' r;

• 2 — t- o •• 1/1 t/l

II -H m »si —. 11 < — 2 * O _J w w < 0. O II UJ

»- r- H- QC Of O* W» H > 2 fsi 1; O C u1

a: C o at

— c 2 2

» -— -j

"— LU Vl

e~-v r^j O <^» 2: ONO «x z o ir < 11 •-. 1- ar < < t

11 11 a Noa x ^ < o < I

I- &

or o. — ar c < — X

— o • 1: a — — -J ? or -r ~ o. » a a • t- 1- c fSS J:

T C X -I < »

X II o v — a: of 7 II I - — a^zm ar D < or a. 7_ T a. t- — II otr or •- t- > > z < u o o ar or ar o

— ^ lA

< . O

O UJ — -> z Zl-M Z < s

•• or 1 — o

II a: o it UJ - » 5 •

— a x v o. 4- -- • M _i •. » -J X >v UJ c • u * • a. - * -J v *

~ -v O

a 11 1 or z > — <_) o. or h-

11 ar t- > < o or or

I- — z O* X o

UJ - -< r 3 -0 — or z ~ •- < ^uj< I t- 1- I z >-• ar * o a: c * o l u. -

— X r- o

or eg a. • ar r- > u. o *- ar o

-ZIP a «- » a- a. rj

iw • Ours t- > u.

o •• o or x

i- o • J3 </l Z <fc < ^ *- IM _i or — t-» » K O »

« I o x II X <> IT 0> >> — —

•o — — h- < UJ < I I- JT I M or or 3 1 1 u. 1

CHl-3<l-s/j ljJ-hZ-1- » —

• U < M d) < • UJ JI-II-H • I— o. -H^ZHKIDMOQ u-orocarooa-r-z N3U.U1IJ. J)It/)UJ

9

o — 0* aj J> o>

JA

o- o

>

r«jr«jrg'j\j{Nj(vjojfMrj rvjtNrjpgrg 00000000c oooco

(M (VJ O O

ojo-o-— (\in4'if\*or^oD'>o — t^Jp^^^^/^•o^-coc^ o^(Njm*tu>*or^a

rjrjtN^ji^rgrsjj^tNj^jrNjrjrsii^jfvjrjlNrjrsiraJN^J NrjNwrjWMWftj coooocoooooooocooooooo

ivr\jrgtN<vj<NjrifMfsj 000000000

o- o — so » <VJ ISJ *M

000

39

Page 44: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o o

< a.

* CM

o

• _J T • _l z> — • a: t- a. • < 1/1 •• • CL ae IM *••

••X » rj

I • X (SI — j iT! f- po a: j D » »X ) t- a ^ u. j vix •• x Nil O tD

I » x m • r fsj co — ~ « N N • x ot: m ; iu i^ ? - ) JOOK :IUJZZ ) x K r IL > O Z C X 1 l_> I-I o »-

z Q' UJ uj T

J- *~ < LU ac

X u V. < — Z < Q. PNl M Of » — t~ < cc — ?. D •L X 7? — O Q LL » T4 c a' cr x ml * -J a: T. _ * O U- T -J • r cr X c » r„ >- 1-

o — + fi- O. 1- o ~ ? — 0 Lii a o CJ — Z o T f- =C "•< ) tt

2 • V Z — 3 UJ UJ o •• ^ — • • a. C-l uO t- rj — or r t- co r> n

N =3 * _J z a * _ t- V • < </i i/> o ~ V CO — — a: z z «* fsj 2. rVJ -SJ z t- < < ~» II o II II — i;' lii

UJ a. c£. UI 3: x o z D T 7 g T T UJ • Z r—< r- » U. r- ~H rj • i*4 t-« m cr X II II

Z - •- _J » » CO _l I- I- ~ ¥ ? -J * ^ — _l Ui UJ 11 — rz, «T — — u <r in to *-* KJ o o -VJ ^ »-« U -J _J

c o c

a — < — a. z + » — <N 3T •

— Z -J .

•iss ? — * »- co

• cc

: o. z

i — ^ —

* — * • < ar z Kt z *- X Q II — O LU a. •* Ct LU u. 3 r z r x

rjfsjz>-,*u. »- ^ il -. uj X II

•— J t— —< — I— -J K muj J2 Jj/- -J *OUJ II i/i<r O < - u. « Hi/1 *"_JOOO*Jt-t u T-l

o c

* »* — «• sT — c-> X »M Z a: X II O OIU»-«CL u. 3 "J Z X N Z II "— Z

••* -J IT or. _l t- -J »JD J2K1T Jh Q < O < — < LLI Z l_> O a r-g o Qt UJ

O c CM

uuuu O LJ O U O

>

a- G u.

cooc ocooc—« ocoo ooooccc cooo ocooooo

pgpl^^OMO

o c o o o c o o o o o o c o

^rgrg(MfsjrM(MCN»rg coooocooo cooococoo

40

Page 45: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

0£ —. *r —i

a. 7 + » ^ *• - v J^ —

t- - — z c/> c Z — c -t p »• rg o _J — rj ** —

•> _l <E c — N z -J !^ »-i c _J • o » a: •- a. c •* <si 1—

v «r i/1 IN + w a. ac **J «• — Z — ~ » s ft p» C5 — * z o •SJ LU u. — «i h> + fj » —. — _J •> V f\j — Z » v 2 -< _J Hi »— m a r - ^ — » • "-> r> ft » f U m* — cr (*"> t—

O t- cc a IL - PM 3 •• _J cc <s> T » X H K — H- ^ •

*sl u_ c AC tn LT l/l W —. 11* •> X rn » -i N Z N rsj Z Z M cc -— -* _j II e II II — t-i N M LU a. — or 1- X or ff| a Z D T Z 2" I D Ul LL 2 — m » *' »—i » • LU O -I O 3 ry • 'NJ *-. n O X or o. u. y 3. s ft t- _i »• •• CC as r K- 5 U. V Z _J v *: — 3 O 2 r X IL — O i — — u </) O o r- ^J u

c o o

u IVJ rsj t-H

^ o ~ NJ Z » c cC — » f*1 r: X S, M

•— 3 — -J — — _J O m — X -J _1

[7 „, i—

cf IT; ~ a;

U' 2 C LL) (/i n^ a z _f * o 3T _J * * •

f a* -r 7 •• iT — a 2 pg ? ft V •• • LL - + * ^ 7 — ^ H- I/] 3" — IT — » F^J » ..j Z * Z * N V — ^ • < tt * V — — ^1 — — ar *• •fi •a* t/* 3 ^ r^w Z h- T - N Z a C II •— Q' Y. li o 3 UJ a. — ry u- -1 LU — — a LL 3 5. ? 5 X LL 3 •si Z T

CJ ISl 7- k—l » LL h~ — INJ 7 H ft M 2 II M CO X II i-< _i ^T a: h- _l h- _J * *- _l h- _f K- _J _J ~n

m u _J 2 -I y: — _j •O LU _J 7 ot V _l H- D II I/. < C < — <X. <T II CO < c <T — *r Ui ? 5 _J Li o o NJ —' u T JU u a, N o at LU

O O U L' O

^rgm^}- tT ^ N <n ^ o ^ OOOO COOOC-^<-H o c- c c c o o c c o o oocc ooooooo

f\i i*i ^t iT» Ji r^ en

O C O C. O C' c ooooooo

<-t<Mfjrs,(\jrgrgfgrj oo ooooooo ooooocooo

41

Page 46: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o o

IS <

o -I

0» c

< Z H

— ~ /)

l/\ <N ~4 — w- — >- fsj

— r 3

^ < ac KJ

CC tL ~

LT rj <f r n

C V. • » > ^J •* ff _l •• X »

NJ u. o OJ *- x IN m 2 UJ irz-

»*"j K X or -< 3 LU tu ? 7 O -J o a a. a. UJ-JT as i K < ST 3 O 7 ut O iA O »-* Of U

— « —. f^j rs» *sl O f\j — .-t •• •« # (* f^lT + — —.—. — «—.

