1_ASHIDA.ppt

download 1_ASHIDA.ppt

of 30

Transcript of 1_ASHIDA.ppt

  • 7/29/2019 1_ASHIDA.ppt

    1/30

    Material Design of a Functionally

    Graded Piezoelectric Composite Diskfor Control of Thermal Stress

    The Third Asian Conference on Mechanics of Functional Materials and Structures

    Indian Institute of Technology Delhi, December 5-8, 2012

    Fumihiro ASHIDA, Shimane University, Japan

    Sei-ichiro SAKATA, Kinki University, Japan

    Hikaru SUZUKI, Koito Manufacturing Co. Ltd., Japan

    D1-S1.2: Mechanics of Functional Structures-1, Bharti Building, Room 101

    11:10-12:50, Tuesday, December 6

  • 7/29/2019 1_ASHIDA.ppt

    2/30

    The vision of the Japan Aerospace

    Exploration Agency for next 20 years

    includes a project for demonstrating a

    hypersonic aircraft with the cruising

    speed at Mach 5.

    It is considered that a body surface of the hypersonic aircraft will be exposed

    to a severe thermal environment.

    A safety system that controls the maximum thermal stress is required, because

    a thermal load beyond the allowable limit may act on a structural member.

    1.1 Background

    1. Introduction

  • 7/29/2019 1_ASHIDA.ppt

    3/30

    Fig. 1 Analytical model of the previous works

    1.2 Previous works (1)

    The performance of the stress control was evaluated by the suppression ratio.

    R = 1

    0max

    0max

    T

    100[%]

  • 7/29/2019 1_ASHIDA.ppt

    4/30

    1.2 Previous works (2)

    F. Ashida, S. Sakata, K. Matsumoto,

    Control of Thermal Stress in a Piezo-composite Disk,

    Journal of Thermal Stresses, Vol. 30, No.9-10, pp.1025-1040, 2007.

    Piezoelectric layers of equal thicknesses had same electrode arrangements.

    Electrodes of same widths were arranged at equal intervals.

    A nonlinear optimization problem was solved using the BFGS quasi-Newton

    method.

    The highest suppression ratio was 15.98%.

    F. Ashida, S. Sakata, K. Matsumoto,

    Structure Design of a Piezoceramic Composite Disk for Control of Thermal Stress,

    Journal of Applied Mechanics, Vol. 75, No.6, CID 61009, 2008.

    Piezoelectric layers of equal thicknesses had a same electrode arrangement.

    Electrodes of various widths were arranged at different intervals

    A linear programming problem transformed from the nonlinear optimization

    problem was solved using the Simplex method.

    The highest suppression ratio was 33.70%.

  • 7/29/2019 1_ASHIDA.ppt

    5/30

    A. Elsawaf, F. Ashida, S. Sakata,

    Optimum Structure Design of a Multilayer Piezo-composite Disk for Control ofThermal Stress, Journal of Thermal Stresses, Vol. 35, No. 9, pp. 805-819, 2012.

    Piezoelectric layers of various thicknesses had different electrode arrangements.

    Electrodes of various widths were arranged at different intervals

    The nonlinear design problem was solved using a hybrid optimization technique

    combining the PSO and Simplex method. The highest suppression ratio was 40.83% and almost saturated.

    In order to increase the suppression ratio substantially, a new structure of a

    composite disk should be investigated.

    1.2 Previous works (3)

  • 7/29/2019 1_ASHIDA.ppt

    6/30

    2. A New Analytical ModelLet us consider a composite disk consisting of a transversely isotropic structural

    layer and a functionally graded piezoelectric material (FGPM) layer.

    Fig.2 Geometry of a functionally graded piezoelectric composite disk

    It is assumed that the FGPM layer consists of homogeneous piezoelectric layers

    of class 6mm and the material constants vary gradually in the axial direction.

    N

    T0 f(r)

    Number of electrodes

    V0v(r) V

    k{H(r r

    k) H(r r

    k w

    k)}

    k1

    M

    Applied Voltages

  • 7/29/2019 1_ASHIDA.ppt

    7/30

    3. Flow Chart of Analysis

    Analysis of the temperature field Analysis of the elastic and electric fields

    Thermoelastic problem

    Analysis of the elastic andelectric fields

    Electro-elastic problem

    Superposition

    Response due to a thermal load:

    , , , ,

    T T T T

    i i i i iT u D

    Response due to an electric load:

    , , ,

    E E E E

    i i i iu D

    Resultant response due to both loads:

    , , , ,i i i i iT u D

    Solution Techniques Proposed by F. Ashida, et al.

