2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO...

25
1 Emission targets for avoiding dangerous climate change Niel Bowerman Supervisors: Prof. Myles Allen, Prof. David Frame and Dr. Jason Lowe Word Count: 4,578 words plus 10,047 word peerreviewed paper Date: 18 August 2011 Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK Confirmation of Status Report 2

Transcript of 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO...

Page 1: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

 

1  

 

                     Emission  targets  for  avoiding  dangerous  climate  change  Niel  Bowerman  Supervisors:  Prof.  Myles  Allen,  Prof.  David  Frame  and  Dr.  Jason  Lowe  Word  Count:  4,578  words  plus  10,047  word  peer-­‐reviewed  paper  Date:  18  August  2011  

 

A t m o s p h e r i c ,   O c e a n i c   &   P l a n e t a r y   P h y s i c s ,   D e p a r t m e n t   o f   P h y s i c s ,  U n i v e r s i t y   o f   O x f o r d ,   P a r k s   R o a d ,   O x f o r d   O X 1   3 P U ,   U K  

Confirmation  of  Status  Report   2  

08  Fall  

Page 2: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...
Page 3: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

 

3  

Table  of  contents  Table  of  contents  ......................................................................................................................  3  1   Overview  ............................................................................................................................  4  2   Progress  report  ...................................................................................................................  6  2.1   Progress  of  projects  ....................................................................................................  6  2.1.1   Cumulative  emission  targets,  rates  of  warming  and  emission  floors  .........  6  2.1.2   Allowable  emissions  in  2020  and  2050  to  stay  below  2°C  .............................  6  2.1.3   The  impact  of  short-­‐‑  and  long-­‐‑lived  forcing  agents  on  peak  warming  .......  6  2.1.4   Forecasting  emissions  .........................................................................................  6  2.1.5   Trading  short-­‐‑  and  long-­‐‑lived  forcing  agents  .................................................  7  2.1.6   Updating  Allen  et  al.  (2009)  ................................................................................  7  2.1.7   Does  climate  uncertainty  mean  we  will  need  large  scale  air  capture?  ........  7  

2.2   Progress  chart  .............................................................................................................  8  2.3   Gantt  chart  ...................................................................................................................  9  

3   The  impact  of  short-­‐‑  and  long-­‐‑lived  forcing  agents  on  peak  warming  ...................  11  3.1   Preamble  ....................................................................................................................  11  3.2   Impact  of  short-­‐‑lived  forcing  agents?  ....................................................................  11  3.3   References  ..................................................................................................................  12  3.4   Figures  ........................................................................................................................  13  

References  ...............................................................................................................................  14  Appendix  A:   Book  chapter  on  cumulative  emissions  ...................................................  17  Appendix  B:   MPhys  project  ..............................................................................................  19  Appendix  C:   Poster  on  the  climatic  implications  of  using  large  scale  air  capture  ...  21  Appendix  D:   Bowerman  et  al.  (2011)  ...............................................................................  23  Appendix  E:   Poster  on  comparing  the  impact  of  forcing  agents  ................................  25  

Page 4: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

4  

1 Overview  A  substantial   fraction  of   the   carbon  dioxide   (CO2)   released   into   the   atmosphere  by  human  activity  remains  there,  in  effect,  for  centuries  to  millennia.  Changes  in  ocean  chemistry,  which   can   be   described   through   the  Revelle   buffer   factor   (Archer   2005)  limit  oceanic    removal  of  CO2  (Solomon,  et  al.  2009)  while  the  potential  for  terrestrial  vegetation   to   take  up  CO2   is  also  predicted   to   fall  as   the  climate  warms   (Cox,  et  al.  2000),   although   the   size   of   this   feedback   is   uncertain   (Friedlingstein,   et   al.   2006).    Complete  removal  requires  geological  timescales,  (Le  Quere,  et  al.  2009)  or  assistance  from   large-­‐‑scale   air   capture   technologies   (e.g.   Lackner   and   Brennan   2009;  Nikulshina,  et  al.  2009;  Pielke  2009).    

This  feature  of  the  climate  implies  that  bringing  future  emissions  to  zero  would  not  reduce   temperatures   except   in   the   very   long   term,   but   would   rather   hold  temperatures   almost   steady   (Matthews   and   Caldeira   2008;   Lowe,   et   al.   2009;  Matthews   and   Weaver   2010).   Several   recent   studies   have   sought   to   exploit   this  observation  in  order  to  provide  a  simple  link  between  levels  of  cumulative  emissions  and   future  warming   (Allen,   et   al.   2009a;  Matthews,   et   al.   2009;  Meinshausen,   et   al.  2009;  Zickfeld,  et  al.  2009).      

This   simple   link   between   cumulative   emissions   of   carbon   and   future   warming   is  causing  policymakers   to   rethink   the  way   that   emission   targets  are   set.    Policies  are  starting  to  move  away  from  the  former  target  in  a  single  year  approach  (e.g.  G8  2008,  UNFCCC  1997)  and  towards  setting  cumulative  ‘budgets’  over  a  fixed  timespan  (e.g.  Kallbekken,   et   al.  2009;  WBGU   2009;  UKCCC   2010).    My   thesis   aims   to   refine   and  extend  the  scientific  underpinnings  of  this  new  approach  to  setting  emission  targets  for  avoiding  dangerous  climate  change.      