U- *^ »»»•.»•. .j

x ? ~ ~ — *- — — — • <U'U:iiiuJiiJUJ7

— a it — )i — ii ii — <\ii—~u_<—•u.-^'—a; «\-^ 7 T ^ T 7 <* 71 *~ "Z »UJ *• UJ » »U. aOM <* -O a x

u.yv-J^'-r^^' — x n —•<—•< — — u KUUJULUUUIIU M

? ? 7 « UJ Z 7 (.?

I <r m K- < ?; <? *. — » .-J K * - ^ ¥ V • _J ^ * 3T Ui !iJ Z" > y u. fr — II Of II O HI u. — 0£ Lil CD u.; — U- 3 1 T St I ik 3 Z

N>ZUJ * LL »- t J > -"• » .•*

II t-t a> X II i~* r- at t- _J t- _i k CT. _J h~ _J *- » r>

00 UJ -J •* _J V — _J > u _i 7 -^ t- a II t/j <• o «r —. u < II 1/j <r r-' — u z >• -J o o o UJ t— o 5 J o O U-J rr UI

o ->

ooooo oooo^-«-^^ oococ ooooocco ooooo ooooococ

^ i^ «fi N en t> c HHMNMMN

*-> rg m NJ IT J") h- r*j (M rj (\j rj <\i (\j o c o c o o o o c o o c o o

42

Page 47: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o c

ii

— _i z ? or

or H

_ h» — — •r UJ » Z T* - • —* » * V

•.n CM N — — — •Vj

r«l .— _J _i •— » oc •• • •S Q t— m •" 2 y Z O

o l/l CC •J\ •-4 uT *0

— T 3 M — * •• •• r p- a H a r. V V V h- •• _J fi »• T? — —i — •* < DC PSJ — » —1 ^*- >SJ rsl O — •. £ * r«j — —I » * * o

en n i—i rP ir 1 t- D X CM — — z z z Z 2 ZJ — -J t- H r- i or —« C". w* •> » 7 z (\i r>H 4 iT s» *0 f- > KJ ac » a s, _j a: » c •- X i/> * *. ^ *: •*: V •

fNI IL c cr Z ID * K <M m » < ti- Lu III LJ UJ UJ ,* 7 ui CD z — —• ci- ll — II — n II — i-* » ISJ fVJ l- —< Li. —* LL ^ —. cr H X oc 1—1 fO "V, Z I T T 7 T 2 D ti. UJ z p — z » UJ - UJ * » a a -• o • at 3 — IT 43 a X a o. u _J J_ 3 5 •• _J •. _J ft » h- en 5 Y~ < T u. T v _! * _J V ^ — r> n 7- U. C •w o — <: — <] '— — U. (/> o —* cc o t— u UI O U! o UJ UJ M

^ 2 i' — u » » •> • O ^~ X r. t- <• » •• * _l 1- k£ i^ ^ • _l

O J" UJ ILI 2» > aC — u — n L^ a — or u u. 3 T ^ T T ^- > 7- UJ » U. »-

ii *-< O X

CDUJ J z JX;- II </> «r c < —• u

51 _i O O O OJ •—

0£ ll

u. 3 ^ CM > Z - -Z. II *-« r- of i- _J i- * n

OILJ J?^hC ll i/i < a — u 2" T _J o o u; a: uj

C u

i—fMrri>*iA Jjr-(P0LO'-*rNJfn OCOOC- COOC»-»^^^ cocco ocoooooo ooooo cooooooo

^t IT •/) r- co cr c « r* ~+ ~+ ^ ^ l-J c c c c o o c c o o c o c c

r-j rsj f\> rg (\. f\i (sj c c o c c c c c c o c o c o

43

Page 48: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

m x rv -»

— r

m t-

»

X

1

I a

•-. — * ^ — i ) ~ <

—• » iT 3" • ^ C F -J

- «•» t/>

f — (V

f* ft- i rr - I

C T: fNJ (T\ •• 7 — — —. m 2* r —

^ or _J * * < s: u. LJ c x ^ o t-

,p r,' —' or O -» — iTK ^ PM # a 4- «r »- »<« O ««

• UJ X

rj a >_ o Q

< t- < C O — -J

: UJ x i

— LJ — ^J

fPl T _J * -II Jh V) Q. * C C • X JT

Q. 1JJ

3» h- (/l 0 UJ "Z 1 <s- ar r _» ~i

r ti »— U rt -«r

. (\i r ?• < III OO u.'

o a o a T T — x T x x x a n * O * O • -I -* rt ti rj II a < r II rj II T. U' ii * h- _i t- _j • _i y i/> t_> </i o ? -J » ^ < 7 < — a: ^ C L' n U LL < ~ o or u a *-• a. ~

nr ** •• < — cr v «- ~ D — # ."* H- *J _J X. < — _J — ~ # ar ac x c? < «- Ji^Ct f\i a. i —

e 7 T a II O UJ — O -J — U: m O it II < T D

7 V ^ II •- 7 Z

i- »- at I _i •• t- z> 2 3 a a: y / i- i

•"•coco octocoocococcoooccoccrcc O C C C C- wCCCCCCCOCOCOCiCCCCCOOCCC

44

Page 49: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

o o o

< a.

a- a

i D c

1 a

( ) ' _ ^_ ? -^ -t

< — _J - y O JJ N K- >" _J — < Of m tj -» UJ ft — — y: < eg fit —. ^ IT ^N — UJ _i + _J ft w _i ls| of a — o o f\J o + + < ^ < m If <r -J > UJ * LL. — h- —i lu —J > a: J. -r- u •• — v Q£ O > + *

a, •• — (Ni y + <r ~y > v: O —. IT. -1 y > LU o Q y — LO <^j — CJ 3 y a: CO — T »si

— r rr. _. < r. y — I S, TJ *- t- a. P rr \X. + -^ •v. LL — C X LU -J O «- —> •ft 2T 5 n — -1 c — ** o < m » i— 1— • —1 — 2 <r CO •V ir _j •• _ ,— cO CO — 1 J •s ft •s, X >- • * *t T. if> ? .'• — 7» < > t «; -— a y y •*

2 x 7"i ft-l — —. c T! I— o - II) J - X —• _i y •• 3 * a. K a rg C — L-> ~ O i— (/) c y ac ? •^ a. _J -l z> V a.

y _i C/1 » 2 • CL ft tr ft at ?* (\J v — D — -i i ) V. o — ~J

• <a *-. M * o — — — — — c ^ -** o N -3 < y — hg •J

*r •• k <\J — ft < —• TC N ft! r U C! — V • ft 'V U -i * ft •»

