199 riginal articles - SciELO Colombia · 200 Rev Colomb Cienc Pecu 2016; 29:199-209 Ghavi...

11
Rev Colomb Cienc Pecu 2016; 29:199-209 Revista Colombiana de Ciencias Pecuarias 199 Comparison of non-linear models to describe growth of Iranian Guilan sheep ¤ Comparación de modelos no lineales para describir el crecimiento de ovejas iraní Guilan Comparação de modelos não lineares para descrever o crescimento de ovinos iraniano Guilan Navid Ghavi Hossein-Zadeh 1*, PhD; Mohammad Golshani 2 , MSc. 1 Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran. 2 Agricultural Organization of Guilan Province, Rasht, Iran. (Received: September15, 2015; accepted: April 14, 2016) doi: 10.17533/udea.rccp.v29n3a05 ¤ To cite this article: Ghavi Hossein-Zadeh N, Golshani M. Comparison of non-linear models to describe growth of Iranian Guilan sheep. Rev Colomb Cienc Pecu 2016; 29:199-209. * Corresponding author: Navid Ghavi Hossein-Zadeh. Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635- 1314, Iran. Tel: + 98 13 33690274. Fax: + 98 13 33690281. E-mail: [email protected] Summary Background: non-linear mathematical models, empirically developed by plotting body weight against age, are used to describe the growth curve in different animals. Objective: to describe the growth pattern in Guilan sheep using non-linear models. Methods: six non-linear mathematical equations (Brody, Negative exponential, Logistic, Gompertz, von Bertalanffy and Richards) were used to describe the growth curves in Guilan sheep. The Agricultural Organization of Guilan province (Rasht, Iran) provided the dataset used in this study. The dataset included 42,257 weight records of lambs from birth to 240 days of age during years 1994 to 2014. Each model was separately fitted to body weight records of all lambs, males and females, using the NLIN and MODEL procedures of SAS. The models were tested for goodness of fit using adjusted coefficient of determination, root means square error (RMSE), Durbin-Watson statistic, akaike’s information criterion (AIC) and bayesian information criterion (BIC). Results: the Richards model provided the best fit to the growth curve in females and all lambs, with the lowest RMSE, AIC, and BIC values compared to the other models. The Brody model provided the best fit of growth in male lambs due to the lower values of AIC and BIC compared to the other models. The negative exponential model provided the worst fit of growth for males, females and all lambs. Conclusion: the evaluation of the growth equations used in this study indicates the potential of non-linear functions for fitting body weight records of Guilan sheep. Keywords: body weight, fat-tailed sheep, growth function, growth pattern.

Transcript of 199 riginal articles - SciELO Colombia · 200 Rev Colomb Cienc Pecu 2016; 29:199-209 Ghavi...

  • Rev Colomb Cienc Pecu 2016; 29:199-209

    Revista Colombiana de Ciencias Pecuarias

    Original articles

    199

    Comparison of non-linear models to describe growth of Iranian Guilan sheep¤

    Comparación de modelos no lineales para describir el crecimiento de ovejas iraní Guilan

    Comparação de modelos não lineares para descrever o crescimento de ovinos iraniano Guilan

    Navid Ghavi Hossein-Zadeh1*, PhD; Mohammad Golshani2, MSc.

    1Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.

    2Agricultural Organization of Guilan Province, Rasht, Iran.

    (Received: September15, 2015; accepted: April 14, 2016)

    doi: 10.17533/udea.rccp.v29n3a05

    ¤ Tocitethisarticle:GhaviHossein-ZadehN,GolshaniM.Comparisonofnon-linearmodelstodescribegrowthofIranianGuilansheep.RevColombCiencPecu2016;29:199-209.

    * Correspondingauthor:NavidGhaviHossein-Zadeh.DepartmentofAnimalScience,FacultyofAgriculturalSciences,UniversityofGuilan,Rasht,41635-1314,Iran.Tel:+981333690274.Fax:+981333690281.E-mail:[email protected]

    Summary

    Background: non-linearmathematicalmodels,empiricallydevelopedbyplottingbodyweightagainstage,areusedtodescribethegrowthcurveindifferentanimals.Objective:todescribethegrowthpatterninGuilansheepusingnon-linearmodels.Methods:sixnon-linearmathematicalequations(Brody,Negativeexponential,Logistic,Gompertz,vonBertalanffyandRichards)wereusedtodescribethegrowthcurvesinGuilansheep.TheAgriculturalOrganizationofGuilanprovince(Rasht, Iran)provided thedatasetusedinthisstudy.Thedatasetincluded42,257weightrecordsoflambsfrombirthto240daysofageduringyears1994to2014.Eachmodelwasseparatelyfittedtobodyweightrecordsofalllambs,malesandfemales,usingtheNLINandMODELproceduresofSAS.Themodelsweretestedforgoodnessoffitusingadjustedcoefficientofdetermination,rootmeanssquareerror(RMSE),Durbin-Watsonstatistic,akaike’sinformationcriterion(AIC)andbayesianinformationcriterion(BIC).Results:theRichardsmodelprovidedthebestfittothegrowthcurveinfemalesandalllambs,withthelowestRMSE,AIC,andBICvaluescomparedtotheothermodels.TheBrodymodelprovidedthebestfitofgrowthinmalelambsduetothelowervaluesofAICandBICcomparedtotheothermodels.Thenegativeexponentialmodelprovidedtheworstfitofgrowthformales,femalesandalllambs.Conclusion:theevaluationofthegrowthequationsusedinthisstudyindicatesthepotentialofnon-linearfunctionsforfittingbodyweightrecordsofGuilansheep.