The  first  paper  of  my  DPhil,  which  appears  in  Appendix  D,  showed  that  the  spread  of  possible   temperatures   after  meeting   a   conventional   carbon   emissions   target   in   a  given  year  is  much  wider  than  the  spread  of  resultant  temperatures  from  meeting  a  cumulative   carbon   budget   (Bowerman,   et   al.   2011).     It   also   illustrates   that   the  possibility   of   having   a   future   floor   in   emissions   is   not   incompatible   with   a  cumulative  budget   approach.     It  uses   emission   floors   to   show   that   it   is   cumulative  emissions   to   roughly  2200   that   control  peak  warming,  not   cumulative  emissions   to  2500   (as  suggested  by  Allen,  et  al.  2009)  or  2050   (as   implied  by  Meinshaussen,  et  al.  2009).     I   have   also   written   this   work   up   in   a   book   chapter   on   ‘the   importance   of  limiting   cumulative   emissions’,  which  was   commissioned   by   Springer   as   part   of   a  book  titled  ‘Can  we  still  avoid  dangerous  climate  change?’  

Thus   far   we   have   considered   only   peak   warming   as   an   indicator   of   dangerous  climate  change,  however  another  key  indicator  is  the  rate  of  global  warming  (Root,  et  al.  2003).    The  first  paper  of  my  DPhil,  labelled  P1  in  Section  2,  shows  that  the  peak  rate   of   CO2-­‐‑induced   warming   is   controlled   by   the   peak   rate   of   CO2   emissions  (Bowerman,  et  al.  2011),  contrary  to  a  suggestion  by  Kallbekken,  et  al.  (2009)  that  it  is  controlled  by  the  cumulative  emissions  between  2010  and  2030.      

Page 5: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

5  

The  examples  above  illustrate  how  the  cumulative  budgets  approach  works  well  for  the   CO2-­‐‑only   case   (e.g.   Raupach,   et   al.   2011),   however   several   recent   papers   have  highlighted   the   problems   with   incorporating   non-­‐‑CO2   greenhouse   gases   into   this  framework   (e.g.  Cox  &   Jeffrey  2010;  Arora   et  al.  2011).    During  my  DPhil   I  hope   to  illustrate   two   possible   methods   of   incorporating   non-­‐‑CO2   forcings   into   the  cumulative  emissions  framework.    The  first  of  these  methods  assumes  constant  non-­‐‑CO2   forcings   that  are  not   time-­‐‑dependent,   and  will  be  discussed   in  Smith,   et  al.   (in  prep.).     The   other   uses   time-­‐‑evolving   non-­‐‑CO2   forcings   and   will   be   discussed   in  detail  in  this  report  and  in  a  future  paper,  labelled  P3  in  Section  2  (Bowerman,  et  al.  in  prep.   a).     Based  on   the   insights   of  Hahn   (1989)   and  Mann  &  Richels   (2001),   this  time-­‐‑evolving  framework  can  be  used  to   trade  between  greenhouse  gases   in  a  real-­‐‑world  market,   which   will   be   outlined   briefly   in   this   report   and   explored   in  more  detail  in  a  future  paper,  labelled  P5  in  Section  2  (Hahn  et  al.  in  prep.).      

Recently  there  have  been  a  series  of  papers  proposing  to  help  tackle  climate  change  by   cutting   short-­‐‑lived   forcing   agents   (e.g.  Molina,   et   al.  2009;  UNEP   2011).     In   this  report   I  will   illustrate  why  delaying  the   implementation  of   the  measures  suggested  in  these  papers  until  after  carbon  emissions  have  peaked,  rather  than  implementing  them  now,  will  have  little  impact  on  peak  warming  (Bowerman,  et  al.  in  prep.  a  a.k.a.  P3).    I  also  hope  to  show  that  the  proposed  measures  cannot  be  used  as  an  alternative  to  cutting  emissions  of  CO2  if  the  aim  is  to  reduce  peak  global  warming  (Bowerman,  et  al.  in  prep.  a  a.k.a.  P3).      

The  data  used  to  tune  the  model  utilised  in  this  report,  and  by  both  Allen,  et  al.  (2009)  and  Bowerman,  et  al.  (2011)  is  now  several  years  out  of  date  and  needs  to  be  updated.    This  will   allow  me   to   update   the   conclusions   of   Allen   et   al.   (2009)   in   time   for   the  Intergovernmental  Panel  on  Climate  Change  (IPCC)  Fifth  Assessment  Report  (AR5)  deadline.     I   hope   to   do   this   in   a   second   future   paper   labelled   P6   in   Section   2  (Bowerman  et  al.  in  prep.  b).      

Finally,  if  time  allows,  I  would  like  to  explore  the  implications  of  our  learning  about  the  climate  system  on  emission  targets,  as  inspired  by  Allen  &  Frame  (2007)  and  my  Masters   project.     If   in   the   future   the   scientific   community   finds   that   the   climate  sensitivity   is   higher   than   previously   estimated,   it   seems   likely   that   policymakers  would  set   lower  future  carbon  emission  targets,  and  vice  versa.    We  use  this   idea  to  consider  future  emissions  pathways  in  which  learning  occurs  over  time  using  ideas  from  basic  control  theory.    We  find  that  it  is  likely  that  society  would  have  to  employ  large  scale  air  capture  technology  (e.g.  Lackner  and  Brennan  2009;  Nikulshina,  et  al.  2009;  Pielke  2009)  to  remove  CO2  from  the  atmosphere  if  we  learn  in  the  future  that  climate   sensitivity   is   higher   than   expected   and   want   to   keep   temperatures   from  rising  by  more  than  2°C  (Bowerman  et  al.  in  prep.  c).    This  would  be  written  up  in  an  additional  paper,  labelled  P7  in  Section  2,  if  time  allows.      