•— ui i en IT — CO T —i — J — _J •• ft- fv. 5 — i— •— -!' t) —. — — x * M — — at 2 a. h- — h- rg i- c — y ?. •: 2 + <r 2 ? •^

or i r> a* —« — St -i * JC •* Of •» • C * 3 » * ft *• i.- — • •* o n ac •> s 2 <"M --' •c \— < 1- < K <r c (" -^ n 3" y y 2? or T y T LL t- h- 0 LL "S -• h- N ^v o — L? — o — — 3 # • - » » — •• » • > CO 5 » X (/I -V — < ^-. UJ X U X UJ X QC CO y V x vr y •» •* v •X

Psl X c .£ 2 — V I a y _j 5 _J T _) t-- Z. _j — — — » V «— —. — Ui •• • *M m ft <t at _l a, • 3 -X ~ a. c Q- y 0. o LU LL u< ^ y Ul Lil LU

£• »sl Q£ r — Rft or — CL _i • • V ?: ~K T X 7 X -1 <r II II II C — l II II II t-* - M r-i »- ^4 5 < —i M ft u * LJ> ft o » < L_ — — — c UJ hg 3 —. — — LU t- X o: M rO •v 2 u it 1 II 7 II •-» II o» It o — or 7 P- 2 1*1 3 «•• a ? ? ^ 3 Z> UJ ui 2 2 2 •- II II o •^ <i ii — Ii rg n z LU II II » » » 2 il II » ft » 2 2 £ _J U o * 2 UJ CO < CO ft O •— _J K- -J t- -J • > > y 5 y 0 M V > y: a: y M ^f

a G. Ui _J X >" 3 CO 2 X T UJ c? o V> o t/) o 7> y r \~ t- y 5 h- 3 x> X h- < X LL T _j or 0. D. r j y x < i' < ? <I — y y * * V 2 y y S' * 'jC 2 »- Q 3 O r* Li,- 3 X • II 3 _J _i II 3 t? u c LU O ID LL -> •* — — — O 3 D 3 V — •» C U' 2 ui O M (Y o •-• o or t— *r < a X o X u a o OS ++ o n LL' UJ UJ o O Q Q UJ U) UJ u o; iu

c ft-

>

« N m «t IP ^ N a o c H rg r, ^Logjr-cn(>c-»fNn>tirgjr-cno-C'-,rgr"i»t C OOCO CCC o -* -^ H H H H H H H - PJ r^ ri r; M rvj rj (vj M ^ r in r, r» n COCCC OC CCC OOOOOCOOGCOCCOOC OOOOCO C'C cccoc cc coooccococcocoocoocococcoco

45

Page 50: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

IS < a.

10

9 c

rv

z Ul 1—t c:

X >y) o a * # Z NJ fsj

— UJ < NJ NJ \s> a K * # IN »Unl IN* (VI

*r ir Kl NJ

-tz>- + + •• z < — —

_j - r U. u N <r a. — » -i t/1 z < < c t-H «M — . . - V l/l cr en Z CO INI # w — C INI rsj — — O -I

IJ^ Ul UJ «i < — — — x UJ Q II (Nl X X I •-< a: •

• UJ \A z <r • o UJ INI a. c t—1 i _. — Z INt X _i U V) —. < X t—• •—" * -J # * < — _l »- X V < * _J _l — O a. r> UJ z r < Nj Ni _J < X n -i o a. t- * * < X O a a x _i UJ NJ INI UJ >M II 5D X X < X Nj "N* at < X D o a ii II II H II 11 -5 v. u O UJ u_ < X L) Q z

LJJ U

x x Z «•>

•-• a * *

u. u. — —• — — cr m IA*?--« 3 M O -I O 0 f'» <f < • It Iiug ~ — t-i a — x UJ UJ « • X O I — -JZ 1 T — < a UJ t/> z < — x a o »-* *» O O *N U w J < II I 7 # # < X X 3 CC NNUIH07D NNOf <7 N h-Q II II II II Ui VI UJ ? <XOOC^3CUJ

>

o II

ooocoococooococooo ooccoooocooooooooo

46

Page 51: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

I

c C f-J rvg

„ „ -T !T — — — — C r </! 2 — —

a o. s: _i

«••-*»-« ac *•• <r <r < + is -- I - »w T I — O U. -^

J W ? L) - * V * • •-« — O X U-- < o i/i _i < —t # Z"

m (<n/i LU H r uj 3 3* <*«J <NI a? < (_) II t— O ii ii ii ii it ii or t'j .' IUCHOUJUIIUJ

(.9

>

cccoccc c c — -< —i •* oococonooooc c ooooocaoooooo

47

Page 52: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

are made to the routines in the second tier: LCELLZ, RCELLZ, LVOLT, and RVOLT. Each of these subroutines controls the calculation sequence within a given cell, making calls to the four service routines, IMPDNS, EMF, ZFORM, and VFORM when appropriate. IMPDNS and EMF exercise the transmission line translational relationships for impedance and voltage, respectively. VFORM and ZFORM transform voltages and impedances through each of the two transformers that may be contained in a stub.

The complex voltages and impedances calculated by the above procedure for each relevant harmonic of the input waveform are stored in memory. When all values have been found, the voltage phasors are written onto a 9-track magnetic tape for later use by the plotting routine, PLM0D2. The power transfer ratios from the transmitter to the receivers are then calculated and printed along with the complex impedances previously determined.

Input Data Format - The input data required by the program, including format and card column designations, is shown in Figure 1.3. The column marked "Data Card Number" refers to the order in which the data cards appear in the source deck.

Output Formats - In addition to the complex voltages written on magnetic tape, TPM0D2 produces hard copy listings of the following:

a) The input data, including the calculated value of the cable characteristic impedance and the number of odd harmonics considered. (See Figure 1.4.)

b) The driving point impedance seen by the transmitter as a function of frequency (Figure 1.5).

c) The driving point impedance of a detached stub as seen by the main bus (Figure 1.6).

d) The driving point impedance looking into each junction of a stub and the main bus. For cells^to the left of the transmitter, this corresponds to__Z(5) of Figure 5, while for cells on the right this is Z(4) of Figure 4^ In the transmitter cell this impedance corresponds to Z(4) in parallel with 1(5). Also included is the power loss from the transmitter to the junction, both as a function of frequency and total (Figure 1.7).

e) The power loss from the transmitter to each receiving RTU, combined and as a function of frequency. This data, shown in Figure 1.8, is an essential input to the determination of required transmitter power levels.

