2 borgs

25
Convergence of Sparse Graphs as a Problem at the Intersection of Graph Theory, Statistical Physics and Probability Christian Borgs joint work with J.T. Chayes, D. Gamarnik, J. Kahn and L. Lovasz

description

Workshop on random graphs 24โ€”26 oct ะ”ะพะบะปะฐะด ะšั€ะธัั‚ะธะฐะฝะฐ ะ‘ะพั€ะณั

Transcript of 2 borgs

Page 1: 2 borgs

Convergence of Sparse Graphs as a Problem at the Intersection of

Graph Theory, Statistical Physics and Probability

Christian Borgs

joint work with

J.T. Chayes, D. Gamarnik, J. Kahn and L. Lovasz

Page 2: 2 borgs

Introduction

Given a sequence ๐บ๐‘› of graphs with ๐‘‰ ๐บ๐‘› โ†’ โˆž,

what is the โ€œrightโ€ notion of convergence?

Answers:

Extremal Combinatorics: We want subgraph counts to converge Left Convergence

Computer Science: We want MaxCut, MinBisection, โ€ฆ to converge Convergence of Quotients

Statistical Physics, Machine Learning: We want free energies of graphical models to converge

Right Convergence

Page 3: 2 borgs

Introduction (cont.)

[BCLSV โ€˜06 โ€“ โ€˜12] Introduced these notions for dense graphs, and proved they are equivalent

Lots of follow-up work, including the definition of a limit object [LS โ€˜06]

This talk: For sequences with bounded degrees (sparse graphs), we

show that these notions are not equivalent

introduce a new notion (Large Deviation convergence) which implies all others

Page 4: 2 borgs

1) Homorphism Numbers and Left Convergence (for Combinatorialists)

For two simple graphs ๐น, ๐บ, a map ๐œ™:๐‘‰(๐น) โ†’ ๐‘‰(๐บ) is called a homomorphism iff ๐œ™ ๐ธ(๐น) โŠ‚ ๐ธ ๐บ

Def: A dense sequence of simple graphs ๐บ๐‘› is left

convergent if the probability that a random map

๐œ™: ๐‘‰ ๐น โ†’ ๐‘‰ ๐บ is a homomorphism converges for all

simple graphs ๐น

Remark: Left convergence is equivalent to convergence

of the normalized subgraph counts ๐‘‰ ๐บ๐‘›โˆ’|๐‘‰ ๐น |๐‘ ๐น, ๐บ๐‘› ,

where ๐‘ ๐น, ๐บ๐‘› is the # of subgraphs ๐นโ€™ โŠ‚ ๐บ๐‘› isomorphic to ๐น.

Page 5: 2 borgs

2) Convergence of Quotients (for Computer Scientists)

Fix a coloring ๐œ™: ๐‘‰ ๐บ โ†’ {1,โ€ฆ , ๐‘ž} of ๐‘‰ ๐บ and let ๐‘‰๐‘– be the set of vertices of color ๐‘–

The quotient ๐บ โˆ• ๐œ™ is a weighted graph on {1, โ€ฆ , ๐‘ž} with vertex weights ๐›ผ๐‘– = ๐‘‰๐‘– ๐‘‰ ๐บ and edge weights

๐›ฝ๐‘–๐‘— =1

๐‘‰ ๐บ 2# ๐‘ข, ๐‘ฃ โˆˆ ๐‘‰๐‘– ร— ๐‘‰๐‘— , ๐‘ข๐‘ฃ โˆˆ ๐ธ(๐บ)

The set of all ๐บ โˆ• ๐œ™ for a fixed ๐‘ž is called the the set of ๐‘ž-quotients of ๐บ, and denoted by ๐‘†๐‘ž ๐บ

We say that the set of quotients of a sequence ๐บ๐‘› is convergent if for all ๐‘ž, the sets ๐‘†๐‘ž(๐บ๐‘›) are convergent

in the Hausdorff metric on subsets of โ„๐‘ž+๐‘ž2.