    Keywords: body weight, fat-tailed sheep, growth function, growth pattern.

  • 200

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    Resumen

    Antecedentes: los modelosmatemáticosnolinealesdesarrolladosempíricamentemediantelacomparacióndelpesocorporalcontralaedadsehanusadoparadescribirlacurvadecrecimientoendiferentesanimales.Objetivo: describirelpatróndecrecimientoenovejasGuilanusandomodelosnolineales.Métodos: seis ecuacionesmatemáticas no lineales (Brody,Exponencial negativo,Logístico,Gompertz, vonBertalanffyyRichards) seutilizaronparadescribir lascurvasdecrecimientoenovejasGuilan.ElconjuntodedatosutilizadosenesteestudioseobtuvodelaOrganizaciónparalaAgriculturadelaprovinciaGuilan(Rasht,Irán),ycomprendió42,257registrosdepesodecorderos,recogidosdesdeelnacimientohastalos240díasdeedaddurantelosaños1994a2014.Cadamodelofueajustadoporseparadoalosregistrosdepesocorporalde todos los corderos,machosy hembras, utilizando los procedimientosNLINyMODELdeSAS.Losmodelosfueronprobadosparalabondaddelajustemedianteelcoeficientededeterminaciónajustado,laraízcuadradadelerrorcuadráticomedio(RMSE),elestadísticodeDurbin-Watson,elcriteriodeinformacióndeakaike(AIC)yelcriteriodeinformaciónbayesiano(BIC).Resultados: el modelodeRichardsproporcionóelmejorajustedelacurvadecrecimientoenlashembrasytodosloscorderosdebidoalosvaloresmásbajosdeRMSE,AICyBICconrespectoalosotrosmodelos.ElmodeloBrodyproporcionóelmejorajustedelacurvadecrecimientodeloscorderosmachosdebidoalosvaloresmásbajosdeAICyBICconrespectoalosotrosmodelos.ElmodeloExponencialnegativoporporcionóelpeorajustedelacurvadecrecimientoparamachos,hembrasytodosloscorderos.Conclusión: laevaluacióndediferentesecuacionesdecrecimientoutilizadasenesteestudioindicaelpotencialdelasfuncionesnolinealesparaelajustedelosregistrosdepesocorporalenovejasderazaGuilan.

    Palabras clave: función de crecimiento, ovejas de cola gorda, patrón de crecimiento, peso corporal.

    Resumo

    Antecedentes: os modelosmatemáticosnãolinearesdesenvolvidosempiricamenteatravésdarepresentaçãográficadopesocorporalcomaidadetêmsidoadequadosparadescreveracurvadecrescimentoemdiferentesanimais. Objetivo:oobjetivodesteestudofoidescreveropadrãodecrescimentoemovinosGuilanusandomodelos não lineares.Métodos: seis equaçõesmatemáticas não lineares (Brody,Negativo exponencial,Logístico,Gompertz,vonBertalanffyeRichards)foramutilizadasparadescreverascurvasdecrescimentoemovelhasGuilan.OconjuntodedadosutilizadonesteestudofoiobtidoapartirdaOrganizaçãoAgrícoladaprovínciadeGuilan(Rasht,Irã)ecomposta42.257registrosdepesodecordeirosqueforamrecolhidosdesdeonascimentoaté240diasdeidade,durante1994a2014.Cadamodelofoiajustadoseparadamenteparaosregistrosdepesocorporaldetodososcordeiros,machosefêmeas,utilizandoosprocedimentosNLINemodeloemSAS.Osmodelosforamtestadosparaaqualidadedoajustepormeiodocoeficientededeterminaçãoajustado,araizquadradadeerroquadráticomédio(RMSE),oestatísticoDurbin-Watsonestatística,ocritériodeinformaçãodeAkaike(AIC)ecritériodeinformaçãoBayesiano(BIC).Resultados: o modelodeRichardsprovidenciaomelhorajustedacurvadecrescimentonasfêmeasetodososcordeiros,devidoaosmenoresvaloresdeRMSE,AICeBICdoqueoutrosmodelos.OmodeloBrodydaomelhorajustedacurvadecrescimentoemcordeirosdevidoaosmenoresvaloresdeAICeBICdoqueoutrosmodelos.Omodeloexponencialnegativoofereceopiorajustedecurvadecrescimentoparamachos,fêmeasetodososcordeiros.Conclusão: avaliaçãodiferentesequaçõesdecrescimentoutilizadosnesteestudoindicaramopotencialdasfunçõesnãolinearesparaamontagemderegistosdepesocorporaldeGuilan.