48

Page 53: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

DATA CARD

NUMBER VARIABLE

NAME DESCRIPTION CARD

COLUMNS FORMAT COMMENTS

Nl(l ) TRANSFORMER Tl PRIMARY TURNS

1-5 F5.2 N, OF FIG. 2

N2(| ) Tl SECONDARY TURNS 6-10 F5.2 N, OF FIG 2

TRI ( I ) Tl PRIMARY RESISTANCE (A) 11-15 F5.2 R, OF FIG. 2

TR2( I ) Tl SECONDARY RESISTANCE 16-20 F5.2 Rs OF FIG. 2

Tl_l( I I Tl PRIMARY LEAKAGE INDUCTANCE

21-30 ElO.4 L, OF FIG 2

TL2II ) Tl SECONDARY LEAKAGE INDUCTANCE

31 -40 E 10 4 Ls OF FIG 2

TLM(| ) Tl MAGNETIZING INDUCTANCE

41 -50 ElO.4 L„ OF FIG. 2

Nl(2) T2 PRIMARY TURNS

I -5 F5.2

N2(2) T2 SECONDARY TURNS

6 -10 F5.2

TRI(21 T2 PRIMARY RESISTANCE 11-15 F5.2

TR2(2) T2 SECONDARY RESISTANCE 16 -20 F5.2

SAME AS ABOVE

TLI(2) T2 PRIMARY LEAKAGE INDUCTANCE 21 - 30 EiO.4

TL2I2) T2 SECONDARY LEAKAGE INDUCTANCE

31-40 ElO.4

TLM(2) T2 MAGNETIZING INDUCTANCE 41-50 ElO.4

CABLE SERIES RESISTANCE/FOOT I - 12 e i2.6

IND CABLE SERIES INDUCTANCE/FOOT 13 -24 E 12 6

CABLE SHUNT CONDUCTANCE/FOOT 25- 36 E 12 6

CABLE SHUNT CAPACITANCE/ FOOT 37-48 E 12.6

INPUT PULSE WIDTH (SECONDS) 49 -60 EI2.6

UNIT OF LENGTH

IS ARBITRARY AS LONG

AS ALL ARE EOUAL ',

CHARACTERISTIC

IMPEDANCE Zo

IS CALCULATED INTERNALLY BY THE

SIMULATION

MAXHAR MAXIMUM NUMBER OF HARMONICS ALLOWABLE

61-63 I 3 SEE NOTE AT ON CARD / 4

PERCNT

Figure 1.3 TPM0D2 INPUT DATA CARD FORMAT

49

Page 54: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

DATA CARD

NUMBER

VARIABLE NAME

DESCRIPTION CARD COLUMNS

FORMAT COMMENTS

TRISE INPUT PULSE RISE TIME

I -12 Ei 2 6

TFALL INPUT PULSE FALL TIME 13 -24 El 2.6

FOR FOURIER SERIES PRESENTLY USED

TRISE = TFALL ; MEASURED FROM 0- 100%

PERCNT PERCENT ENERGY CUTOFF FOR INPUT HARMONIC GENERATOR

25-36 Ei?6

2GEN INPUT WAVEFORM GENERATORS

HARMONICS OF INPUT WAVEFORM ARE GENERATED UNTIL ENERGY FALLS BELOW THIS PERCENT OF THE FUNDAMENTALS ENERGY

37-48 EI2.6 Rl [ZGEN]

INTERNAL IMPEDANCE 49-60 EI2.6 Im [ZGEN]

LAST NUMBER OF LAST CELL ON RIGHT

'-2 12 EQUIVALENT TO THE TOTAL NUMBER OF STUBS

XMTR NUMBER OF CELL CONTAINING TRANSMITTER

3-4 i ^ CELLS NUMBERED FROM LEFT TO RIGHT

RES I LEFT BUS TERMINATIONS RESISTANCE 5 - 14 El 0.4 EQUIVALENT TO RTERM

LI LEFT BUS TERMINATION'S INDUCTANCE 15-24 EI0.4 GENERALLY = 0

RLAST RIGHT BUS TERMINATION'S RESISTANCE 25-34 ElO.4

. SAME AS ABOVE

LLAST RIGHT BUS TERMINATION'S INDUCTANCE

35 -44 E 10.4

6-37" RI(N) TOP ISOLATION RESISTANCES I -10 FIO.O

TOTAL TOP ISOLATION RESISTANCE - 2« R I ( N )

R2(N) BOTTOM ISOLATION RESISTANCES n-20 FIOO

RSTUB(N) STUB TERMINATION'S RESISTIVE COMPONENT 21 -30 FIO.O

LSTUB(N) STUB TERMINATION'S INDUCTIVE COMPONENT 31-40 EI0.4

DETERMINED BY THE • RECEIVING RTU'S

INPUT IMPEDANCE

L( l,N) CELL CABLE LENGTH 41 - 45 15

L(2,N) 46 -50 15 . SEE FIG 2

L(3,N) 51 -55 15

TXFMR(N) INDICATES IF TOP TRANSFORMER IS PRESENT 56 -60 15 i I,TRANSFORMER PRESENT

BXFMR(N) INDICATES IF BOTTOM TRANSFORMER IS PRESENT 61 -65 15 : 0,TRANSFORMER ABSENT

•ONE CARD CONTAINING THESE PARAMETERS IS REOUIRED FOR EACH OF THE N CELLS IN THE SYSTEM BEING SIMULATED

Figure 1.3 TPM0D2 INPUT DATA CARD FORMAT ( CONT. )

50

Page 55: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

II « z ti-

ll ii GL Z u.

X CD

OC or n

z

II Of z

I

c

z

3

o o O o a o o l«l m ro m m m Cl p- r- f h- r- f- r^ m m 1-1 m m m m II n II il II II II

z z Z Z Z z z

K CO X ee B CC =0 3 3 => = z> 3 n

o I

o c

o z

o o o o

a 7

II -I « - §

o o

2

cr

z Z

CC

o o cc c

7

m

I L0 UJ O a 1-4 o> »- o- t/l o i-i c-

z

II

Z

O II < T ^ t- < O T •-

CC -I < 3

U z

z —

lil z o ••

z —

UJ Z

51

Page 56: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

II II » II II II at at at at €t of. x x x x x x U. Ik u. IL u. u. X X X X X X CD CO CD 3D CD 03

II II II II II II Of X X

af X $ X

of X

u. Ik u. a. IL U- X X X X X X CO CO CO CO CO CO

II of x u. X

cc r H X

af X

of x H

II of

ii at X

II af

CO 3

m v

z CD 3

Z

CC 3

Z CD 3

o O o O c ft m n m m t» r* r- r» r- ro <*i m m m

II H ll II II

z z z z z

CO CO CO CO CO 3 3 3 3 3 h- H t- y- I- l/l t/> ui ci l/) of Of of cc of

N ti-

ll

z

2

a"

n Z

o O c C

o O c & II II II II

Z 2 z 2 CD ~ CC ,-r 3 3 3 3

o II

z en 3

o H

z CO 3

Z

a: 3

II

z AJ

_l II -I — UJ Z Ui z 111 z

o *

z —

111 z o *

_l II _l — Ui Z

-J II -J — II.' Z

z —

1)1 z

z — z —

ID Z o * z —

_1 II _l — 111 z

o • z —

52

Page 57: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

r II

I II

f II

or X

31

2

3

fi-

ll

2

53

2 O

HI Z

? —

UJ ar Ui y UJ 7 U-' 2 U1 UJ u » u » U » o « X X

—i p* —* —< T ia ?