Page 6: 2 borgs

2) Convergence of Quotients (cont.)

Ex. 1: MaxCut

1

๐‘‰ ๐บ 2MaxCut (๐บ) = max ๐›ฝ12 ๐ป โˆถ ๐ป โˆˆ ๐‘†2 ๐บ

Ex. 2: MinBisection

1

๐‘‰ ๐บ 2MinBis (๐บ) =

= min ๐›ฝ12 ๐ป โˆถ ๐ป โˆˆ ๐‘†2 ๐บ , ๐›ผ1 ๐ป =1

2

Page 7: 2 borgs

3) Right Convergence for Dense Graphs (for Physicists)

Soft-core graph: a weighted graph ๐ป with edge weights

๐›ฝ๐‘–๐‘— = ๐›ฝ๐‘–๐‘— ๐ป > 0

Given a soft-core graph ๐ป on ๐‘ž nodes, define the

microcanonical homomorphism numbers

homโ€ฒ ๐บ,๐ป =

๐œ™:๐‘‰ ๐บ โ†’๐‘‰ ๐ป

๐œ™โˆ’1 ๐‘– โˆ’๐‘žโˆ’1|๐‘‰ ๐บ | โ‰ค1

๐›ฝ๐œ™ ๐‘ฅ ๐œ™ ๐‘ฆ (๐ป)

๐‘ฅ๐‘ฆโˆˆ๐ธ ๐บ

Def: A dense sequence ๐บ๐‘› is called right convergent, if

V Gnโˆ’2log homโ€ฒ(๐บ๐‘›, ๐ป) converges for all soft-core

graphs ๐ป

Page 8: 2 borgs

4) Main Theorem for Dense Graphs

Thm [BCLSV]: Let ๐บ๐‘› be a dense sequence of graphs with ๐‘‰(๐บ๐‘›)| โ†’ โˆž. Then

๐บ๐‘› is right convergent โ‡” the quotients of ๐บ๐‘› are convergent โ‡” ๐บ๐‘› is left convergent

Proof uses three main ingredients: the cut-metric, sampling, and Szemerediโ€™s Lemma, and establishes that convergence in the cut-metric is also equivalent to the other three notions

Page 9: 2 borgs

5) Left Convergence for Sparse Graphs

From now on, we consider sparse graphs, i.e., sequences

๐บ๐‘› with bounded degrees

Given two simple graphs ๐น, ๐บ, we denote the number of

homomorphisms from ๐น to ๐บ by hom (๐น, ๐บ)

Def: A sparse sequence ๐บ๐‘› is called left convergent if

๐‘‰ ๐บ๐‘›โˆ’1 hom (๐น, ๐บ๐‘›)

converges for all connected, simple graphs ๐น

Remark: Using that hom ๐น, ๐บ = surj ๐น, ๐นโ€ฒ ๐‘(๐นโ€ฒ, ๐บ)๐นโ€ฒ ,

it is easy to see that left convergence is equivalent to the

convergence of the subgraph counts ๐‘‰ ๐บ๐‘›โˆ’1 ๐‘ (๐น, ๐บ๐‘›)

Page 10: 2 borgs

5) Left Convergence for Sparse Graphs (cont.)

Def: A sequence ๐บ๐‘› is called Benjamini-Schramm convergent (BS-convergent) if for all ๐‘… < โˆž, the distribution of the ๐‘…-neighborhood around a randomly chosen vertex ๐‘ฅ โˆˆ ๐‘‰(๐บ๐‘›) is convergent

Lemma: Left convergence is equivalent to Benjamini-Schramm convergence

Rem: The limit of a left convergent sequence ๐บ๐‘› can therefore be expressed as a random, rooted graph (๐‘ฅ, ๐บ)

Page 11: 2 borgs

5) Left Convergence for Sparse Graphs (cont.)