    Palavra chave: função crescimento, ovinos de cauda gorda, padrão de crescimento, peso corporal.

    Introduction

    Guilan sheep is a fat-tailed breed in Iran,numberingsome400,000animalsinthenorthofthecountry,anddistributedinthenorthernandwesternpartsofGuilanProvinceinthemountainsbetweenAssalem,Khalkhal,Oshkourat,andDeilaman.ThisbreedcanalsobefoundinsomeareasoftheGuilan-Zanjanborder.Meanadultliveweightinthisbreedis

    35Kg(77lbs)forramsand31Kg(67lbs)forewes.Thecoatisyellowish-whitetopurewhite,withbrownpatchesonthehead,face,andthebottomofthelegs.Thisbreedisvaluedmainlyduetoitsabilitytoliveinmountainousareaswithrain-fedfoothillsandfoothillsteppeswith1300mm(51 inches) annual rainfall.Youngewesare randomlyexposed to the ramsforthefirsttimeatapproximately1.5yearsofage.Ewesarekeptintheflockupto7yearsofage.Ewesare

  • 201

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    supplemented,dependingupon requirements, for afewdaysafterlambing.Ramsarekeptuntilamaleoffspring is available for replacement.During thebreedingseason,single-sirepensareusedallocating20-25ewesperram.Lambsremainwiththeirdamuntilweaning.Lambsareear-taggedandweightedimmediately after lambing.During the sucklingperiod,lambsarefeddryalfalfaafterthreeweeksofage.Lambsareweanedatapproximately90daysofage.Animalsarekeptonnaturalpastureduringspring,summerandautumn.Sinceenvironmentalconditionsareadverse,theanimalsarekeptindoorsduringthewintermonths.Theflockismainlykeptonpastureandfedcerealpasture,withsupplementalfeed,includingalfalfaandwheatstraw,providedespeciallyaroundthematingseason(Eteqadiet al.,2014).

    Growth is defined as increase in liveweight ordimension against age. Changes in live weightor dimension for a period of time are explainedbygrowthcurves(Keskinet al.,2010).Analysisofanimalgrowthperformancethroughthelifespanishelpful to establish appropriate feeding strategiesand thebestageforslaughtering.Studies focusingongrowthcurveshaveincreasedinrecentyearsdueto thedevelopmentofnewcomputationalmethodsfor faster andmore accurate analyses aswell astheavailabilityofnewmodels(Souzaet al.,2013).Slowgrowth rates resulting in lowmarketweighthasbeenidentifiedtobeoneofthefactorslimitingprofitabilityinproductionsystem(Nooret al.,2001;Abegazet al.,2010).Growthrateisrelatedtorateofmaturingandmatureweightandtheselattertraitshavebeensuggestedtoberelatedwithotherlifetimeproductivityparametersinsheep(Bedieret al.,1992;Abegazet al.,2010).

    Non-linearmathematicalmodels, empiricallydevelopedbyplottingbodyweightagainstage,aresuitable to describe the growth curve in differentanimal groups (Malhado et al., 2009). The useofmathematical growthmodels provides a goodway of condensing the information into a fewparameterswith biologicalmeaning, to facilitateboththeinterpretationandtheunderstandingofthephenomenon(Fitzhugh,1976;Malhadoet al.,2009).Growthcurveparametersprovidepotentiallyusefulcriteriaformodifyingtherelationshipbetweenbodyweight and age through selection (Kachman and

    Gianola,1984)andanoptimumgrowthcurvecanbeobtainedby selection fordesiredvaluesof growthcurveparameters(BathaeiandLeroy,1998).Growthcurves provide several applications to animalproduction,suchas(1)evaluationoftheresponsetotreatmentsovertime;(2)analysisoftheinteractionbetweensubpopulations(ortreatments)andtime;and(3)identificationofheavieranimalsatyoungerageswithinapopulation(BathaeiandLeroy,1996;Freitas,2005;Malhado et al.,2009).

    No previous studies have been conducted ongrowth curve characteristics of theGuilan sheep.Therefore,theobjectiveofthisstudywastodescribethegrowthpatterninGuilansheepusingnon-linearmodels.For thispurpose,sixmathematicalmodels(Brody,Negative exponential,Logistic,Gompertz,vonBertalanffy,andRichards)currentlyusedtofitthegrowthpatternofanimalswereexaminedtoevaluatetheir efficiency in describing the growth curve ofGuilansheep.

    Materials and methods

    ThedatasetusedinthisstudywasobtainedfromtheAgriculturalOrganization ofGuilan Province(Rasht,Iran)andcomprised42,257weightrecords,whichwerecollectedon18,972lambsfrombirthto240daysofagefromyears1994to2014.Thedatawerescreenedseveraltimesanddefectiveandoutofrangerecordsweredeleted.Aftereditingtheinitialdata set, 41,894bodyweight records (madeupof19,879formalesand22,015forfemalelambs)wereusedforstatisticalanalysis.