"•" 7 "T 7 ¥

2T T

Page 58: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

DRIVING POINT IMPEDANCE AT XMTR/STUB JUNCTION .VS. FREQUENCY XMTR IS IN CFLL 14

HERTZ OHMS MAGNITUDE ANGLE

.100E 07 170.09 +J{ 254.41) 306.03 56.23

.310E 07 38.'.67 *J ( 345.241 927.83 65.64

• 500E 07 561.66 +J( ?67.51) 640.22 24.70

•700E 07 131.47 +J( P97.22) 906.PC 81.66

.900E 07 84.64 + J( 1339.32) 1391.89 86.51

• IKE 01 74.93 +JI 13i0.43) 1831.96 87.66

.130E 0" 75.21 +J( 22*1.551 2282.P2 88.09

.ITC7 O-1 94.R3 +J( .'37R.01) 2B2S.60 88.08

.170F 0" 444.55 »J( 4265.13) 428S.23 84.05 ********** SERIAL Nn. 09.53.51 *****•»***

FIGURE 1.5

54

Page 59: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

DRIVING POINT IMPEDANCF OF STUB 1 .VS. FREQUENCY

HERTZ OHMS MAGNITUDE ANGLE

• 1O0E 07 934.45 *J(-205n.66) 2253.53 -65.50

.300E 07 254.28 +J( -423.72) 494.16 -59.03

.500E 07 199.3" *J( 120.31) 232.87 31.11

.700? 07 186.10 +J( 502.02) 535.40 69.66

.900E 07 164.05 «J( 847.32) 867.08 77.74

• HOE 08 190.61 +J( 1213.58) 1228.46 81.07

.130E 09 218.98 • Jl 1695.03) 1709.11 82.64

•150F 09 434.75 *J< 2798.051 2831.62 81.17

•170E 08 1735.93 •JI-20P5.90) 2713.75 -50.23 ********** SERIAL NO. 09.53.51 **********

FIGURE 1.6

55

Page 60: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

Q

a

a: LU

a a.

LJ in •J -I <0 -r. I* • • ? —> ~r> < 1 1

-o r- c *-»

c

o c

O D

> 3: • i

UJ or

— 3

HH ~H

c ? f- IU »-f Q' C > U O »-. T — Of n

a •-* •-• •>* »H

< a. rr n

ey UJ — li-. o 1 ) x 2" i—i C UJ K a a- <i — UJ rr II LL C i-'J rr •-« ft- Hi t- T < 11- n or T a

56

Page 61: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

^OC10rO(>iflO'0>t^vt<D>00^*0'4''0^00,l'l^^f'l>t(>f\j"-«N

^^oooooooooooooooooooo-^o^^^-<-^^^

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

iiiiiitfiilifliiiiiiiiilTiiiiii

i/>i/>if\lAU^i^U^l^Vf\l/NU^lfSin4'**''4'Lri"4"4'l^'4'lAi/>Nj" •4- -4- -* ^ •* 4- I I I I I I 11 *t*t*t<t<t-*#4>t*t**t*t>*

i/s in sj- -t ir> U"\ ii"\ ii"\ lA U"» lA

lA.J-iA-t-t't't-t

i I i I i I I T I I I I ( t ( I I I I I I I I I I I I I I I I

fl-J-f-CSi^OfslO^'*' —•fSj-0 -O (V O 6. CO d"< 0* O •-» O f- 0s *^M«>iriN(^ C^OAonrgrjM-^rh-t>cr-(Niirp^r^con4"^-o^-*,tM'*'*^^fvjnr- fJrtH-HHHH-00'*OOC«HHOHrg-HH(\JN^H(\JNIM

'iiiiiiiitTiii ** 4/ ** i T i t i t i t i i i i

I I I I I I I I I I I I I I I 1 I I I I I t I I 1 I I I I I I

Z IT Q T

^O^cornf<lrnrgvt,-C^Ofn'Oh-'*f^rn»T'--(N.f'g(>'-'U3r"i<--'«Ofcrcr4'

rn(t^frirrin"if''>rnfN;rgfS4rgrgfsir^rjrsif\jrgrgfnrOfOfnro.-orr. r^J-sf st <* I I I I I I I I I I I I I

2

I I I t I I I I I I I t I I I I

O # coCfniNfoa3noo,coecrtNOO-*N'-"^^,0',io^'-'r, •£ to -o i/\ <\i

FMf\j^j(\j-HOO(>^t>C>(>(>C>c>i>(>(>CT>(>C>0'-«^iNjf\jrsjr\i(\j<Nt\j

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

a •ou-v^ec-m^c-iAr- a-T-^-iroh-.^fNjfi-j - ^ x d Mr. « ^ ^ «j IT r^r-^r^cra:a>(>t>a'C>(>Okt>t>c^r\:fsirjf\j^ooa,'7-a-cccococj

i^^ci'iri^iflnri'icifociwr-j^ -J" -tf- >* «tf N^ -t «$• '•n m r r*"> ri fi en

I t I t I t I I I I I I I I I I I I I t I I I I I I I I I I I

r^f^r^f^h-^^iA^^^r^^r^^rjrn^r^coror>c>j*crrj>o^(>c><>(>

ro m ri fi rn ft m m m m m n m m rn (**• ifl ro ro fi re <<• r<"» c-' r*"> rn n" re r" re re I I l ( I I I l l I I I I I l I I l I I I I I I I l I I I I I

^.— rjr"^^^r^rrr>o^r\ir"ir^Or^cor>C«— ejre^A^r^coac^r^

57

Page 62: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

The information supplied by these tables, when combined with the waveform plots produced by PLM0D2, provided an essentially complete picture of the performance that can be expected from a proposed multiplexed bus.

Part 3: Description of PLM0D2 - The purpose of PLM0D2 is to reconstruct and plot the voltage waveforms at the points considered by TPM0D2. The operation of the program is shown in the flow chart of figure 1.9 and the listing which immediately follows.

Input Data - Input to the plotting routine comes from two sources. The 9-track magnetic tape produced by TPM0D2 provides the harmonic voltage amplitudes and phases required to reconstruct the waveforms. Selection of the waveforms to be plotted, the number of time increments per pulse period, and designation of the reference voltage in the transmitter cell are all entered as data cards in the source deck. A listing of the elements contained on these cards is shown in Figure I.1U.

Output Format - PLM0D2 produces two types of output data. A 7- track magnetic tape containing machine instructions for the off-line plotter is generated during execution of the program. The plots ultimately produced from this tape have the format of those in Figure 8, of Section V. As an adjunct to these waveform plots PLM0D2 lists the voltage arrays that correspond to the N discrete points plotted, where N is the number of time increments. An example of this listing is shown in Figure 1.11.

Part 4: Operational Stens - The chart shown in Figure 1.12 briefly describes the sequence of steps required to exercise the program as written on a computer facility equivalent to the author's.

58

Page 63: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

INPUT VOLTAGES , TO BE PLOTTED,

NUMBER OF TIME INCREMENTS, AND/

fREFERENCE VOLTAG NUMBER

RECOMPOSE VOLTAGES,

GENERATE TIME a REFERENCE

VOLTAGE ARRAYS

GENERATE PLOTTING TAPE FOR

CALCOMP PLOTTER

CALCOMP PLOTTER

I (OFFLINE)

_CALL CALCOMP

SUBROUTINES '

CALCOMP PLOTTER SOFTWARE PACKAGE

PRINT ARRAYS OF VOLTAGES

THAT WERE PLOTTED

WAVEFORM PLOTS

Figure 1.9 FLOW CHART OF PLMOD2

59

Page 64: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

FORTRAN IV G LEVEL 21 MAIN DATT = 74277 09/16/57 PAGE OOOl

AT>1 onnj 0103

00^-V 0005 1006 0007 0103 1009 nr>\t) roil 0012 0013 001* 0015 0016 0017 0113 0019 0020 0021

THIS PROGRAM RECOMPUTES THE OUTPUT 0* TPMni)2 INTO THE TIME DOMAIN. THE VOLTAf.i KAVEF.)<M5 ARE THEN PRESENTED IN "OTH TAHULAR AND CAL'OMP PLOT FORMATS.