In   summary,   over   the   course   of   my   DPhil,   I   hope   to   refine   the   scientific  underpinnings   of   the   link   between   cumulative   carbon   emissions   targets   and   peak  global  warming,  as  well  as  extending  the  concept  to  include  non-­‐‑CO2  forcing  agents.    Over  the  course  of  this  work,  I  hope  to  improve  our  understanding  of  the  emission  targets  required  to  avoid  dangerous  climate  change.      

Page 6: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

6  

2 Progress  report  As   I   approach   the   two-­‐‑thirds   mark   in   my   DPhil   I   am   moving   from   performing  mostly   analysis   and   doing   some  writing,   to   doing  mostly  writing   and   performing  bits  of  analysis  where  necessary.      

The  activities  that  I  have  carried  out,  the  progress  I  have  made,  and  my  estimates  of  what  I  hope  to  do  over  the  coming  year,  are  all  displayed  in  the  Gantt  chart  in  Table  2.    My  progress  in  each  of  the  projects  that  I  am  working  is  illustrated  in  Table  1,  and  is  described  on  briefly  below.    The  labelling  in  brackets  in  the  text  below  refers  to  the  labels  given  to  projects  in  the  Gantt  chart  and  progress  chart.      

2.1 Progress  of  projects  

2.1.1 Cumulative  emission  targets,  rates  of  warming  and  emission  floors  This   paper   (P1)   has   been   published   by   Philosophical   Transactions   of   the   Royal  Society  A,  and  is  included  in  Appendix  D.    It  is  described  briefly  in  Section  1.      

2.1.1.1 Book  chapter  on  cumulative  emissions  targets  This   book   chapter   (B1)   is   included   in   Appendix   A   in   the   form   in   which   it   was  submitted   to   reviewers.     It  was   commissioned  by   Springer   as  part   of   a   book   titled  ‘Can  we  still  avoid  dangerous  climate  change?’,  and  is  based  on  my  published  paper  P1.    It  will  be  published  alongside  other  chapters   from  members  of   the  AVOID  project,  which  employed  me  during  Michaelmas  Term  2009.    It   is  being  coordinated  in  part  by  the  Met  Office,  which  is  my  CASE  sponsor.      

2.1.2 Allowable  emissions  in  2020  and  2050  to  stay  below  2°C  Jason  Lowe  started  this  paper  (P2)  during  Michalemas  Term  2009.    He  later  handed  it  over   to  Chris  Huntingford,   one  of   the  original   co-­‐‑authors,  who   is  not   leading   it.     I  drafted  some  of  more  policy-­‐‑oriented  parts  of  the  paper,  and  I  am  now  helping  with  editing  and  references.      

2.1.3 The  impact  of  short-­‐  and  long-­‐lived  forcing  agents  on  peak  warming  The   ideas   contained   within   this   paper   (P3)   are   described   in   Section   1,   and   are  included   in   this   report   in   draft   form   in   Section   3.     It   is   a   collaboration  with  Drew  Shindell,  and  is  in  part  a  response  to  Molina,  et  al.  (2009)  and  UNEP  (2011).    It  will  be  submitted   alongside   another   paper   by   Steve   Smith   at   the   UK   Climate   Change  Committee   on   comparing   the   impacts   of   short-­‐‑   and   long-­‐‑lived   species,   which  describes  an  alternative  metric  to  the  conventional  Global  Warming  Potential.    Steve  Smith’s  paper  is  discussed  briefly  in  Section  1.    A  poster  displaying  some  of  our  early  results  on  this  topic  is  presented  in  Appendix  E.      

2.1.4 Forecasting  emissions  Corinne   Le  Quéré   has   developed   a  method   of   forecasting   emissions   over   the   next  few  decades  based  on  historic  emission  trends.    We  add  to  her  analysis  by  estimating  the  range  of  the  CO2-­‐‑induced  warming  that  would  be  likely  to  occur  as  a  result  of  her  emission  projections.    Corinne  Le  Quéré  is  drafting  this  paper  (P4)  at  the  moment.      

Page 7: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

7  

2.1.5 Trading  short-­‐  and  long-­‐lived  forcing  agents  In   this   paper   (P5)   we   hope   to   extend   the   analysis   presented   in   paper   P3   in  collaboration  with  Robert  Hahn,  who  created  the  successful  sulphur  dioxide  trading  scheme   in   USA   under   President   George   Bush   Senior.     Myles   Allen   and   I   will   be  providing   the   science   to   this   project,   and   Robert   Hahn   and   David   Frame   will   be  contributing   the   economics.     The   proposed   contents   of   this   paper   are   discussed  briefly  in  Section  1.      

2.1.6 Updating  Allen  et  al.  (2009)  This  paper  (P6)  aims  to  update  the  conclusions  of  Allen  et  al.   (2009)  by  redoing  the  analysis   with   recently   published   input   data.     This   paper   is   discussed   briefly   in  Section  1.      