    Non-linear growth functions used to describethegrowthcurvesofGuilansheeparepresentedinTable1.TheBrody,Negativeexponential,Logistic,Gompertz,VonBertalanffyandRichards functionswerefittothedatatomodeltherelationshipbetweenweightandage.Eachmodelwasfittedseparatelytobodyweightrecordsofalllambs,maleandfemalelambsusing theNLINandMODELprocedures inSAS(SASInstituteInc.,Cary,NC,USA;2002)andtheparameterswereestimated.TheNLINprocedureproduces least squares orweighted least squaresestimatesof theparametersof anon-linearmodel.Foreachnon-linearmodeltobeanalyzed,themodel

  • 202

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    (usingasingledependentvariable)andthenamesandstartingvaluesoftheparameterstobeestimatedmustbespecified.Whennon-linearfunctionswerefitted,theGauss-Newtonmethodwasusedastheiterationmethod.TobeginthisprocesstheNLINprocedurefirstexaminesthestartingvaluespecificationsoftheparameters. If a grid of values is specified,NLINprocedureevaluates the residual sumof squaresateachcombinationofparametervaluestodeterminethe set of parameter values producing the lowestresidualsumofsquares.Theseparametervaluesareusedfortheinitialstepoftheiteration.TheMODELprocedureanalyzesmodelsinwhichtherelationshipsamongthevariablescompriseasystemofoneormorenonlinear equations. Primary uses of theMODELprocedureareestimation,simulation,andforecastingof nonlinear simultaneous equationmodels (GhaviHossein-Zadeh,2014).

    Table 1. Functional forms of equations used to describe the growth curve of Guilan sheep.

    Equation Functional form

    Brody

    Negative exponential

    Logistic

    Gompertz

    von Bertalanffy

    Richards

    y = body weight at age t (day); a = asymptotic weight, which is interpreted as mature weight; b = is an integration constant related to initial animal weight. The value of b is defined by the initial values for y and t; k = is the maturation rate, which is interpreted as weight change in relation to mature weight to indicate how fast the animal approaches adult weight; m = is the parameter that gives shape to the curve by indicating where the inflection point occurs.

    Themodels were tested for goodness of fit(qualityofprediction)usingadjustedcoefficientofdetermination( 2adjR ),residualstandarddeviationorrootmeans square error (RMSE),Durbin-Watsonstatistic(DW),Akaike’sinformationcriterion(AIC)andBayesianinformationcriterion(BIC).

    2adjR wascalculatedusingthefollowingformula:

    ( )( ) ( )

    2 211 1adjn

    R Rn p

    −= − − −

    Where:

    2R =isthemultiplecoefficientofdetermination

    ( 2 1 RSSRTSS

    = − ).

    TSS=isthetotalsumofsquares.RSS=istheresidualsumofsquares.n=isthenumberofobservations(datapoints).p=isthenumberofparametersintheequation.

    The 2R value is an indicatormeasuring theproportionoftotalvariationaboutthemeanofthetraitexplainedbythegrowthcurvemodel.Thecoefficientofdeterminationliesalwaysbetween0and1,andthefitofamodelissatisfactoryif 2R isclosetounity.

    RMSEisasortofgeneralizedstandarddeviationandwascalculatedasfollows:

    1RSSRMSE

    n p=

    − −Where.

    RSS=istheresidualsumofsquares.n=isthenumberofobservations(datapoints).p=isthenumberofparametersintheequation.

    RMSE is one of themost important criteria tocomparethesuitabilityofgrowthmodels.Therefore,thebestmodelistheonewiththelowestRMSE.

    DW was used to detect the presence ofautocorrelationintheresidualsfromtheregressionanalysis. In fact, the presence of autocorrelatedresiduals suggests that the function may beinappropriateforthedata.TheDurbin-Watsonstatisticrangesinvaluefrom0to4.Avalueneartwoindicatesnoautocorrelation;avaluetoward0indicatespositiveautocorrelation;avaluetoward4indicatesnegativeautocorrelation (GhaviHossein-Zadeh, 2014).DWwascalculatedusingthefollowingformula:

    1 ctaybe−

    =+

    ktbey ae−−=

    ( )1 mkty a be −−= −

    ( )1 kty a be−= −( )kty a ae−= −

    ( )31 kty a be−= −

  • 203

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    ( )212

    1

    nt ttn

    tt

    e eDW

    e−

    =

    −= ∑

    ∑Where:

    te =istheresidualattimet.1te − =istheresidualattimet-1.

    AICwascalculatedasusingthefollowingequation(BurnhamandAnderson,2002):

    ( )ln 2AIC n RSS p= × +

    AIC is a good statistic to comparemodels ofdifferentcomplexitybecauseitadjuststheRSSforthe number of parameters in themodel.A smallernumericalvalueofAIC indicates abetterfitwhencomparingmodels.

    BICcombinesmaximumlikelihood(datafitting)andchoiceofmodelbypenalizingthe(log)maximumlikelihoodwithatermrelatedtomodelcomplexity,asfollows:

    ( )ln lnRSSBIC n p nn

    = +

    AsmallernumericalvalueofBICindicatesabetterfitwhencomparingmodels.