Ex1: The sequences {1,2, โ€ฆ , ๐‘›}๐‘‘ and (โ„ค/๐‘›โ„ค)๐‘‘ converge

to the rooted graph (0, โ„ค๐‘‘)

Ex2: Let ๐บ๐‘›,๐‘‘ be the ๐‘‘-regular random graph and

๐ต๐‘›,๐‘‘ be the ๐‘‘-regular bipartite random graph. Both

are left convergent, and converge to the infinite ๐‘‘-regular tree

Rem1: For sparse graphs, left convergence is a very local notion

Rem2: Ex2 raises the question whether the topology defined by left convergence is too coarse

Page 12: 2 borgs

6) Convergence of Quotients for Sparse Graphs

Let ๐œ™: ๐‘‰ ๐บ โ†’ 1,โ€ฆ , ๐‘ž and ๐‘‰๐‘– be as in the dense setting

Define the quotient graph ๐บ โˆ• ๐œ™ as the graph with weights ๐›ผ๐‘– = ๐‘‰๐‘– ๐‘‰ ๐บ and

๐›ฝ๐‘–๐‘— =1

๐‘‰ ๐บ # ๐‘ข, ๐‘ฃ โˆˆ ๐‘‰๐‘– ร— ๐‘‰๐‘— , ๐‘ข๐‘ฃ โˆˆ ๐ธ(๐บ)

and denote the set of all these quotients by ๐‘†๐‘ž(๐บ)

We say the quotients of ๐บ๐‘› are convergent if ๐‘†๐‘ž(๐บ)

converges in the Hausdorff metric for all ๐‘ž

Page 13: 2 borgs

6) Convergence of Quotients for Sparse Graphs (cont.)

Q: Does left convergence imply convergence of quotients?

Ex: Take ๐บ๐‘› to be ๐บ๐‘›,๐‘‘ for odd ๐‘› and ๐ต๐‘›,๐‘‘ for even

๐‘›. For ๐‘‘ large, we have that

MaxCut ๐ต๐‘›,๐‘‘ =๐‘‘๐‘›

2

MaxCut ๐บ๐‘›,๐‘‘ โ‰ˆ๐‘‘๐‘›

4

As a consequence, the 2-quotients of ๐บ๐‘› are not convergent. Thus left convergence does NOT imply convergence of quotients.

Page 14: 2 borgs

6) Convergence of Quotients for Sparse Graphs (cont.)

Q: Does convergence of quotients imply left convergence?

Ex: Take ๐บ๐‘› to be a union of โŒˆ๐‘›

4โŒ‰ 4-cycles for odd ๐‘›

and a union of โŒˆ๐‘›

6โŒ‰ 6-cycles for even ๐‘›. Then

MaxCut ๐บ๐‘› =1

2 |๐‘‰ ๐บ๐‘› |

More general, it is not hard to show that the ๐‘ž-quotients of ๐บ๐‘› are convergent. But ๐บ๐‘› is clearly

not left convergent, so convergence of quotients does not imply left convergence either.

Page 15: 2 borgs

7) Right Convergence for Sparse Graphs

Soft-core graph: a weighted graph ๐ป with edge and vertex

weights ๐›ฝ๐‘–๐‘— ๐ป > 0 and ๐›ผ๐‘– ๐ป > 0

Given a simple graph ๐บ and a soft-core graph ๐ป, define

hom ๐บ,๐ป = ๐›ผ๐œ™ ๐‘ฅ (๐ป)

๐‘ฅโˆˆ๐‘‰ ๐บ๐œ™:๐‘‰ ๐บ โ†’๐‘‰ ๐ป

๐›ฝ๐œ™ ๐‘ฅ ๐œ™ ๐‘ฆ (๐ป)

๐‘ฅ๐‘ฆโˆˆ๐ธ ๐บ

Def: A sparse sequence ๐บ๐‘› is called right convergent if

โ„ฑ ๐ป = lim๐‘›โ†’โˆž

1

๐‘‰ ๐บ๐‘› ๐‘™๐‘œ๐‘” hom (๐บ๐‘›, ๐ป)

exists for all soft-core graphs ๐ป.