2.1.7 Does  climate  uncertainty  mean  we  will  need  large  scale  air  capture?  This   paper   (P7)   will   only   written   if   time   allows.     The   paper   would   include   and  extend  the  results  of  my  Masters  project,  which  is  included  in  Appendix  B.    Some  of  the  recent  extensions  to  this  work  are  included  in  the  poster  presented  in  Appendix  C.    

Page 8: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

 

8  

2.2 Progress  chart  

Code   Paper   Lead  Author  

Activity  

Notes  

Mod

ellin

g  

Plottin

g  

Drafting  

Editing

 

Subm

itted

 to  re

view

ers  

Reviewers’  

commen

ts  

Subm

itted

 for  

publishing

 

Publishe

d  

P1   Cumulative  emissions   N.  Bowerman                    

B1   Book  chapter   N.  Bowerman                    

P2   2020  &  2050  targets   C.  Huntingford                    

P3   Short-­‐‑  and  long-­‐‑lived  gases   N.  Bowerman                    

P4   Forecasting  emissions   C.  Le  Quéré                    

P5   Emissions  trading   R.  Hahn                    

P6   Updating  Allen  et  al.  (2009)   N.  Bowerman                    

P7   Air  capture   N.  Bowerman           P7  will  only  be  written  if  time  allows  

T1   DPhil  Thesis   N.  Bowerman                    

Table  1:  A  chart  illustrating  my  progress  in  each  of  the  projects  that  I  am  working  on.    Solid  blue  sections  represent  activities  that  have  been  completed,  and  diagonal  shading  represents  activities  that  are  partially  completed.      The  air  capture  paper  (P7)  will  only  be  completed  if  time  allows.    

Page 9: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

9  

2.3 Gantt  chart    

Gantt  Chart   1st  Year   2nd  Year   3rd  Year   4th  Year  

Activity

 Cod

e  

Experiment  or  Task   Micha

elmas  

2009  

Hila

ry  2010  

Trinity

 2010  

Micha

elmas  

2010  

Hila

ry  2011  

Trinity

 2011  

Micha

elmas  

2011  

Hila

ry  2012  

Trinity

 2012  

Micha

elmas  

2012  

E1   Simple  model  comparison                      E1   Target  comparison                      E1   Cumulative  with  floors                      E1   Likelihood  with  floors                      P1   Writing  targets  and  floors  paper                      B1   Writing  book  chapter  on  

cumulative  emissions  targets                      

P2   Contributing  to  2020  &  2050  targets  paper  

                   

E3   Creating  multi-­‐‑gas  model                      E3   Comparing   the   impact   of   short-­‐‑  

and  long-­‐‑lived  species                      

E3   Analysis  of  Molina  and  UNEP  proposals  

                   

P3   Writing  short-­‐‑  vs  long-­‐‑lived  paper                      E4   Producing  warming  forecasts  for  

emissions  forecasts  paper                      

P4   Contributing  to  emissions  forecasts  paper  

                   

Continued  on  next  page…  

Page 10: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

10  

Gantt  Chart   1st  Year   2nd  Year   3rd  Year   4th  Year  Activity

 Cod

e  

Experiment  or  Task   Micha

elmas  

2009  

Hila

ry  2010  

Trinity

 2010  

Micha

elmas  

2010  

Hila

ry  2011  

Trinity

 2011  

Micha

elmas  

2011  

Hila

ry  2012  

Trinity

 2012  

Micha

elmas  

2012  

E5   Comparison  of  gases  for  trading  paper  

                   

P5   Contributing  to  trading  paper                      E6   Updating  Allen  et  al.  (2009)                      P6   Write  updated  Allen  et  al.  paper                      T1   DPhil  thesis  first  draft                      T2   DPhil  thesis  final  draft                      T3   DPhil  viva                      

The  following  activities  will  be  completed  if  time  allows  E7   Air  capture  and  precipitation                      P7   Air  capture  paper                      

Table  2:    A  Gantt  chart   illustrating   the  project  schedule.    Darker  solid  colours  represent  periods  when  experiments   (or  vivas)  are   to  be  carried  out.    Diagonal  shading  depicts  periods  when  writing  up  will  be  carried  out.  The  time  allocated  for  paper  writing  extends  to  when  the  final  manuscript  is  handed  to  the  editors  once  the  peer-­‐‑review  process  is  complete.  The  tasks  below  the  dotted  lines  will  only  be  completed  if  time  allows.  

   

Page 11: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

11  

3 The  impact  of  short-­‐  and  long-­‐lived  forcing  agents  on  peak  warming  

3.1 Preamble  The  following  text  may  be  appropriate  for  submission  as  a  brief  correspondence  arising  from  a  Nature  review  paper  published  on  4  August  2011,  once  it  has  been  edited  by  co-­‐‑authors.     The   review   paper   implies   that   reductions   in   short-­‐‑lived   greenhouse  gases   today  would   reduce   peak   radiative   forcing,  which  we   argue   is   not   the   case.    The  paper  in  question  is:  Montzka,  S.  A.,  E.  J.  Dlugokencky  &  J.  H.  Butler.    Non-­‐‑CO2  greenhouse  gases  and  climate  change.  Nature  476,  43-­‐‑50  (2011).      

Please   note   that   the   plots   presented   here   have   been   produced   with   the   model  outlined  in  Bowerman,  et  al.  (2011)  plus  a  simplistic  exponential-­‐‑decay  treatment  of  non-­‐‑CO2  greenhouse  gases.    As  such  they  are  not  suitable  for  publication,  and  will  be  redone  before  submission,  for  example  with  the  simplified  NASA  GISS  model  or  other  simple  model.    I  do  not  expect  the  conclusions  of  the  plots  to  change  and  thus  I  include  them  below.      