    Potential function method for transversely isotropic solids

    Potential function method for piezoelectric solids of class 6mm

  • 7/29/2019 1_ASHIDA.ppt

    8/30

    4. Variations of FGPM Properties

    : piezoelectric constants,eij

    mcoefficients to be determined,

    n : order of the polynomial,

    Fig. 3 Variation of material constants

    of the FGPM layer

    i

    position of the th piezoelectric layerizi

    where

    Yij: Youngs modulus,

    ij: thermal conductivities,

    ij: coefficients of linear thermal expansion,

    It is assumed that ratios of the material constants of the th constituent piezoelectric

    layer to those of the first constituent piezoelectric layer are expressed by

    ( eij, Y

    ij,

    ij,

    ij)

    eij

    e1j

    ,Yij

    Y1j

    ,ij

    1j

    ,ij

    1j

    1 (m

    ej

    i1

    n

    ,mY

    j ,m

    j ,

    m

    j )z

    i

    m (i 2,3,,N)

  • 7/29/2019 1_ASHIDA.ppt

    9/30

    5. Optimum Design Problem of FGPM LayerThe optimization design problem of minimizing the maximum thermal stress in

    the structural layer is defined by

    find r={

    1

    r ,

    2

    r , ,

    n

    r},

    z={

    1

    z ,

    2

    z , ,

    n

    z},

    r={

    1

    r ,

    2

    r , ,

    n

    r},

    z={

    1

    z ,

    2

    z , ,

    n

    z},

    Yr={

    1

    Yr ,

    2

    Yr , ,

    n

    Yr},Y

    z={

    1

    Yz ,

    2

    Yz , ,

    n

    Yz},

    e1={

    1e1 ,

    2e1 , ,n

    e1 },e3={

    1e3 ,

    2e3 , ,n

    e3 },e4={

    1e4 ,

    2e4 , ,n

    e4 },

    V={V1,V

    2, ,V

    M}

    to minimize fobj

    (r,

    z,

    r,

    z, Y

    r, Y

    z, e

    1, e

    3, e

    4, V)

    0max

    subject to ( ij

    , ij

    , Yij

    , eij

    ) 1 (m

    j ,

    m

    j ,

    m

    Yj ,

    m

    ej )z

    i

    m

    m1

    n

    (i 2,3, ,N),

    {0.5 ( ir

    , iz

    , ir

    , iz

    ) 2.0, 1.0 ( Yir

    , Yiz

    ) 2.0,

    0.5 ( ei1

    , ei3

    , ei4

    ) 1.2,

    pc

    A (irr

    ,i

    ,izz

    ) pt

    A, irz ps

    A } (i 1,2, ,N)

    where , and are allowable tensile, compressive, and shear stresses.pt pc ps

    5.1 Definition of optimization problem

  • 7/29/2019 1_ASHIDA.ppt

    10/30

    The optimization variables have strong dependence on each other, namely the

    optimum variations of FGPM properties can be obtained only when the

    optimum voltages are determined accurately

    It is hard to obtain the optimum solution, because there are many optimization

    variables.

    Points at issues

    Development of hybrid optimization technique

    5.2 Issues to be solved

    The nonlinear optimization problem for determining the applied voltages can

    be transformed into a linear programming problem and then the optimum

    solution is successfully obtained.

    The optimum variations of FGPM properties can be determined using PSO

    (Particle Swarm Optimization) which is suitable for solving multimodal

    optimization problems.

  • 7/29/2019 1_ASHIDA.ppt

    11/30

    5.3 Linearization of the optimization problem

    ui

    E,i

    E ,i

    E,Di

    E

    P

    k(u

    i

    E)k,(

    i

    E )k,(

    i

    E)k,(D

    i

    E)k

    k1

    M

    in which is the magnification factor.Pk

    Vk PkVu

    When a voltage of arbitrary magnitude is applied to the th electrode, it is

    expressed as

    Vk

    Let the discrete response quantities in the th layer be , ,

    and , when the unit voltage is applied to the th electrode only.Vu k

    (ui

    E)k

    (i

    E )k (i

    E)k

    (DiE

    )k

    i

    The nonlinear optimization problem for determining the applied voltages can

    be transformed into the linear programming problem for determining the

    magnification factors .