    Results

    Estimated parameters of non-linear growthfunctions forGuilan sheep are presented inTable2.Also,goodnessoffitstatisticsforthesixgrowthmodelsfittedtobodyweightrecordsarepresentedinTable3. 2adjR valueshadlittledifferencesamongthemodelsforalllambs,malesandfemales,butBrodymodelandRichardsequationprovidedthegreatest

    2adjR values for all lambs,males and females, and

    Negative exponential provided the lowest valuesof 2adjR formales,femalesandalllambs(Table3).Also,NegativeexponentialfunctionhadthelowestvaluesofDWformales,femalesandalllambs,butotherfunctionshadlittledifferencesinthisregard.Ingeneral,DWvalueswererelativelylowfordifferentmodelsandtheNegativeexponentialmodelprovided

    the lowestvalue formales, females andall lambs.TheRichardsequationprovidedthelowestvaluesofAICandBICforfemalesandalllambs,buttheBrodymodelprovidedthelowestvaluesofAICandBICformalelambs.RichardsandBrodyequationsprovidedthelowestvaluesofRMSEforfemalesandalllambs.Also,Richards,BrodyandvonBertalanffyequationsprovidedthelowestvaluesofRMSEformalelambs.But,NegativeexponentialmodelprovidedthegreatestvaluesofRMSE,AICandBICforalllambs,malesandfemalelambs.Therefore,theBrodymodelwasselectedasthebestmodelforfittingthegrowthcurveinmales,andtheRichardsmodelprovidedthebestfit of growth curve in females and all lambs.TheNegativeexponentialmodelprovidedtheworstfitofgrowthcurveformales,femalesandalllambs.Theparameteraisconsideredasanestimateofasymptoticweight.ForthedatasetstudiedheretherewerelowasymptoticweightestimatesforBrodyandRichardsequationsasthebestfittedgrowthmodels(Table2).

    Thekparameter,whichrepresentsmaturationrate,isanother important trait tobeconsidered,since itindicates thegrowthspeed toreach theasymptoticweight. In this study, females generally showedhigher values for this parameter thanmales.Thenegativecorrelationof-0.99to-0.98betweena and k parametersobtained,wasbasedonthebestmodelformales,femalesandalllambs.Observedbodyweightsofanimals from1 to240daysofagearedepictedinFigure1.Asshown,therewasasigmoidaltrendforbodyweightsalongwith increase inage.Also,predicted bodyweights (Kg) as a function of age(days)obtainedwithdifferentgrowthmodelsforalllambs,malesandfemales,arepresentedinFigure2.Theestimatedgrowthcurvesweretypicallysigmoid.

    Discussion

    Onceanappropriatemodelof thegrowthcurveisselected,selectionemphasiscanthenbedirectedexclusively to the level of the growth curve. It isimportanttodevelopanoptimalstrategytoachieveadesiredgrowthshapethroughchangingthegrowthmodelparameters.Inpreviousstudies,abroadrangeofgrowthmodelshavebeenselected,dependingonhowaccuratelytheyfitthedata.Tariqet al.(2013)selectedtheMorgan-Mercer-Flodinmodelasthebest

  • 204

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    Item Parameter Model

    Brody Negative exponential

    Logistic Gompertz von Bertalanffy Richards

    All lambs a 27.42 (0.19)

    24.60 (0.12) 21.68 (0.045)

    23.13 (0.07) 24.03 (0.09) 31.68 (1.85)

    b 0.89 (0.001)

    - 5.69 (0.05) 2.01 (0.008) 0.50 (0.001) 0.96 (0.01)

    k 0.0068 (0.00009)

    0.0096 (0.0001)

    0.0251 (0.0001)

    0.0152 (0.00009) 0.0122 (0.00009) 0.0041 (0.0008)

    m - - - - - -0.73 (0.06)

    Male lambs

    a 29.07 (0.30)

    25.80 (0.19) 22.46 (0.07)

    24.08 (0.11) 25.10 (0.14) 30.73 (1.84)

    b 0.90 (0.002)

    - 5.81 (0.07) 2.03 (0.01) 0.50 (0.002) 0.93 (0.03)

    k 0.0064 (0.0001)

    0.0091 (0.0001)

    0.0248 (0.0002)

    0.0149 (0.0001) 0.0119 (0.0001) 0.0052 (0.0010)

    m - - - - - -0.87 (0.10)

    Female lambs

    a 26.21 (0.23)

    23.69 (0.15) 21.04 (0.06)

    22.38 (0.09) 23.20 (0.11) 33.07 (3.71)

    b 0.89 (0.002)

    - 5.61 (0.07) 2.00 (0.01) 0.49 (0.002) 0.98 (0.01)

    k 0.0071 (0.0001)

    0.0099 (0.0001)

    0.0254 (0.0002)

    0.0155 (0.0001) 0.0125 (0.0001) 0.0032 (0.0010)

    m - - - - - -0.65 (0.07)

    Table 2. Parameter estimates for the different growth models in Guilan sheep (standard errors are in parentheses).