Page 16: 2 borgs

7) Right Convergence for Sparse Graphs (cont.)

Lemma: 1,2, โ€ฆ , ๐‘› ๐‘‘ and โ„ค ๐‘›โ„ค ๐‘‘ are right convergent

Q: Does left convergence imply right convergence?

Ex: Take ๐บ๐‘› to be ๐บ๐‘›,๐‘‘ for odd ๐‘› and ๐ต๐‘›,๐‘‘ for even ๐‘›, and

let ๐ป be the soft-core graph with edge weights

๐›ฝ11 = ๐›ฝ22 = 1 and ๐›ฝ12 = ๐‘’.

Then

๐‘’MaxCut(๐บ๐‘›) โ‰ค hom (๐บ๐‘›, ๐ป) โ‰ค 2๐‘›๐‘’MaxCut(๐บ๐‘›)

We may therefore use our previous results on MaxCut(๐บ๐‘›)

to show that ๐บ๐‘› is not right convergent on ๐ป

Page 17: 2 borgs

7) Right Convergence for Sparse Graphs (cont.)

Q: Does right convergence imply convergence of quotients?

Ex: Assume ๐น๐‘› has MinBisec ๐น๐‘› โ‰ฅ ๐›ฟ๐‘› and assume (by compactness) that ๐น๐‘› is right convergent. Choose ๐บ๐‘› = ๐น๐‘› if ๐‘› is odd, and ๐บ๐‘› = ๐น๐‘›/2 โˆช ๐น๐‘›/2 if ๐‘› is even. Then

hom ๐บ๐‘›, ๐ป = hom ๐น๐‘›/2, ๐ป2 & MinBisec ๐บ๐‘› = 0

implying that ๐บ๐‘› is right convergent but that its quotients

are not convergent

Main Thm [BCKLโ€™12] For sequences of bounded maximal degree, right convergence implies left convergence

Page 18: 2 borgs

Proof Idea of Main Theorem

Given a simple graph F and a soft-core graph H define

๐‘ข ๐น,๐ป = ๐นโ€ฒโŠ‚๐น โˆ’1|๐น\Fโ€ฒ| log hom (๐นโ€™, ๐ป)

and use inclusion exclusion to conclude that

log hom (๐บ, ๐ป) = ๐นโŠ‚๐บ ๐‘ข(๐น,๐ป)

By the factorization of hom (๐บ, ๐ป) over connected components, we get ๐‘ข(๐น,๐ป) = 0 unless ๐น is connected. Thus

log hom (๐บ, ๐ป) = ๐นโŠ‚๐บ ๐‘ข(๐น,๐ป) = ๐น ๐‘(๐น, ๐บ)๐‘ข(๐น, ๐ป)

where the second sum runs over all (isomorphism classes) of connected graphs ๐น.

โ€œAs a consequenceโ€

lim๐‘›โ†’โˆž

1

|๐‘‰ ๐บ๐‘› |log hom ๐บ๐‘›, ๐ป = ๐น๐‘ข ๐น,๐ป lim๐‘›โ†’โˆž

๐‘ ๐น, ๐บ๐‘›|๐‘‰ ๐บ๐‘› |

Inverting this relation proves that right convergence implies left convergence

Page 19: 2 borgs

Summary so Far

(local) (local & global)