    In the case where an arbitrary voltage is applied to every electrode, the response

    quantities are given by

    k

    Vk

    Pk

  • 7/29/2019 1_ASHIDA.ppt

    12/30

    Sub-problem (1) for determining the variations of FGPM properties

    Sub-problem (2) for determining the applied voltages

    6. Hybrid Optimization Techniquefind

    r={

    1

    r ,

    2

    r , ,

    n

    r},

    z={

    1

    z ,

    2

    z , ,

    n

    z}

    r={

    1r ,

    2r , ,n

    r},z={

    1z ,

    2z , ,n

    z},

    Yr={

    1

    Yr ,

    2

    Yr , ,

    n

    Yr},Y

    z={

    1

    Yz ,

    2

    Yz , ,

    n

    Yz},

    e1={

    1

    e1 ,

    2

    e1 , ,

    n

    e1 },e

    3={

    1

    e3 ,

    2

    e3 , ,

    n

    e3 },e

    4={

    1

    e4 ,

    2

    e4 , ,

    n

    e4 },

    to minimize fobj

    (r,

    z,

    r,

    z, Y

    r, Y

    z, e

    1, e

    3, e

    4, P

    * ) 0max

    subject to ( ij,

    ij, Y

    ij, e

    ij) 1 (

    m

    j ,

    m

    j ,

    m

    Yj ,

    m

    ej )z

    i

    m

    m1

    n

    (i 2,3, ,N),

    {0.5 ( ir

    , iz

    , ir

    , iz

    ) 2.0, 1.0 ( Yir

    , Yiz

    ) 2.0,

    0.5 ( ei1

    , ei3

    , ei4

    ) 1.2} (i 1,2, ,N)

    find P* ={P

    1

    * ,P2

    * , ,PM

    * }

    to minimize fobj

    (P* ) Maxr,z

    0rr

    , 0

    , 0zz

    , 0rz

    subject to pcA

    (irr,i,izz) ptA

    , irz psA

    (i 1,2, ,N)

  • 7/29/2019 1_ASHIDA.ppt

    13/30

    7. Conditions for Numerical Results

    7.1 Material constants and dimensionless quantities

    Material of the first piezoelectric layer: CdSer z 9 Wm

    1K1, (1,3 ) (0.621, 0.551)106 NK1m2 ,

    (c11, c12 , c13 , c33 , c44 ) (74.1, 45.2, 39.3, 83.6,13.2) 109 Nm2 ,

    (e1, e3 , e4 ) (0.160, 0.347 , 0.138) Cm2 , p3 2.94 10

    6 CK1m2 ,

    (1, 3 ) (82.6, 90.3) 1012 C 2N1m2 , d1 3.92 1012 CN1

    1

    0 0

    ( , , , , , )( , , , , , ) , , ,

    i i ki i k k i i k k k k i ik

    r r r

    d Vr z b c q wr z b c q w B ah V

    a Y T a T

    Dimensionless quantities

    ( r, z) (1, 0.5)Wm1K

    1, ( 1, 3 ) (1.84, 0.40) 10

    6NK

    1m

    2,

    (c11, c12 , c13 , c33 , c44 ) (100.2, 49.8, 6.86,10.9, 2.87) 109

    Nm2

    ,

    Yr 74.3 109

    Nm2

    , r 11.3106 K

    1

    Material of the transversely isotropic structural layer: CFRP

  • 7/29/2019 1_ASHIDA.ppt

    14/30

    Bottom surface:

    Top surface:

    Biots numbers

    Bb 1

    Bt 0.1

    Layers

    Thicknesses:

    Number of constituent

    piezoelectric layers:

    c0

    c1

    ~ c10

    0.002N 10

    7.2 Parameter settings

    Fig. 4 Heating temperature distribution

    ro 0.5

    2 4

    2 4

    ( ) ( ) 1 2o o o

    r rf r H r r

    r r

    Heating temperature

    ro: Radius of heating region

    ptA 0.004

    Allowable stresses

    pcA 0.04

    psA 0.002

    Tensile stress:

    Compressive stress:

    Shear stress:

    w1

    ~ w5

    0.1

    Number: M 5

    Widths:

    Intervals: q1

    0, q2

    ~ q5

    0.1

    Electrodes

  • 7/29/2019 1_ASHIDA.ppt

    15/30

    (0maxT )

    HPM : Maximum thermal stress in the case of the homogeneous

    piezoelectric layer

    RDV

    1(

    0max)

    FGPM

    (0max

    T )HPM

    100[%]Suppression ratio due to FGPMdesign and piezoelectric actuation

    (0max

    T )FGPM

    : Maximum thermal stress in the case of the designed

    FGPM layer

    RV

    1 (0max )FGPM(

    0max

    T )FGPM

    100[%]Suppression ratio due topiezoelectric actuation

    8. Performance of Stress ControlThe control performance of the maximum thermal stress in the structural layer is

    evaluated by the two suppression ratios.

    (0max

    )FGPM

    : Maximum resultant stress in the case of the designed

    FGPM layer subject to the determined applied voltages

    where

  • 7/29/2019 1_ASHIDA.ppt

    16/30

    (a) Variation of ir (b) Variation of iz

    Fig. 5 Design results for coefficients of thermal conductivity

    9. Presentation of Numerical Results9.1 Thermal conductivities

  • 7/29/2019 1_ASHIDA.ppt

    17/30

    (a) Variation of ir (b) Variation of iz

    Fig. 6 Design results for coefficients of linear thermal expansion

    9.2 Coefficients of thermal expansion

  • 7/29/2019 1_ASHIDA.ppt

    18/30

    (a) Variation of irY

    Fig. 7 Design results for Young's moduli

    (b) Variation of izY

    9.3 Youngs moduli

  • 7/29/2019 1_ASHIDA.ppt

    19/30

    Fig. 8 Design results for piezoelectric coefficients

    1(a) Variation of ie 3(b) Variation of ie 4(c) Variation of ie

    9.4 Piezoelectric coefficients

  • 7/29/2019 1_ASHIDA.ppt

    20/30

    RV [%]0max

    0max

    T

    n

    V1 103

    V2 103

    V

    3103

    V4 103

    V5 103

    Designed FGPM layer Homogeneous

    CdSe layer1 2 3

    0.0868 0.0824 0.0699 0.4662

    -0.1291 -0.0622 -0.0370 -0.1811

    -0.1618 -0.1367 -0.1227 -0.3537

    -0.1993 -0.2018 -0.1994 -0.2950

    -0.2278 -0.2436 -0.2449 -0.2759

    0.0820 0.0720 0.0694 0.1298

    0.0749 0.0652 0.0633 0.1202

    8.66 9.44 8.89 7.42

    42.30 49.80 51.26

    Table 1 Numerical results for designs of FGPM layer

    RDV

    [%]

    Note: The layer thicknesses and the electrode dimensions have not been designed.

    9.5 Comparison of numerical results

  • 7/29/2019 1_ASHIDA.ppt

    21/30

    10. Concluding Remarks

    For a two layer composite disk consisting of a structural layer and a FGPM

    layer when five electrodes of the same widths are arranged at the equal

    intervals, the variations of FGPM properties and the applied voltages have

    been determined by employing the hybrid optimization technique so that the

    maximum thermal stresses in the structural layer is minimized.

    Comparing the maximum stresses before and after applying the determined

    voltages for the case of the designed FGPM layer, the maximum suppressionratio is 9.44%.

    There may be possibility of obtaining a higher suppression ratio, when

    combined with the optimum designs of the electrodes and layer thicknesses.

    Comparing the maximum thermal stress for the case of the homogeneous

    piezoelectric layer with the maximum resultant stress for the case of the

    designed FGPM layer subject to the determined applied voltages, the maximumsuppression ratio is 51.23%.

  • 7/29/2019 1_ASHIDA.ppt

    22/30

    Thank you very much for your kind attention!