3.2 Impact  of  short-­‐lived  forcing  agents?  Emissions  of  both  carbon  dioxide  (CO2)  and  other  greenhouse  gases  are  contributing  to  global  warming.  Reducing  emissions  of  non-­‐‑CO2  greenhouse  gases   (GHGs)  such  as  methane  and  nitrous  oxide  will  help  mitigate  climate  change  via  global  radiative  forcing   or   climate   forcing,   which   controls   the   magnitude   of   global   warming.    Montzka,   Dlugokencky   and   Butler1   imply   that   reductions   in   short-­‐‑lived   GHGs  emitted  today  will  reduce  peak  radiative  forcing,  which  even  on  the  most  optimistic  mitigation   scenarios,   will   occur   in   several   decades’   time.     However,   short-­‐‑lived  GHGs   remain   in   the  atmosphere   for  only  a   few  years2,   so   emissions  of   these  gases  over   the  coming  decade  cannot  substantially  affect  either  peak  radiative   forcing,  or  consequently   the   magnitude   of   peak   warming,   under   scenarios   in   which  temperatures  peak  around  2oC  above  pre-­‐‑industrial  such  as  those  consistent  with  the  aspirations   espoused   in   the   Copenhagen   Accord.   Current   emissions   of   short-­‐‑lived  gases   have   even   less   impact   on   peak   temperatures   under   scenarios   in   which  temperatures  peak  later  and  higher.  Rather,  it  is  emissions  of  short-­‐‑lived  GHGs  near  the   time   of   peak   radiative   forcing   that   significantly   affect   that   peak   in   radiative  forcing   and   subsequently   peak   warming3.   Short-­‐‑lived   GHGs   emitted   today   can  indirectly   affect   peak   warming   through   carbon-­‐‑cycle   feedbacks,   but   this   is   a  secondary  effect,  as  shown  in  Figure  1.      

Figure  1  shows  the  contribution  to  peak  GHG-­‐‑induced  warming  from  various  GHGs  (and  other  short-­‐‑lived  forcing  agents  such  as  black  carbon)  as  a  function  of  decade  of  emission,   calculated   simply   by   omitting   the   relevant   decade’s   emissions   of   a  particular   gas   and   computing   the   resulting   change   in   peak   warming.   While   CO2  

emissions  are  dominant  initially,  their  importance  declines  as  CO2  emissions  decline  in   these   two   scenarios,   and   the   importance   of   short-­‐‑lived   agents   increases  significantly   near   the   time   of   peak   warming.     We   use   two   emissions   scenarios,  

Page 12: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

12  

RCP3PD   and   RCP4.5,   which   we   find   cause   global   mean   temperatures   to   peak   at  roughly  2oC  and  3oC  respectively  with   the  most   likely  values  of  model  parameters.  Though   the   details   change   between   scenarios,   the   qualitative   result   remains   the  same:  in  terms  of  current  emissions,  CO2  has  a  far  greater  impact  on  peak  radiative  forcing   and   peak   warming   than   short-­‐‑lived   GHGs   for   any   plausible   emissions  scenario.    

Short-­‐‑lived   forcing   agents   emitted   today   raise   global   temperatures   temporarily,  causing   increased   emission   of   CO2   from   the   biosphere   via   carbon-­‐‑cycle   feedback  mechanisms4.    Through  this  carbon-­‐‑cycle   feedback,   today’s  emissions  of  short-­‐‑lived  GHGs   can   impact   peak   forcing,   and   in   turn   peak   warming.     However,   this   is   a  secondary   effect   that   has   a   much   smaller   impact   in   any   given   decade   than   the  influence  of  emissions  of  short-­‐‑lived  forcing  agents  near  the  time  of  peak  forcing.      

It  has  been  suggested5  that  cuts  in  short-­‐‑lived  radiative  forcing  agents  can  “buy  time”  to   make   more   difficult   cuts   in   CO2   emissions.   While   there   are   many   reasons   for  reducing   short-­‐‑lived   climate   forcings1,   our   results   suggest   that   the   impact   on   peak  temperatures   is   not   one   of   them.   Even   the   complete   elimination   of   black   carbon  emissions   in   the   2020s   would   have   less   impact   on   peak   temperatures   than   the  reduction  of  CO2  emissions  envisaged  between  the  2010s  and  2020s  under  the  very  optimistic  RCP3PD  scenario,  and  almost  no  impact  under  the  RCP4.5  scenario.  Until  significant  cuts  in  CO2  emissions  occur,  radiative  forcing  from  CO2  and  hence  global  temperatures  will  continue  to  rise.    Emissions  of  short-­‐‑lived  radiative  forcing  agents  only   affect   peak   temperatures   under   circumstances   in   which   global   emissions   of  long-­‐‑lived  agents  are  already  low  and  falling.      

3.3 References  1. Montzka,  S.  A.,  E.  J.  Dlugokencky  &  J.  H.  Butler.    Non-­‐‑CO2  greenhouse  gases  and  

climate  change.  Nature  476,  43-­‐‑50  (2011).      2. Forster,   P.,   V.   Ramaswamy,   P.   Artaxo,   T.   Berntsen,   R.   Betts,   D.W.   Fahey,   J.  