COMPLEX "(30,9,3,' I INTEGER CE4.L ,CF LLKT, V LT, SERIAL,DOi)!), X.MTK, VOLT, Kf-rv/LT OTMFNMON V(1'JO,9,3?I,C-LL(3.-|,VLT(32,9 1,''.7(IAL(2) ,0000(2. > »TI 1021,

1X.MTRVC 102) .PLOT VI 102 I , I f!UF ( 20C 0 I OATA V/?.38O0*O.0/,VLT/,!f*"/ C1LL OATE inOIOI C?LLKT»0 RcAO(ll ISEKIAL.LAf.T.XMTR.TM.NN R = AD(11 I( KE (*,M,NI,K^1,NN,1 ),M»l,v,U,N«l,L»"T,l I R'A0(5,10rINTINCT

100 •= IRKATII ' ) RE A0(5,1C5IR."FVLT

115 FORMATIIC) N=l

5 REAO(5,I10)(C=LLCJ),tVLTIN,M|,M»1,9,1)) 110 F.TRMAT(1I2,9I1 I

IF(CCLL(NI.GT.50)30 TO u CELLKT-Cf LLKTU N=N+1 GT TO 5

10 CONTINUE XOMCGA-2.*1 . HI 57 265/TM

RSCOMPOSE VULTAG.- PHASORS INTO TH riMs wui*

0022 O023 002* 0025 0026

0027 0129 0O29

0030 0031 0032 0033

_L("> )) I.^EUICK.'/LTr,*), ELLI

DO 50 N = I,;;LLKT, I DO *0 M*l,9,I IF(VLT(N,.1) .SU.01GP TO *C no 30 ', = 1,MM,1 PHAS£»ATAN2( UIMA.:.(EK,VLT(\,1>, IN)11) DO 25 <T»l,NTINCT,l AMJLE=(2.*K-1.)»XJMFO;#KT«TM/NTrNCT V(XT,VLTIN,MI,CELL(Nl)»V(KT,VLT(\,,1),':ELL(N))*CAHS(t(<,VLT(N,.1ll,CE

lLL(N)l)*COS(ANGLE»PHASE) 25 CONTINUE 30 CONTINUE 40 CONTINUE 50 CONTINUE

GENERATE HE REFERENCE VOLT ARRAY

0034 0035 0036 0037 0038 0039

00*0

N-CELLKT+1 N*REFVLT VLT1N.MI-REFVLT CEU-(N1»XMTK 00 57 K-1,NN,1 PHASE.»ATAN2((AIMAG(Et)UVLTl\,M),CELL(NI ) ) ) ,R£AL ( E IK , VLT (-4, Ml, ;SLL(

IN)))) DO 55 KT«1,NTINCT,1

LISTING OF PLM0D2

60

Page 65: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

FORTRAN IV 5 LEVEL .: 1 11IN DAT? = 74.J77

0041 004:

0043 0044

ANGLE=(2.*<-1. )*X )M=r.\»KT*TM/NTINCr V(KT.VLT(N',*I,CELL(N) l-V (KT , VLT C4, M I , Cf LLIN) KA3S( t ( K, VLTtN,*) ,Ct 1LLINI >)»:i>S(»NGLc»PH4<;;i

55 CUNTIN1)-; 57 CONTTNIJ"

LPAO THE TIMr AiMAY

O045 0046 0047 0048

DCLT=T"VNTINCT T(1)=DELT Oil 60 I*2,NTINCT

60 T(Il=TC1-1IOELT

LJ1A? XMTR VOLTAGE ARRAY

0049 0050 0051 005? 0053 0054 0055 0056

1)0 65 I=1,NTINCT. 1 XMT<<V(I)=V( I.rfEFVLT.XWTrtI

65 C0NTINU2 CALL PL0Tr(I9Ue,?0Cr| CALL SCALE (X-1TKV.: ..NTINCT.ll FIR = x<URV(\ITTVr.T*l) D:L=XMTRV<NT:NCT»2) I<=RA«C=P

0057 0058 005<J 0060 0061

006? 0063 0064 0065 0066 0067 0"68

GENERATE THE PLOTS

CALL PL0T(O.,-U..-3) F-0.7 CALL FACTOP.IF) CALL SCALEIT.ir ..NTINCT.l) CELLS-LAST

LOAD THE 'V ARR4Y

Oil 80 N»l ,CELLKT, 1 DO 75 M=l,9,1 IFIVLTP!,*] .E'J.OIGO TO 75 DO 70 I=l,NTINCT.l PL OT V (II =V( I, VLT(,M,*I .CELLINI )

70 CONTINUE CALL SCALEIPLOTV,3..NTINCT.ll

ADJUST 'Y' SCALING Ic NECESSARY

006» 0070 0O71 0072 0073 0074 0075 0076 0077 0Q7" 0079 OQBO

TPST»PL0TV(NTINCT»2I I=(TEST.LE.DELI GU TO 32 XMTRVINTINCTUI=PLOrV(NTINCT»l I XMTRV(NTINCT«l=PLnTV(NTINCT*2) FTRST=PL0TV(NTINCT»1I DELTA=PL0TVINTINCT*2) GO TO 84 CONTINUE FTRST=FIR DELTA-DEL XMTRV(NTINCT*1)=FIR XMTRV(NTINCT*2)=DEL

LISTING OF PLM0D2 (Con't)

61

Page 66: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

FORTRAN IV G LEVEL MAIN DAT? * 74.',77 09/05/57 PAO:. Cjr.3

0081 00*2 0093 008* 0095 0086 0087 00*8 0099 0090 0011 00*2 0093 0094 0095 0096 0O97 0099 0099 0100 0101 0 102 0103 0104 OI05 0106 0107 0103 0109 OHO 0111 0112 •Mil 0114 0115 0114 0117 011» 0119 0120 0121 0122 0123 0124 0125 0126 0127