    fitted equation for growth curve inMengali sheepbreedofBalochistan.Similar to the results of thisstudy,Gbangbocheet al.(2008)selectedtheBrodymodelasthebestfunctiontofitthegrowthcurveoftheAfricanDwarfsheep.Ontheotherhand,Freitas(2005) reported thatLogistic,VonBertalanffy andBrody functionsweremore versatile tofit growthcurvesinsheep.IntheBergamascasheepinBrazil(McManus et al., 2003), among thefitted growthmodels(Brody,Richards,andLogistic),theLogisticmodel showed the goodness of fit. Lambe et al. (2006)selectedtheRichardsandGompertzmodelsfortheiraccuracyoffitamongfourcompetingmodels(Gompertz,Logistic,RichardsandtheExponentialmodel).TheGompertzandvonBertalanffymodelsshowed the best fit inMorkaraman andAwassilambs (Topal et al., 2004); Gompertzmodel inSuffolk sheep (Lewiset al., 2002).Malhadoet al. (2009) reported that bothGompertz andLogistic

    functionspresented thebestfit of growth curve inDorpersheepcrossedwiththelocalBrazilianbreedsMoradaNova,RaboLargo,andSantaInês.BathaeiandLeroy (1996), evaluatinggrowth inMehrabanIranianfat-tailedsheep,selectedtheBrodyfunctionbecauseof simplicity of interpretation and ease ofestimation.Sarmentoet al.(2006)observedthattheGompertz function presented the best adjustmentwhen compared to the othermodels in studies ofgrowthcurvesofSantaInêssheepherdsinthestateofParaíba,Brazil.Akbaset al. (1999) studied thefittingperformanceofBrody,Negativeexponential,Gompertz, Logistic and vonBertalanffymodelstodataonweight-ageofKivircikandDaglicmalelambsandfoundthattheBrodymodelwasthebestequationfordescribingthegrowthoflambs.Similarto thecurrent results,Goliomytiset al. (2006)andGhaviHossein-Zadeh(2015)reportedtheexcellentfitof theRichards function to theweight–agedata

  • 205

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    Table 3. Goodness of fit for different growth curves in Guilan sheep.

    Item Statistics ModelBrody Negative

    exponentialLogistic Gompertz von

    BertalanffyRichards

    All lambs 0.9530 0.9378 0.9520 0.9527 0.9528 0.9530

    DW 0.70 0.53 0.71 0.71 0.71 0.70

    RMSE 3.16 3.64 3.20 3.17 3.17 3.16

    AIC 542406 554126 543311 542664 542536 542393

    BIC 96559 108270 97463 96817 96688 96554

    Male lambs 0.9532 0.9372 0.9522 0.9529 0.9530 0.9532

    DW 0.71 0.53 0.72 0.71 0.71 0.71

    RMSE 3.20 3.70 3.23 3.21 3.20 3.20

    AIC 242981 248794 243383 243084 243029 242982

    BIC 46254 52059 46656 46357 46302 46263

    Female lambs 0.9540 0.9395 0.9529 0.9537 0.9538 0.9540

    DW 0.70 0.54 0.71 0.71 0.71 0.70

    RMSE 3.09 3.55 3.13 3.10 3.10 3.09

    AIC 269871 275901 270378 270025 269951 269856

    BIC 49756 55779 50264 49910 49837 49750

    2adjR : Adjusted coefficient of determination; RMSE: Root means square error; DW: Durbin–Watson; AIC: Akaike information criteria; BIC: Bayesian Information Criteria.

    2adjR

    2adjR

    2adjR

    ofKaragouniko andShall sheep, respectively.Ontheotherhand,daSilvaet al.(2012)observedthatRichardsmodelwasproblematicduringtheprocessofconvergenceinSantaInêssheep.

    AccordingtothelowDWvaluesobtainedinthecurrent study fromfitting thenon-linearmodelsofthe growth curve, itwas concluded that therewaspositive autocorrelation between residuals for allmodels.TheNegativeexponentialmodelprovidedthemostpositiveautocorrelationamongdifferentmodels.It seems that residual autocorrelation presented noproblem, or only a very slight one in the currentstudy.Positiveautocorrelationisaserialcorrelationinwhichapositiveerrorforoneobservationincreasesthechancesofapositiveerrorforanotherobservation(GhaviHossein-Zadeh,2014).Thelowerestimatesofaparameter,obtainedfromthebestfittedmodelsinthisstudy,mayindicatethatanimalsarelighterasadultsandmaybeconsideredfast-growing,asthesesheeprequirelesstimetoreachmaturitycomparedtootherbreeds(daSilvaet al.,2012).

    The definition of an optimum adult weightis controversial as it depends on the species,breed, selectionmethod,management system andenvironmental conditions (Malhado et al., 2009).Itwas reported that average adult liveweight inGuilansheepis35Kg(77lbs)forramsand31Kg(67lbs)forewes(Eteqadiet al.,2014).Thesevaluesweregenerallyconsistentwith theestimatesof theaparameterobtainedfromthebestfittedmodelsinthisstudy.