Haywood,  J.  Lean,  D.C.  Lowe,  G.  Myhre,  J.  Nganga,  R.  Prinn,    and  M.  S.  a.  R.  V.  D.   G.   Raga.   Changes   in   Atmospheric   Constituents   and   in   Radiative   Forcing.  Climate  Change  2007:  The  Physical  Science  Basis.  Contribution  of  Working  Group  I   to  the   Fourth   Assessment   Report   of   the   Intergovernmental   Panel   on   Climate   Change.   S.  Solomon,  D.  Qin,  M.  Manning,  Z.  Chen,  M.  Marquis,  K.B.  Averyt,  M.Tignor  and  H.L.  Miller,  Cambridge  University  Press  (2007)  

3. Shine,  K.   P.,   T.  K.   Berntsen,   J.   S.   Fuglestvedt,  R.   Bieltvedt   Skeie   and  N.   Stuber.    Comparing  the  climate  effect  of  emissions  of  short-­‐‑  and  long-­‐‑lived  climate  agents.  Phil.  Trans.  R.  Soc.  A  365,  1903-­‐‑1914  (2007)  

4. Gillett,   N.   P.   &   H.   D.   Matthews.     Accounting   for   carbon   cycle   feedbacks   in   a  comparison  of  the  global  warming  effects  of  greenhouse  gases.    Environ.  Res.  Lett.  5,  034011  (2010)  

5. Cox,  P.  M.  &  H.  A.  Jeffery.  Methane  radiative  forcing  controls  the  allowable  CO2  emissions  for  climate  stabilization.  Curr  Opin  Environ  Sustain.  2,  404–408  (2010)  

6. Solomon,   S.,   et   al.   (2009).   Irreversible   climate   change   due   to   carbon   dioxide  emissions.  Proc.  Natl  Acad.  Sci.  USA  106(6):  1704-­‐‑1709.  

Page 13: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

13  

3.4 Figures  

 

Figure  1:  Contribution  of  decade’s  emissions  to  peak  warming  for  two  different  emissions  scenarios.  Panel   a)   uses   RCP   3PD,   an   emissions   scenario   causing  warming   to   peak   at   X.X°C   relative   to   pre-­‐‑industrial   in   2XXX   with   the   most   likely   values   of   model   parameters.     Panel   b)   uses   RCP   4.5,   an  emissions   scenario   leading   to  warming   peaking   at   X.X°C   in   2XXX  with   the  most   likely   values   of  model  parameters.    To  create  these  plots  we  have  removed  the  emissions  of  a  given  greenhouse  gas  in  a  given  decade  from  a  model  run  and  calculated  the  resulting  impact  of  these  emissions  on  peak  global  warming.      

-­‐‑0.05

0

0.05

0.1

0.15

0.2

0.25

2000s 2020s 2040s 2060s 2080s 2100s

Contribution  of  decade'ʹs  emissions  to  

peak  global  warming  (°C)

Decade

a)  RCP  3PD

Black  Carbon

Trop.  Ozone

(H)CFCs

CH4

N2O

CO2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2000s 2050s 2100s 2150s 2200s

Contribution  of  decade'ʹs  emissions  to  

peak  global  warming  (°C)  

Decade

b)  RCP  4.5

Page 14: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

14  

References  Adger,   W.   N.,   S.   Agrawala,   M.M.Q.   Mirza,   C.   Conde,   K.   O’Brien,   J.   Pulhin,   R.  

Pulwarty,  B.  Smit  and  K.  Takahashi  (2007).  Assessment  of  adaptation  practices,  options,   constraints   and   capacity.   Climate  Change   2007:   Impacts,  Adaptation  and  Vulnerability.  O.  F.  C.  M.L.  Parry  and  P.  J.  v.  d.  L.  a.  C.  E.  H.  J.P.  Palutikof,  Cambridge  University  Press.  

Allen,  M.  and  W.  Ingram  (2002).  "ʺ  Constraints  on  future  changes  in  climate  and  the  hydrologic  cycle."ʺ  Nature  419,  224-­‐‑232.      Allen,  M.  R.,  D.   Frame,  K.   Frieler,  W.  Hare,  C.  Huntingford,  C.   Jones,  R.  Knutti,   J.  

Lowe,   M.   Meinshausen,   N.   Meinshausen   and   S.   Raper   (2009b).   "ʺThe   exit  strategy."ʺ  Nature  Reports  Climate  Change  3:  56-­‐‑58.  

Allen,   M.   R.,   D.   J.   Frame,   et   al.   (2009a).   "ʺWarming   caused   by   cumulative   carbon  emissions  towards  the  trillionth  tonne."ʺ  Nature  458(7242):  1163-­‐‑1166.  

Anderson,  K.  and  A.  Bows  (2008).   "ʺReframing  the  climate  change  challenge  in   light  of  post-­‐‑2000  emission  trends."ʺ  Phil.  Trans.  Roy.  Soc.  A  366:  2862-­‐‑2883.      

Archer,  D.   (2005).   "ʺFate  of   fossil   fuel  CO2   in  geologic   time."ʺ   Journal  of  Geophysical  Research-­‐‑Oceans  110(C9):  -­‐‑.  

Chakravarty,  S.,  A.  Chikkatur,  et  al.  (2009).  "ʺSharing  global  CO2  emission  reductions  among   one   billion   high   emitters."ʺ   Proceedings   of   the   National   Academy   of  Sciences  of  the  United  States  of  America  106(29):  11884-­‐‑11888.  