911' I

PL3TV(NTINCT»1>*FIR PLOTVINTINCT»2l»r>SL

3* CONTINUE IFRABf*IF«A0C»1 I'HIFRAME.GT.IIGO Til 71 PX«C.O PY-1./F«5.5 CALL PL0T(PX,PY,-3) GO TO 72

71 CONTINUE Px«l./F*12.0 PY«O.O CALL PL'1T(PX,PY,-3I

72 CONTINUE CALL AXIS(0.0,0.0,7HSE:jNOS,-7,H .0,f ,f ,T(MTI v: r»l ), r( )T. CALL AXIS(0.r,-4.0,15rtM;3HMALIi?0 VJLTr,, to, 3.:'•, 9 "'. '. « I*'T, CALL $YM30L(C.0,4.5,0. 14,1»H->LUT 3AT « (0.0,121 CALL EY>iaOLI999.0,9r"'-.o,! .14 . JDUO.O.O ,-• I CALL STMi)UH-..5n,'..T,0.1<.,-"4HTaT'.L MJ 1 •• ". OF "-LLS * ,<r'.r CALL NlJ81HrR(999.c,9*7.C,r.l4,CrLL5.C.r.,-l) CALL SY«30L('».O0,'5.-,r..71,ljHS-<IAL «.'. ,0.0,1." I CALL SYMRflLI 999.0, 999. '.,<. .7! , S=*I \L ,0." , • I CALL 3YMB0LI 3. 15,-4.5,0 ..; 1,1 HIMUX—'U3 ; IMJI.'.T : 1, XTO;LL»XMT:I XTVHLT*KJFVLT CALL SYM83LIC.C,-5.0,0.l4,17MLri- * X CALL NUM3E,<|9o..l,v:9.0,P.li,XTC:LL,'' CALL SY»aaL(999.0,99V.0,C.14.7t, V'.ILT CALL NUM3=R( 99=>.0,999.0,0.1',,XTVDLT,- C\LL SY^dQL(999.0,999.0,0.14,1H),0.0, RCCcLL=CELL<N) R.-.VULT*VLT(»,,M> CALL SYM.3JLI 5.3,-5. "•. 0.14,1 7-iLlfH * < CALL NlHdERI '909.0,999 .O.C. 14, <CC"LL,0 CALL SY13(1L('99.0,990.0,( .14,TH, VOLT CALL NUM3i: 11 999. ",•>•>•>. 0,0. 14, RCVOLT.P CALL SYMBOL (9>V.0,°99.0,0. 14, H),C.( ,1) C'.LL PL3TI0. ,-4.,-3) CALL LINE |T,XMTRV,>ITINCT,1,0,0| CALL 0ASHL(T,PLaTV,NTI.NCT,l,0,3l CALL PLOKO. ,4. ,-31 IFITiST.LE.OEL) GO TO 75 CALL SYMBULI 3.4,2.7,O.U,l..ULTeREO Y-AXI '.,;>. o, 14 1 CALL SY180L(3.6,2.2,r.21,12t,3C«LE FACTj :, r.r , i ••)

75 CONTI\J= 80 CONTINUE

CALL PLOTI 14.0,0.0,'-"991

:T«'II :LTAI

.(C^LL

.-II 3.' ,71 • -11

HIC3LL >.-ll ,i.0,7l

PRINT THE VOLTAGE ARRAYS

012H C129 0130 0131

0132 "133 0134

W1ITE15,1000 I SERIAL,ODUO 110C FJ«MATCl SERIAL NJ. ',Lkh,' 0AT1 l> '..'A')

miTF(5,10021TM,NTlN':T,NN 1O02 FORMAT CO PERIOD-'.EIO^, ' * Ji= TM? INC<"M:-\T5»', 1"

C # Jr JOU HAR^ONICE CONSI JtK--D»' ,.' 3 I WRIU(6,1C0JJREFVLT

100* FDRNATCO REFERENCE VULTAiC IN XMT'i IJPLL '.'.. * M.'l tflUTElS, 10091

LISTING OF TLM0U2 (Con't)

62

Page 67: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

FCIRTRAN IV G LEVEL ?1 MAIN DAT"1 = 7*777 09/06/57 PAGE 000*

0135 1009 Fl)KMAT(/,2SX,' ARRAY ELEMENTS 4RE 1R36RL0 FROM LEFT TO. RIGHT', 1/J25X,' AW TJP TO aoTTJI dF THC TABLES'I

0116 00 2P0 N=1,CELLKT,1 0137 HRITE(6.1010ICELL1NI 0138 101C FORMATI'O CELL '.121 013» DO. 190 M-1,9,1 01*0 Ic(VLT(N,MI.EO.O|r.O Tn 190 0141 VOLT-VLTIN.MI 01*2 WRITE(o,1012IV0LT 01*3 1012 FORMATtT VULTAGE',121 01** WRITE <»,10.:C>(V(T,VLT|N,M),CCLLM) 1,1=1,NTINCT, 1) 01*5 1020 FORMAT!' '.10F11.7) 01*6 190 C.INTIVJf 01*7 20C CONTINUE

C "RINT THE REFCRENCE VOLTAGfc ARRAY r

01*3 WRITEli.lOlOKMT:'. 01*9 H-RTCVLT oi*o WRITEID,IOIZIM 0151 WRIT1:!*, 1020I(V(I,N,X"«TRI,I=1 , NT I NCI , 1 1 0152 STOP 0153 FN9

LISTING 0FPLM0D2 (Con't)

63

Page 68: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

DATA CARD

NUMBER

VARIABLE NAME

DESCRIPTION CARD COLUMNS

FORMAT COMMENTS

1 NTINCT NUMBER OF TIME INCREMENTS PER PULSE PERIOD

1 -3 13 DETERMINES GRANULARITY OF PLOTS PROOUCED

1 2 REFVLT

NUMBER OF VOLTAGE IN TRANSMITTER CELL WHICH IS CONSIDERED THE REFERENCE, (t.g. 4 •V(4),7tV<7), ETC.)

I - 2 12 THE REFERENCE VOLTAGE IS PLOTTED ON EVERY

PLOT TO GIVE A POINT OF COMPARISON FOR

BOTH AMPLITUDE

AND PHASE

1 1

3 CELLIN) NUMBER OF CELL CONTAINING THE VOLTAGES TO BE PLOTTED

1 - 2 12 CELL NUMBERS MUST BE RIGHT JUSTIFIED

VLT(N,M) THE NUMBER OF THE VOLTAGE IN CELL (N) TO BE PLOTTED

3 I ! THE NUMBERS OF THE VOLTAGES IN THIS CELL

THAT ARE TO BE PLOTTED ARE ENTERED SEQUENTIALLY WITHOUT

IMBEDDED BLANKS OR DELIMITERS

/e.g. IZ22Z* PLOT \ [ VOLTAGES V(3),V(7),a V(2)

\0F CELL #12 J

4 I 1

i i

1 1 1 11

1 1

4-»K EACH CARD HAS THE SAME

FORMAT AS # 3 ABOVE. A FIXED

NUMBER OF DATA CARDS IS NOT REOUIRE

BUT ONE CARD IS NEEDED FOR EACH

CELL CONTAINING A VOLTAGE TO BE

PLOTTED

o. (K £34)

K + 1 — A NUMBER >90 IS PLACED HERE AS A

TRAILER TO SIGNIFY THE END OF THE

DESIRED PLOT

LISTING

1 - 2 12 CUSTOMARILY • 99

o

Figure 1.10 PLM0D2 INPUT DATA CARD FORMAT

64

Page 69: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

tN r» •> > i r- tn '-•*> r- f)

P- O T.' —* *r p- T t. —( i*1

•K ^ c <• J t (ft •* r> 'v -J- »- lA »•• G O »-* U" H.'JC — tf. ? .r j\ - 1*1 /, ^ if*

!M £> .-"i il"v «' P- O «r. Pi fj IA A c o a. f if o a >• C/ •Jir1 i-Ma Pg <r r- (*-•

— r< i .*) o x\ -* ro • o oif

t I t i I

i r- --N

* ii t ^ ^ J"- a f •»• if'

f> i i -r /» if fi **J IT J*, >r

i l I I I

C rr P. -i _ c c r- -; .r. •r ^ — r. f. <-> 4 c r -p ii r- u X) P M r- C: • -r a |*j o rr r- -t M O to r- -t n y- h « rj 0 -o r- -

«n . j- i- . if f r

I till

O- £• +r t- 4 & <"•• PJ P- c

c in '(*-*/ o r< u* — o-- e fit* ->J o > r: p- *v * it & if -1 r» if. •£) if, is f i h* c if ^ f. r- c in .*> i*.

c r»c ococcca

C- ••*( r- — P- r

t- *% tr,

' > il •

' r- --, « .o i/\ r- "i ** * ,^ n r 4 * r: Pi m O O ,P -U IP- f> J" '/> -P '<"• oo-*-* — oe.-t-«-*

OOOOOOOOOO

111

_J a.

r- -i -J n r- <T> fl -* r • : «e-Ok.~ n ro p- if- IP rr » r\. m „- H p. M c ^ -< r .» r- P^ ^ P -g- P- eg — '

i

C * if. .1 J- O /i C -1 ">J gj IA v* P- -r IA N|- IT P-- -J- •Cci-j-iOr-crr .*.-*•> l> Xi .t a C &• -C -t O- ~i * P- ffi P I -0 >o P- ff • \ o Pl-O^-fltf-g^gf-Oif.