    Contrary to the current results, da Silva et al. (2012) reported high asymptoticweight estimatesinSantaInêssheep,buttheiranimalswerebetween120and774daysofage.Lôboet al.(2006)evaluatedthegrowthcurveofSantaInêssheepfrombirthto550daysofageandobtainedgreatera value thanthe current study.Also,McManuset al. (2003) inthestudyofgrowthcurvefrombirthto2,000daysofage inBergamáciasheepobtainedagreaterestimateofaparametercomparedwith this study.Generally,consistentwiththecurrentresults,Malhadoet al.(2008)

  • 206

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    a b

    c

    Figure 1. Observed body weights for all lambs (a), males (b), and female lambs (c).

    studiedthegrowthcurveofTexel×SantaInêscrossedsheepfrombirthupto365daysofageandobtaineda valuesrangingfrom29.14to32.16Kg.Also,Malhadoet al.(2009)reportedavaluesof29.35to32.41inthefitofdifferentgrowthfunctionsfortheMoradaNova,RaboLargo,andSantaInêsBraziliansheepbreeds.TheseBrazilianbreedswereweightedfrombirthupto

    210daysofageinthestudybyMalhadoet al.(2009).Toral(2008)warnedthatinferencesaboutestimatedparametersmayoftenbesubjecttoerrorsbecausethedatasetsthatareusedtofitnon-lineargrowthfunctionsdonotincludeanimalgrowthuntilmaturity.Similarly,Garneroet al.(2005)statedthatwhentheavailabledata cover only growth before reachingmaturity,

  • 207

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    Figure 2. Predicted body weights (Kg) as a function of age (days) obtained with different growth models for all lambs (a), male (b), and female (c) lambs.

    a b

    c

    thesedatacanproduceerroneousa and kestimates.Animalswithhighk valuesshowprecociousmaturityinrelationtothosewithlowerk valuesandsimilarinitialweight.Thegreatervaluesofkforfemalelambsinthisstudyindicateshighermaturityrates(i.e.,theyreachedmatureweightearlier).

    Because of the narrow deviation range in theweight at birth, the variation among the k valuesbecomes a reliable predictor of the growth rate(Malhado et al., 2009).Therefore, animalswithhigher k values reach asymptoticweight earlier.Bathaei andLeroy (1996) estimatedmuch higher

  • 208

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    k valuesforbodyweightthanthecurrentstudy,formalesandfemalesoftheMehrabanIranianfattailedsheep,whenapplyingtheBrodygrowthmodelovera48-monthperiod.Thisdifferencecouldbeattributedtothetimeunit(month)andtimeperiod(fouryears)theyusedcomparedwiththepresentstudy,andthedifferent growth function used (Goliomytis et al., 2006).Goonewardeneet al. (1981),Rogerset al. (1987)andPerottoet al.(1992)obtaineddifferentk valueswhenapplyingdifferentgrowthfunctionstothesameweight-agedata,indicatingthatthemodelofchoiceaffectsparameterestimates.

    Themost important biological correlation for agrowth curve is betweena and k parameters.Thenegativecorrelationbetweentheseparametersinthecurrentstudyimpliesthattheearliestanimalsarelesslikelytoexhibithighadultweight;i.e.,animalsthathave higher adultweights generally present lowergrowthratesthananimalswithaloweradultweight(daSilvaet al.,2012).Also,similartothesigmoidalpatternsofgrowthcurvesinthisstudywereobtainedbyotherstudies(Goliomytiset al.,2006;Malhadoet al.,2009;daSilvaet al.,2012).

    The sixnon-linear functions investigated in thepresentstudywereadequateindescribingthegrowthpatterninGuilansheep.However,theBrodymodelprovidedthebestfitofgrowthcurveinmales,andtheRichardsmodel for females and all lambsdueto the lower values ofRMSE,AIC, andBIC andgreater values of 2adjR than the othermodels.Theresultsofthisstudyshowthatcurrentgrowthcurvemodelswould be very helpful in genetic breedingprograms, flock nutritional management, anddecisionmaking on culling of animalswith slowgrowth rate. In this condition, selection could bemadeforanimalswithfastergrowthrateandorthatare early-maturing after observing their individualgrowth curve.After selecting a desiredmodel ofthegrowthcurveforthisbreedofsheep,itisworthnotingtodevelopappropriategeneticselectionandmanagement strategiesalongwith theprovisionofgoodenvironmentalconditionsintheflocktoachieveasuitableshapeofgrowthcurveviamodifyingthemodelparameters.

    Acknowledgements

    The corresponding author would like toacknowledgetheUniversityofGuilanforfinancialsupportofthisresearch(ProjectNo.989).

    Conflicts of interest

    The authors declare they have no conflicts ofinterestwith regard to thework presented in thisreport.

    ReferencesAbegazS,VanWykJB,Olivier JJ.Estimationofgeneticandphenotypic parameters of growth curve and their relationshipwithearlygrowthandproductivityinHorrosheep.ArchTierz2010;53(1):85-94.

    AkbasY,TaskýnT,DemirörenE.Comparisonofseveralmodelstofitthegrowthcurvesofkivircikanddaglicmalelambs.TurkishJVetAnimSci1999;23Suppl3:537-544.