  • 7/29/2019 1_ASHIDA.ppt

    23/30

    - 0.1073 -0.0968 - 0.1182 - 0.1297

    - 0.0990 - 0.0895 - 0.1112 - 0.1201

    7.73 7.56 5.93 7.41

    23.76 31.06 14.35 7.48

    z

    r

    z

    r

    (

    0max

    T )FGM

    (

    0max)

    FGM

    RV [%]

    RDV [%]

    - 0.1305 - 0.1298 - 0.1299 - 0.1298 - 0.1298

    - 0.1197 - 0.1201 - 0.1193 - 0.1192 - 0.1201

    8.29 7.48 8.11 8.19 7.54

    7.84 7.48 8.09 8.20 7.53

    Yz

    Yr

    e1

    e3

    e4

    Table 2 Suppression ratios obtained for each material constant

  • 7/29/2019 1_ASHIDA.ppt

    24/30

    Fig. 9 Comparison of radial stress distributions before and after applying

    the determined voltages in the case of the homogeneous CdSe layer

  • 7/29/2019 1_ASHIDA.ppt

    25/30

    Fig. 10 Comparison of radial stress distributions before and after applying

    the determined voltages in the case of the designed FGPM layer

  • 7/29/2019 1_ASHIDA.ppt

    26/30

    Fig. 9 Comparison between radial thermal stress distributions in the case of

    the homogeneous CdSe layer and radial resultant stress distributions

    in the case of the designed FGPM layer

  • 7/29/2019 1_ASHIDA.ppt

    27/30

    u0r

    T l

    1J1

    (l

    r)l1

    ( F1

    F2

    ) A0l

    T coshlz

    B

    0l

    T sinhlz

    D0jlT coshlz

    j E0jlT sinh

    lz

    j

    j1

    2

    u0z

    E C00

    E l

    1J0

    (l

    r)l1

    kj

    jj1

    2

    D0jl

    E sinhlz

    jE0jl

    E coshlz

    j

    u0zT

    1 A00T

    zB00Tz2

    2

    C00

    T

    l1

    J0 (lr)l1

    k1 F1 k2 F2

    A0lT sinhlz

    B0lT cosh

    lz

    kj

    jj1

    2

    D0jlT sinhlz

    jE0jlT cosh

    lz

    j

    u0rE l1J1(lr)

    l1

    D0jlE coshlz

    jE0jlE sinh

    lz

    j

    j1

    2

    The displacements induced by a thermal load are

    The displacements induced by an electric load are

    Response in the structural layer

  • 7/29/2019 1_ASHIDA.ppt

    28/30

    iE Ci0EzGi0E l1J0 (lr)

    nj

    jj1

    3

    l1

    DijlEsinhlz

    jEijlEcosh

    lz

    j

    i

    T 2Ai0

    Tz Bi0

    Tz2

    2

    Ci0

    TzGi0

    T l

    1J0

    (lr) F

    3Ail

    Tsinhlz

    Bil

    T coshlz

    l1

    nj

    jDijlT sinh

    lz

    j EijlT cosh

    lz

    j

    j1

    3

    uir

    T l

    1J1

    (l

    r)l1

    (F1

    F2

    ) Ail

    Tcoshlz

    Bil

    Tsinhlz

    j DijlT coshlz

    jEijlT sinh

    lz

    j

    j1

    3

    uirE l1J1(lr)

    l1

    j DijlEcoshlz

    jEijlEsinh

    lz

    j

    j1

    3

    The radial displacement and electric potential induced by a thermal load are

    The radial displacement and electric potential induced by an electric load are

    Response in the th constituent piezoelectric layeri

  • 7/29/2019 1_ASHIDA.ppt

    29/30

    1 2 3

    Particle number 400 400 400

    Iteration number 100 600 800

    n

    Table 3 Parameters for PSO

  • 7/29/2019 1_ASHIDA.ppt

    30/30

    1rr

    r

    1rz

    z

    (1rr

    1

    )

    r 0,

    1rz

    r

    1zz

    z

    1rz

    r 0

    Equation of equilibrium

    1rr

    u

    1r

    r

    , 1

    u

    1r

    r

    , 1zz

    u

    1z

    z

    , 1rz

    u

    1z

    r

    u

    1r

    z

    Relations between the strains and the displacements

    E1r

    1

    r, E

    1z 1

    z

    1 1 1 0r z rD D D

    r z r

    Relations between the electric field intensities and the electric potential

    Equation of electrostatics

    Basic equations for a piezoelectric solid of crystal class 6mm (2/2)