Cox,  P.  M.,  R.  A.  Betts,  et  al.  (2000).  "ʺAcceleration  of  global  warming  due  to  carbon-­‐‑cycle   feedbacks   in   a   coupled   climate  model   (vol   408,   pg   184,   2000)."ʺ   Nature  408(6813):  750-­‐‑750.  

Cox,  P.  and  D.  Stephenson  (2007).   "ʺA  changing  climate   for  prediction."ʺ  Science  317:  207-­‐‑208.      

den   Elzen,   M.   and   M.   Meinshausen   (2006).   "ʺMeeting   the   EU   2   degrees   C   climate  target:  global  and  regional  emission  implications."ʺ  Climate  Policy  6(5):  545-­‐‑564.  

den  Elzen,  M.,  M.  Meinshausen,  et  al.  (2007).  "ʺMulti-­‐‑gas  emission  envelopes  to  meet  greenhouse   gas   concentration   targets:   Costs   versus   certainty   of   limiting  temperature   increase."ʺ   Global   Environmental   Change-­‐‑Human   and   Policy  Dimensions  17(2):  260-­‐‑280.  

Forster,  P.,  V.  Ramaswamy,  P.  Artaxo,  T.  Berntsen,  R.  Betts,  D.W.  Fahey,  J.  Haywood,  J.   Lean,  D.C.  Lowe,  G.  Myhre,   J.  Nganga,  R.   Prinn,     and  M.   S.   a.  R.  V.  D.  G.  Raga   (2007).  Changes   in  Atmospheric  Constituents   and   in  Radiative   Forcing.  Climate   Change   2007:   The   Physical   Science   Basis.   Contribution   of   Working  Group   I   to   the   Fourth  Assessment  Report   of   the   Intergovernmental   Panel   on  Climate  Change.  S.  Solomon,  D.  Qin,  M.  Manning,  Z.  Chen,  M.  Marquis,  K.B.  Averyt,  M.Tignor  and  H.L.  Miller,  Cambridge  University  Press.    

Friedlingstein,   P.,   P.   Cox,   et   al.   (2006).   "ʺClimate-­‐‑carbon   cycle   feedback   analysis:  Results   from   the   (CMIP)-­‐‑M-­‐‑4   model   intercomparison."ʺ   Journal   of   Climate  19(14):  3337-­‐‑3353.  

G8  (2008).  G8  Hokkaido  Toyako  Summit  Leaders  Declaration.  G8   (2009).  Declaration  of   the  Leaders  The  Major  Economies   Forum  on  Energy   and  

Climate.  Huntingford,  et  al.  (2010).    "ʺIMOGEN:  an  intermediate  complexity  model  to  evaluate  

Page 15: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

15  

terrestrial   impacts   of   a   changing   climate."ʺ   Geoscientific   Model   Development  Discussions  3:  1161-­‐‑1184.      

IPCC,   2007:   Summary   for   Policymakers.   In:   Climate   Change   2007:   The   Physical  Science   Basis.   Contribution   of   Working   Group   I   to   the   Fourth   Assessment  Report   of   the   Intergovernmental   Panel   on   Climate   Change   [Solomon,   S.,   D.  Qin,  M.  Manning,  Z.  Chen,  M.  Marquis,  K.B.  Averyt,  M.Tignor  and  H.L.  Miller  (eds.)].   Cambridge   University   Press,   Cambridge,   United   Kingdom   and   New  York,  NY,  USA.  

Kallbekken,  S.,  N.  Rive,  G.  P.  Peters,  J.  S.  Fuglestvedt  (2009).  "ʺCurbing  emissions:  cap  and  rate."ʺ  Nature  Reports  Climate  Change    

Lackner,   K.   S.   and   S.   Brennan   (2009).   "ʺEnvisioning   carbon   capture   and   storage:  expanded   possibilities   due   to   air   capture,   leakage   insurance,   and   C-­‐‑14  monitoring."ʺ  Climatic  Change  96(3):  357-­‐‑378.  

Le  Quere,  C.,  M.  R.  Raupach,  et  al.  (2009).  "ʺTrends  in  the  sources  and  sinks  of  carbon  dioxide."ʺ  Nature  Geoscience  2(12):  831-­‐‑836.  

Lowe,   J.,   C.   Huntingford,   L.   Gohar,   M.   Allen,   N.   Bowerman   (2010).   "ʺThe   relation  between   constraining   global   warming   below   two   degrees   and   emissions   in  years  2020  and  2050."ʺ  in  prep.  

Lowe,   J.   A.,   C.   Huntingford,   et   al.   (2009).   "ʺHow   difficult   is   it   to   recover   from  dangerous  levels  of  global  warming?"ʺ  Environmental  Research  Letters  4(1):  9.  

Matthews,   D.   H.   and   A.   J.   Weaver   (2010).   "ʺCommitted   climate   warming."ʺ   Nature  Geoscience  3:  142-­‐‑143.  

Matthews,   H.   D.   and   K.   Caldeira   (2008).   "ʺStabilizing   climate   requires   near-­‐‑zero  emissions."ʺ  Geophysical  Research  Letters  35(4):  -­‐‑.  

Matthews,  H.  D.,  N.  P.  Gillett,  et  al.  (2009).  "ʺThe  proportionality  of  global  warming  to  cumulative  carbon  emissions."ʺ  Nature  459(7248):  829-­‐‑U3.  

