2 Classical Mechanics

download 2 Classical Mechanics

of 26

Transcript of 2 Classical Mechanics

  • 7/23/2019 2 Classical Mechanics

    1/26

    Operators ( ) ( )Of x g x=

    ( )23 6d

    x xdx

    =

    ( ) ( )Of x of x=

    ( ) ( )O =f r g r

    ) ) ))

    d d d

    dx dy dz = + +

    f(r f(r f(rf(r i j k

    ( ) ( ) ( )2

    2

    2

    sin( ) sin( )d

    n x n n xd x

    =

    - are performed on functions

    -are performed on vector functions and

    have directional qualities as well. Theseare referred to as vector operators.

    -can obey the Eigen equation, and thus

    have eigen values and eigen functions.

    - In general we are concerned with the

    function that obey this equation.

  • 7/23/2019 2 Classical Mechanics

    2/26

    ClassicalMechanics-Position

    ( )x t

    3 2( ) 2 1x t t t= +

    Example

    ( ) ( ) ( ) ( )t x t y t z t = + +r i j k

    2( ) ( 1) 0t t t= + + +r i j k

    Example

    Notice that we are using a function of timeto describe the positionnot some

    fixed value.

    This function tells you the position at any point in time.

  • 7/23/2019 2 Classical Mechanics

    3/26

    ClassicalMechanics-Position-3D

    [ ] ( ) ( ) ( )x t t x t x= = = r i r i

    [ ] ( ) ( ) ( )y t t y t y= = = r j r j

    [ ] ( ) ( ) ( )z t t z t z= = = r k r k

    ( )[ ]

    ( ) ( ) ( )

    ( ) [ ( )]

    ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    t t

    x y z t

    t t t

    x t y t z t

    =

    = + +

    = + +

    = + +

    r r r

    i j k r

    i r i j r j k r k

    i j k

    Note that the operatoris applied to the position functionand the result is thequantity associated with the operator.

    Ie. The xoperator give you the x component of r(t, this is !now as a

    projection operator.

    The vector operator rcan be constructed from the pro"ector operators.

  • 7/23/2019 2 Classical Mechanics

    4/26

    ClassicalMechanics-Position-3D

    2

    ( ) ( 1) 0t t t= + + +r i j k

    [ ] 2 2 ( ) ( 1) 0 ( 1) ( )x t t t t x t = + + + = + = r i i j k

    Example

    [ ] 2 ( ) ( 1) 0 ( )y t t t t y t = + + + = =

    r j i j k

    [ ] 2 ( ) ( 1) 0 0 ( )z t t t z t = + + + = = r k i j k

    ( )[ ] [ ] [ ]

    2

    2

    ( ) [ ( )] ( 1) 0

    ( ) ( ) ( )

    ( 1) 0

    t t x y z t t

    x t y t z t

    t t

    = = + + + + + = + +

    = + + +

    r r r i j k i j k

    r i r j r k

    i j k

  • 7/23/2019 2 Classical Mechanics

    5/26

    ClassicalMechanics-Velocity-D

    ( )( ) dx tv tdt

    =

    d

    v dt =

    [ ] [ ]3 2

    2

    ( ) ( ) ( )

    2 1

    6 2

    dv t v x t x t

    dtd

    t tdt

    t t

    = = = +

    =

    [ ] [ ]( ) ( ) ( )d

    v t v x t x t dt= =

    Example

  • 7/23/2019 2 Classical Mechanics

    6/26

    ClassicalMechanics-Velocity-3D

    ( ) ( ) ( )( )

    dx t dy t dz t t

    dt dt dt = + +v i j k

    d

    v

    dt

    =[ ]( ) ( ) ( )dt v t t dt

    = = v r r

    [ ] 2

    2

    ( ) ( ) ( 1) 0

    ( 1) 0

    (2 1 0 )

    dt v t t t

    dt

    d d dt t

    dt dt dt

    t

    = = + + +

    = + + +

    = + +

    v r i j k

    i j k

    i j k

    Example

  • 7/23/2019 2 Classical Mechanics

    7/26

    ClassicalMechanics-Velocity-3D

    ( ) ( ) ( )( ) [ ( )] ( ) ( ) ( )