?a = Y-T IM in H in rj Q f^oc-i>

r,Mi:"^NiriT. IT. N & - -t '.^ CP " *t PJ r- K-JT.4 JI if- m >r gr * «/>

cooocccoco i I I I I

p'loa-m'd'-Tt-oC'n ^ ^ 4 « -« i^ f~ r, cj — fl

UP'IfiQ^ttN^O-'ffl ^^•mgJrif'grpp'*"*''*

t

u -H 0- ^4 ,•-. 1 a r~ rf h- r- 7J ft- ')• f^ rr. "^ r-j

<*- f n r- IT T : L "P ro « n y- Pi Pi <3 -t "J i f" J •j c *. j r

j- c /* c -» > r. .r> (". J r- t If 1

•- -j r-. p« t rr t^. "t T ** r-

•"" -; »

1 C c -- c

1 1 *f •*! v J ^ n., <n in — /i "J ^J f ir *i •o r" If .-- If f. ir r r «

r- ;T f J > r- pr ^ f (V •t- •0 ii J * - O -• »H — •* c --• — "* E C ^-, 1

o c r:

-*- i 1

f «* r ift .TV J- o in r, -^

; -r f: >t •r i •+

oococoocoo I i I

i <^. o f »- r. «* c <"• • r- u- .- J> c ^ T f • IT* ".J rr. O- C if, f\j i», J IM J- -f rj f., r, j ^.

» * c "i r> r- rj -j j> >j TI c '-• o ft r- c <r- o

'•-*a f> • -.. .A — G P*:C< I O rf ID OJ IT C * 'T a.' »pj-^^-fri nriMHW

c o c u O c o ??-* ^ n V, o r- o r- Cf> C !A a. in fv p>o t * P- © O 30 03 C •^i f> fc CO O cc r> ff. -- *j o 6« a> — M fl< 0* f* «f) <ft O i^f1 * ^l cn ^ o - •* -t •» c -* ^ J" — o ~. -« — -H C- — -1 -< o o c

1 1 o o o a 0 c c

1 t 1

rA a •* •o -* 1 J f\ fvj fM > ft OD iS p- m -t n OQ 'f 1 f«1 <c

r> o * •4- •* r> c -i- -J- •* UJ •« -A i-* H <\i >TJ s0 H"l\| 0» PM »A O O -t <N if. OC«f <*N« •t -t 'f fsi -4 * •• t- ~ a — — — — O •J"*

• —< •> tt. j IA (V f> - ,r i\, > ^ H -jTmoo fJC -C 'fi T) • y> C lA ifi CO •O fJ M rr. rj -O *-g (M f» "«i

. <M ,f -t ifi "O rj *

ft, ;.

4 if-

"i C •- - ""i t 1 T C. O

1 1 P 1 o cc

n c r i"*. , .„ r- A ,f ,^ .J -• r w r- •T > If. f! :t M (.. M pf

— J- •c ra r> -« •..-• o f J p\ If c c ^ if. r- h •n -1 f- Rg p- rr- a n

p- 1 •J- r^ «* .>i n in r- r* •O .P i £ 0 .-^ -» — or

c w w 7" a

o PJ pg

1 ° C «-•• * *l 1 1 1 o c ». 1

o I

c 1 ? a

i c o

r f. r- ^ t- r ^ m •4 o< r .- •f NC fi p- •t 4 T> -t .o rsj -r n —

J\ r- r- c. r' r-1 f 1 m r- ,n J- M « JN C -^ J- ».. 0 -t a K p^ J> -I o r^ h- if •,. L*l if r •fi r r f> o f rr f> £ U 1* 1 4 .-j rr a (*• pr n **• " "- "" _ ~' c "* " a — r i

I I Y T V if if. —< r j f • —• ^ 4 i1 •-"

* .^ H S M j 4 -. r- o- P*-r;4..-pr-r^rVj4.f>r». r^ • 4 4 J 0 rj >M 4 -J- C r; O- ,t r»- .A rj T- ^ p- ,••.

C. ' ' c c I C C C o c c

4,f-—r-ir.p-.f- ~t — •-• PJ ^ C « IT Pi ^ O H * ChClP-CNCiflH 4—K'JC-*— P-rJC tf.-rp-.OP^^ J3p-sOK A T J- ^ po r.- o r, «rt i«*. r, ^i ^ H rj M -^ ^ M rj

K J- - ii f\ x r- 4 i fi .1 T r> b .A ^ on < r^ if. f N ? n >M*1 • p.1 -T if* N O ^ * if. '

*j ©• p^ * m N *» f- . r : —« — ^J pg %• ^t -^ .

?????' o o c

CN/ifiTCiP*4PJ PI N(\ r i). n Pj N * rf

CPr,r>r>r>-Orrr>'>00

C fM*J>0'OPNji|,'0*- mop- o«i(fiONi0^ r, "j - - INJ rj N -H "• r-t

OOOOOOCJOOO I I I I I

if.at>P»4,enoJ3s|" (\op-o-^r-«C9i

•^rt(VjSNr*mrNi if, »f> IMI P4'*# in m —i P-*^(*10p-'<j4' — -. IN, c j rj ^-i —. M

— « m c

fT??f o c c

n i A .f rj Lf J- -- —. JJ |— ff\J-0—'rn^if-JCJ <Mtolfr"-ff*N*0""ip-r> p**e>p\ip*p*ff>o,pjp-p- pi*fJcc»r.cpf\i^)or)pAa« POC K^"iClOp.^ffl N M -. ^r, rj fj -J - '!

P-lpnpvgpnOCPiif.4i*DO- jNf>c^fHi>6'jif>

uiO<fiNi<ii4]o«NmiO (Ji«\ON«(PiCiON^in

l-r-j M -i « IN! fj IN -< « r.|

> C O O O O O ?? 3

65

Page 70: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

RUN TPM0D2 SOURCE

DECK

P —J---, HARD COPY

OUTPUT I

L^ •*'"

RUN PLMOD2 SOURCE DECK

( INPUT 9-TRACK TAPE)

HARD COP* OUTPUT

I I ^-*

CALCOMP PLOTTER

(INPUT 7-TRACK TAPE )

.n o

WAVEFORM PLOTS

Figure 1.12 OPERATIONAL FLOW CHART

66

Page 71: 2*ESD-TR-75-67 MTR-2948 SSD ACCESSION LIST ti call KJ.Qcr-y L_- 2* Copy No._/—^ f_CQM#^fTER SIMULATION OF MUX BUS VOLTAGE WAVEFORMS UNDER STEADY STATE CONDITIONS JUNE 1975 Prepared

REFERENCES

1. MIL-STD-1553 (USAF). Military Standard for Aircraft Multiplex Data Bus (AFASD).

2. MITRE Digital Avionics Group, "Radio Information System Architec- ture," ESD-TR-75-70, July 1975.

3. "Reference Data for Radio Engineers," Fifth Edition, Howard W. Sams & Company, New York, N.Y., 1974.

67