Meinshausen,  M.,   N.  Meinshausen,   et   al.   (2009).   "ʺGreenhouse-­‐‑gas   emission   targets  for  limiting  global  warming  to  2  degrees  C."ʺ  Nature  458(7242):  1158-­‐‑U96.  

Nakicenovic,   N.   et   al.   (2000).   "ʺSpecial   Report   on   Emissions   Scenarios"ʺ   Cambridge  University  Press  

Nikulshina,   V.,   C.   Gebald,   et   al.   (2009).   "ʺCO2   capture   from   atmospheric   air   via  consecutive  CaO-­‐‑carbonation  and  CaCO3-­‐‑calcination  cycles  in  a  fluidized-­‐‑bed  solar  reactor."ʺ  Chemical  Engineering  Journal  146(2):  244-­‐‑248.  

Parry,  M.,   J.   Lowe,   et   al.   (2009).   "ʺOvershoot,   adapt   and   recover."ʺ  Nature  458(7242):  1102-­‐‑1103.  

Pawitan,   Y.   (2001).   In   all   Likelihood:   Statistical   Modeling   and   Inference   Using  Likelihood,  Oxford  Univ.  Press.  

Pielke,   R.   A.   (2009).   "ʺAn   idealized   assessment   of   the   economics   of   air   capture   of  carbon   dioxide   in   mitigation   policy."ʺ   Environmental   Science   &   Policy   12(3):  216-­‐‑225.  

Ramaswamy,  V.   (2001).  Climate  Change  2001:  The  Scientific  Basis.  Climate  Change  2001:  The  Scientific  Basis.  J.  T.  Houghton,  Cambridge  University  Press.  

Solomon,  S.,  G.  K.  Plattner,  et  al.   (2009).   "ʺIrreversible  climate  change  due   to  carbon  dioxide   emissions."ʺ   Proceedings   of   the   National   Academy   of   Sciences   of   the  United  States  of  America  106(6):  1704-­‐‑1709.  

UK  Committee  on  Climate  Change,  C.  (2008).  Building  a  low-­‐‑carbon  economy  -­‐‑  the  UK'ʹs  contribution  to  tackling  climate  change,  The  Stationery  Office.  

Page 16: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

16  

UNFCCC  (2009).  Copenhagen  Accord.  WBGU  (2009).  Solving  the  climate  dilemma:  The  budget  approach.  Zickfeld,  K.,  M.  Eby,  et  al.  (2009).  "ʺSetting  cumulative  emissions  targets  to  reduce  the  

risk   of   dangerous   climate   change."ʺ   Proceedings   of   the   National   Academy   of  Sciences  of  the  United  States  of  America  106(38):  16129-­‐‑16134.  

       

   

Page 17: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

17  

Appendix  A:   Book  chapter  on  cumulative  emissions                                

Niel  H.A.  Bowerman,  David  J.  Frame,  Chris  Huntingford,  Jason  A.  Lowe,  Laila  Gohar  &  Myles  R.  Allen  

 Cumulative  emissions  budgets  and  their  implications  

   

Commissioned  by  Springer  as  a  chapter  in  a  book  titled  “Can  we  still  avoid  dangerous  climate  change?”  

Page 18: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...
Page 19: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

19  

Appendix  B:   MPhys  project                            

Niel  H.  A.  Bowerman,  Myles  R.  Allen,  David  J.  Frame,  and  Nick  Jelley    

Modelling  the  behaviour  of  the  coupled  carbon  cycle-­‐‑climate  system        

Presented  to  University  of  Oxford  Physics  in  April  2009  as  an  MPhys  Project  

Page 20: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...
Page 21: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

21  

Appendix  C:   Poster   on   the   climatic   implications   of   using  large  scale  air  capture  

                           

Niel  H.  A.  Bowerman,  Myles  R.  Allen,  David  J.  Frame    

Does  climate  uncertainty  mean  we  will  need  large  scale  air  capture?        

Displayed  as  a  poster  at  European  Geoscience  Union  (EGU)  2010  

Page 22: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...
Page 23: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

23  

Appendix  D:   Bowerman  et  al.  (2011)                          

Niel  H.  A.  Bowerman,  David  J.  Frame,  Chris  Huntingford,    Jason  A.  Lowe  and  Myles  R.  Allen  

 Cumulative  carbon  emissions,  emissions  floors  

and  short-­‐‑term  rates  of  warming:  implications  for  policy    

Phil.  Trans.  R.  Soc.  A  2011  369,  45-­‐‑66  doi:  10.1098/rsta.2010.0288  

Page 24: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...
Page 25: 2! · 4! 1 Overview! Asubstantial!fraction!of!the!carbon!dioxide!(CO 2)released!into!the!atmosphere!by! humanactivityremains!there,!ineffect,!for!centuries!to!millennia ...

25  

Appendix  E:   Poster   on   comparing   the   impact   of   forcing  agents  

                           

N.  H.  A.  Bowerman,  D.  J.  Frame,  C.  Huntingford,  J.  A.  Lowe,  S.  M.  Smith  &  M.  R.  Allen  

 Comparing  the  impacts  of  different  greenhouse  gases  on  peak  global  warming  and  

the  rate  of  warming      

Displayed  as  a  poster  at  European  Geoscience  Union  (EGU)  2011