    x y z

    dx t dy t dz t t t v t v t v t

    dt dt dt = = + + = + +v v r i j k i j k

    [ ] [ ] ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    x

    x y z

    x y z

    v t x v t

    d dx t dy t dz t x t x

    dt dt dt dt

    x v t v t v t

    v t v t v t

    =

    = = + + = + + = + +

    r r

    r i j k

    i j k

    i i j k

    ( )x x

    dv t v

    dt= = i

    y

    dv

    dt

    = j z

    dv

    dt

    = k

  • 7/23/2019 2 Classical Mechanics

    8/26

    ClassicalMechanics-Velocity-3D

    ( )[ ] ( ) [ ( )] ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    x y z

    x y z

    t t v v v t

    d t d t d t

    dt dt dt

    dx t dy t dz t

    dt dt dt

    v t v t v t

    = = + +

    = + +

    = + +

    = + +

    v v r i j k r

    r r r

    i i j j k k

    i j k

    i j k

    x y zv v v= + +v i j k

    The corresponding vector operatorto velocity can be reconstructed from the

    pro"ector operators of the components#

  • 7/23/2019 2 Classical Mechanics

    9/26

    ClassicalMechanics-Velocity-3D

    Example

    [ ] 2 ( ) ( 1) 0 (2 1 0 ) 2 ( )x xd

    v t t t t t v t dt

    = + + + = + + = = r i i j k i i j k

    [ ] 2 ( ) ( 1) 0 (2 1 0 ) 1 ( )y yd

    v t t t t v t

    dt

    = + + + = + + = = r j i j k j i j k

    2( ) ( 1) 0t t t= + + +r i j k

    [ ] 2 ( ) ( 1) 0 (2 1 0 ) 0 ( )z zd

    v t t t t v t dt

    = + + + = + + = = r k i j k k i j k

    ( )

    2 ( ) [ ( )] ( 1) 0

    [ ( )] [ ( )] [ ( )]

    ( ) ( ) ( )

    2 0

    x y z

    x y z

    x y z

    t t v v v t t

    v t v t v t

    v t v t v t

    t t

    = = + + + + + = + +

    = + +

    = + +

    v v r i j k i j k

    r i r j r k

    i j k

    i j k

  • 7/23/2019 2 Classical Mechanics

    10/26

    ClassicalMechanics-!cceleration-D

    2

    2

    ( )( )

    d x ta t dt=

    2

    2

    d

    adt

    =

    [ ] [ ]

    2

    2

    23 2

    2

    ( ) ( ) ( )

    2 1

    12 2

    d

    a t a x t x t dt

    dt t

    dt

    t

    = =

    = +

    =

    [ ] [ ]2

    2( ) ( ) ( )

    da t a x t x t

    dt

    = =

    Example

  • 7/23/2019 2 Classical Mechanics

    11/26

    ClassicalMechanics-!cceleration-3D

    2 2 2

    2 2 2( ) ( ) ( )( ) d x t d y t d y t t

    dt dt dt = + +a i j k

    2

    2

    d

    adt=

    [ ]2

    2

    ( ) ( ) ( )d

    t a t t dt

    = = a r r

    [ ]

    22

    2 ( ) ( 1) 0

    (2 0 0 ) ( )

    d

    a t t t dt

    t = + + +

    = + + =r i j k

    i j k a

    Example

  • 7/23/2019 2 Classical Mechanics

    12/26

    ClassicalMechanics-"orce-D

    2

    2

    ( )( )

    d x tF t m dt=

    2

    2

    d

    F m dt=

    [ ] [ ]

    2

    2

    23 2

    2

    ( ) ( ) ( )

    2 1

    12 2

    d

    F t F x t m x tdt

    dm t t

    dt

    mt m

    = =

    = +

    =

    [ ] [ ]2

    2

    ( ) ( ) ( )d

    F t F x t m x tdt

    = =

    Example

  • 7/23/2019 2 Classical Mechanics

    13/26

    ClassicalMechanics-"orce-3D2 2 2

    2 2 2

    ( ) ( ) ( )( )

    d x t d y t d y t t m

    dt dt dt

    = + +

    F i j k

    2

    2 dF m

    dt=

    [ ]2

    2( ) ( ) ( )

    dt F t t

    dt= =F r r

    [ ]