L-Convergence R-Convergence

Convergence of Quotients

(global)

x

+ + + +

Page 20: 2 borgs

8) Large Deviation Convergence

Convergence of Quotients: convergence of the sets

๐‘†๐‘ž ๐บ๐‘› = {๐บ๐‘› ๐œ™ โˆฃ ๐œ™: ๐‘‰ ๐บ โ†’ 1,โ€ฆ , ๐‘ž } โŠ‚ 0, ๐ท๐‘ž2+๐‘ž

Large Deviation Convergence [BCG โ€˜12]: choose

๐œ™: ๐‘‰ ๐บ โ†’ 1,โ€ฆ , ๐‘ž uniformly at random, and study the

random variable ๐น๐‘ž ๐บ = ๐บ ๐œ™ โˆˆ 0, ๐ท๐‘ž2+๐‘ž

Def: ๐บ๐‘› is large deviation (LD) convergent โ‡” for all ๐‘ž, ๐น๐‘ž ๐บ๐‘› obeys a LD-Principle with suitable rate function ๐ผ๐‘ž

Informally:

Pr ๐น๐‘ž ๐บ๐‘› = ๐น โ‰ˆ ๐‘’โˆ’๐ผ๐‘ž(๐น)|๐‘‰ ๐บ๐‘› |

Page 21: 2 borgs

8) Large Deviation Convergence (cont.)

Def: ๐น๐‘ž ๐บ๐‘› obeys a LD-Principle โ‡” โˆƒ rate function ๐ผ๐‘ž s.th.

Pr ๐น๐‘ž ๐บ๐‘› โˆˆ ๐ด โ‰ˆ sup๐นโˆˆ๐ด ๐‘’โˆ’๐ผ๐‘ž(๐น)|๐‘‰ ๐บ๐‘› |

Page 22: 2 borgs

8) Large Deviation Convergence (cont.)

Def: ๐น๐‘ž ๐บ๐‘› obeys a LD-Principle โ‡” โˆƒ rate function ๐ผ๐‘ž s.th.

โˆ’ inf๐นโˆˆ๐ด ๐ผ๐‘ž(๐น) = lim

log Pr ๐น๐‘ž ๐บ๐‘› โˆˆ ๐ด

|๐‘‰ ๐บ๐‘› |

Page 23: 2 borgs

8) Large Deviation Convergence (cont.)

Def: ๐น๐‘ž ๐บ๐‘› obeys a LD-Principle โ‡” โˆƒ rate function ๐ผ๐‘ž s.th.

โˆ’ inf๐นโˆˆ๐ด0๐ผ๐‘ž ๐น โ‰ค lim

log Pr ๐น๐‘ž ๐บ๐‘› โˆˆ ๐ด

๐‘‰ ๐บ๐‘›

โ‰ค lim log Pr ๐น๐‘ž ๐บ๐‘› โˆˆ ๐ด

๐‘‰ ๐บ๐‘›โ‰ค โˆ’ inf๐นโˆˆ๐ด๐ผ๐‘ž ๐น

Lemma: 1,2, โ€ฆ , ๐‘› ๐‘‘ and โ„ค ๐‘›โ„ค ๐‘‘ are LD-convergent

Page 24: 2 borgs

8) Large Deviation Convergence (cont.)

Thm: If ๐บ๐‘› is LD-convergent, then ๐บ๐‘› is right convergent

In fact, if ๐ป is a soft-core graph with ๐‘‰ ๐ป = ๐‘ž, then

โ„ฑ ๐ป = sup๐น {log๐‘Š๐ป ๐น + log ๐‘ž โˆ’ ๐ผ๐‘ž ๐น }

where

๐‘Š๐ป ๐น = ๐›ผ๐‘– ๐ป๐›ผ๐‘– ๐น

๐‘–

๐›ฝ๐‘–๐‘— ๐ป๐›ฝ๐‘–๐‘—(๐น)

๐‘–๐‘—

So in the limiting free energy โ„ฑ ๐ป , the sequence ๐บ๐‘› only appears via ๐ผ๐‘ž, and the โ€œtarget graphโ€ ๐ป only appears via

๐‘Š๐ป

Page 25: 2 borgs

Summary

x Left Conv.

Conv. of Quotients

Right Conv.

LD Conv.