    2

    22( ) ( ) ( 1) 0

    2 0 0

    dt F t m t t dt

    m

    = = + + +

    = + +

    F r i j k

    i j k

    Example

  • 7/23/2019 2 Classical Mechanics

    14/26

    #mpulse an$ Momentum

    2

    2

    ( )

    ( ) ( )

    d x t

    F t m ma td t= =

    [ ] [ ] [ ]

    ( ) ( ) ( )p x t F x t dt mv x t= =

    2

    2

    ( )( ) ( )

    d x tF t dt m dt mdv t

    d t= = Momentum#mpulse

    2

    2

    ( )( )

    d x tF t dt F t m dt m v F t m v

    d t= = =

    ( ) ( ) ( )p t F t dt mv t= =#n general

    "or a constant force

  • 7/23/2019 2 Classical Mechanics

    15/26

    Momentum-D

    ( )( ) ( )

    dx tp t mv t m

    dt= =

    dp mv mdt

    = =

    [ ] [ ] ( )

    ( ) ( ) ( ) dx t

    p t p x t mv x t mdt

    = = =

    [ ] [ ]3 2

    2

    ( )

    ( ) ( ) ( )

    2 1

    6 2

    dx t

    p t p x t mv x t m dt

    dm t t

    dt

    mt mt

    = = =

    = +

    =

    Example

  • 7/23/2019 2 Classical Mechanics

    16/26

    Momentum-3D

    ( ) ( ) ( ) ( )( ) ( )

    d t dx t dy t dz t t m t m m m mdt dt dt dt = = = + +

    rp v i j k

    d

    p mv m dt= =[ ] [ ] ( )

    ( ) ( ) ( )

    d t

    t p t mv t m dt= = = r

    p r r

    [ ] [ ]

    2

    ( ) ( ) ( )

    ( 1) 0

    2 0

    t p t mv t

    dm t t

    dt

    mt m

    = =

    = + + +

    = + +

    p r r

    i j k

    i j k

    Example

  • 7/23/2019 2 Classical Mechanics

    17/26

    #mpulse-D

    ( ) ( )p t F t dt= ( )

    ( )

    dV t

    F t dx=

    d

    p Fdt Vdtdx

    = =

    ( )( )

    dV tp t dt

    dx

    =

    ( ) ( ( )) ( ( ))

    ( ( ))

    p t p x t F x t dt

    d V x t dt

    dx

    = =

    =

    $orce can be thought of as

    a change in potential energywith change in position

  • 7/23/2019 2 Classical Mechanics

    18/26

    #mpulse-D

    [ ] [ ]2

    3 2

    2

    3 2

    2

    ( ) ( ) ( ) 2 1

    2 1

    6 2

    dp t p x t F x t dt m t t dt

    dt

    d

    m t tdt

    mt mt

    = = = +

    = + =

    [ ] ( )2

    00

    ( ) 2 ( ) 2 ( ) / 2 cos( ) sin( )

    ( )

    d kx t kxp x t dt kx t dt kx t dt t

    dx t

    = = = =

    Examples

    2

    0

    1 ( ( ))

    ( ( )) ( ) ( ( )) ( ) cos( )2 ( )

    dV x t

    V x t kx t F x t where x t x t dx t = = =

    i In terms of the "orce operator#

    ii In terms of the Potential operator#

  • 7/23/2019 2 Classical Mechanics

    19/26

    #mpulse-3D

    ( ) ( )t t dt = p F ( )( )t V t= F

    V dt= p

    ( ) ( )t V t dt =

    p

    ( ) ( ( )) ( ( )) ( ( ))t t t dt V t dt = = = p p r F r r

  • 7/23/2019 2 Classical Mechanics

    20/26

    !ngular Momentum

    ( ) ( )t t= L r p

    [ ]( ) ( ) ( ) ( ) ( ) ( )x y zx t y t z t p t p t p t = L

    ( ) ( ) ( )

    ( ) ( ) ( )x y z

    x t y t z t

    p x p t p t=

    i j k

    L

  • 7/23/2019 2 Classical Mechanics

    21/26

    !ngular Momentum

    x y zL L L= + +L i j k

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    x z y

    y x z

    z x y

    L y t p t z t p t

    L z t p t x t p t

    L y t p t x t p t

    =

    =

    =

  • 7/23/2019 2 Classical Mechanics

    22/26

    !ngular Momentum

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    x z y

    y x z

    z y x

    L t y t p t z t p t

    L t z t p t x t p t

    L t x t p t y t p t

    =

    =

    =

    x z y

    y x z

    z y x

    dz dyL yp zp m y z

    dt dt

    dx dz

    L zp xp m z xdt dt

    dy dxL xp yp m x y

    dt dt

    = =

    = = = =

    x y zL L L= + +L i j k

  • 7/23/2019 2 Classical Mechanics

    23/26

    %inetic Energy22 2( ) ( ) ( )

    ( )2 2 2

    mv t m dx t p t K t

    dt m

    = = =

    ( ) ( ) ( ) ( ) ( ) ( )( )

    2 2 2

    m d t d t m t t t t K t

    dt dt m

    = = =

    r r v v p p

    2 22

    2 2

    m d pK mv

    dt m = = =

    2 2 2

    m d d mK

    dt dt m

    = = =

    r r v v p p

    [ ]22 2 [ ( )] ( ) [ ( )] ( )

    2 2 2

    mv x t m dx t p x t K x t

    dt m

    = = =

  • 7/23/2019 2 Classical Mechanics

    24/26

    Potential Energy

    ( ) ( )V d= r F r r( ) ( )V t F t dx=

    ( )( )

    dV tF t

    dx= ( ) ( )V

    = F r r

    &oo's (a)

    ( ) ( )F t kx t=

    2( ) ( )

    2

    kV t x t =

    Coulom*s (a)2

    2( )

    4 ( )

    zeF t

    x t=

    2

    ( )

    4 ( )

    zeV t

    x t

    =

    ( ( )) ( ( )) ( )V x t F x t dx t =

    V Fdx=

    ( ( )) ( ( ))V t t d =

    r F r r

    V d= F r

  • 7/23/2019 2 Classical Mechanics

    25/26

    Conservation of Energy

    ( ) ( )E K t V t= +Total energy remains constant,

    as long as % is not an explicitfunction of time. (i.e %(x(t

    [ ] [ ] [ ] ( ) ( ) ( ) 0dE d d

    K x t V x t K V x t

    dt dt dt

    = + = + =

    [ ] [ ] [ ] ( ) ( ) ( ) 0dE d d

    K t V t K V tdt dt dt

    = + = + = r r r

    2 ( ) ( )2 2

    pH K V V x V

    m m

    = + = + = +

    p pr

    &amiltonian

  • 7/23/2019 2 Classical Mechanics

    26/26

    Conservation of Energy-&oo'+s (a)

    [ ] ( ) 0 ?dE d

    K V x tdt dt

    = + = 2( ) ( )

    2

    kfor V x x t=

    [ ] [ ]2 2

    ( ) ( )

    2 2

    p x t k x tdE d

    dt dt m

    =

    2

    2

    2

    2

    1 ( ) ( )2 ( )

    2 2

    ( ) ( ) ( )2 ( )

    2

    d dx t k dx t m x t

    m dt dt dt

    m dx t d x t dx t kx t

    dt dt dt

    =

    =

    [ ] [ ] [ ]( )21 1

    ( ) ( ) ( )2 2

    d dp x t p x t k x t

    m dt dt =

    ( )

    2

    2

    ( ) ( )( )

    ( )( ) ( ) 0

    dx t d x t m kx t

    dt dt

    dx tma t F t

    dt

    =

    = =&ince# Newtons 'aw

    $ ma ) *

    [ ] [ ]1

    ( ) ( ) 2 ( ) ( )

    2 2

    d d d k d m x t m x t x t x t

    m dt dt dt dt

    =