    BathaeiSS,LeroyPL.GrowthandmatureweightofMehrabanIranianfat-tailedsheep.SmallRuminRes1996;22:155-162.

    BathaeiSS,LeroyPL.Genetic andphenotypic aspects of thegrowthcurvecharacteristicsinMehrabanIranianfat-tailedsheep.SmallRuminRes1998;29:261-269.

    BedierNZ,YounisAA,GalalESE,MokhtaMM.OptimumewesizeindesertBarkisheep.SmallRuminRes1992;7:1-7.

    BurnhamKP,AndersonDR.Model selection andmultimodelinference: a practical–theoretic approach, 2nd edn. Berlin,Germany:Springer-Verlag;2002.

    daSilvaLSA,FragaAB, daSilvaFDL,BeelenPMG,SilvaRMDO,TonhatiH,BarrosCDC.GrowthcurveinSantaInêssheep.SmallRuminRes2012;105:182-185.

    EteqadiB,GhaviHossein-ZadehN,ShadparvarAA.PopulationstructureandinbreedingeffectsonbodyweighttraitsofGuilansheepinIran.SmallRuminRes2014;119:45-51.

    Fitzhugh JrHA.Analysis of growth curves and strategies foralteringtheirshape.JAnimSci1976;42:1036-1051.

    FreitasAR.Curvasdecrescimentonaproducãoanimal.RBrasZootec2005;34:786795.

    GarneroAV,MarcondesCR,BezerraLAF,OliveiraHN,LôboRB.GeneticparametersofmaturationrateandasymptoticweightinNelorefemales.BrazArchVetMedAnimSci2005;57:652-662.

    GbangbocheAB,Gleke-KalaiR,AlbuquerqueLG,LeroyP.Comparisonofnon-lineargrowthmodelstodescribethegrowthcurveinWestAfricanDwarfsheep.Animal2008;2:1003-1012.

  • 209

    Rev Colomb Cienc Pecu 2016; 29:199-209

    Ghavi Hossein-Zadeh N and Golshani M. Non-linear models for growth of sheep

    GhaviHossein-ZadehN.Comparisonofnon-linearmodels todescribethelactationcurvesofmilkyieldandcompositioninIranianHolsteins.JAgrSci2014;152:309-324.

    GhaviHossein-ZadehN.ModelingthegrowthcurveofIranianShallsheepusingnon-lineargrowthmodels.SmallRuminRes2015;130:60-66.

    GoliomytisM,OrfanosS,PanopoulouE,RogdakisE.Growthcurves for bodyweight and carcass components, and carcasscompositionoftheKaragounikosheep,frombirthto720dofage.SmallRuminRes2006;66:222-229.

    GoonewardeneLA,BergRT,HardinRT.Agrowthstudyofbeefcattle.CanJAnimSci1981;61:1041-1048.

    KachmanSD,GianolaD.ABayesianestimatorofvarianceandcovariancecomponentsinnonlineargrowthmodels.JAnimSci1984;59Suppl1:176.

    KeskinI,DagB,SariyelV,GokmenM.EstimationofgrowthcurveparametersinKonyaMerinosheep.SouthAfrJAnimSci2010;39(2):163-168.

    Lambe NR, Navajas EA, SimmG, Bünger L.A geneticinvestigation of various growthmodels to describe growthoflambsoftwocontrastingbreeds.JAnimSci2006;84:2642-2654.

    LewisRM,EmmansGC,DingwallWS.Adescriptionofthegrowthofsheepanditsgeneticanalysis.AnimSci2002;74:51-62.

    LôboRNB,VillelaLCV,LôboAMBO,PassosJRS,OliveiraAA.Genetic parameters of estimated characteristics of the growthcurveofSantaInêssheep.RBrasZootec2006;35(3):1012-1019.

    MalhadoCHM,Carneiro PLS, Santos PF,AzevedoDMMR,Souza JC,Affonso PRAM.Curva de crescimento emovinosmestic¸osSantaInês×TexelcriadosnoSudoestedoEstadodaBahia.RevBrasSaúdeProdAn2008;9:210-218.

    MalhadoCHM,CarneiroaPLS,AffonsoPRAM,SouzaJrAAO,SarmentoJLR.GrowthcurvesinDorpersheepcrossedwiththelocalBrazilianbreeds,MoradaNova,RaboLargo,andSantaInês.SmallRuminRes2009;84:16-21.

    McManusC, EvangelistaC, FernandesLAC,MirandaRM,Moreno-BernalFE,SantosNR.GrowthcurvesofBergamáciaSheep raised in theFederalDistrict.RBrasZootec 2003; 32(5):1207-1212.

    NoorRR,DjajanegaraA,SchülerL.Selectiontoimprovementbirth andweaningweight of JavaneseFatTailed sheep.ArchTierz2001;44:649-659.

    PerottoD,CueRI,LeeAJ.Comparisonofnonlinearfunctionsfordescribingthegrowthcurveofthreegenotypesofdairycattle.CanJAnimSci1992;72:773-782.

    RogersSR,PestiGM,MarksHL.Comparisonofthreenonlinearregressionmodelsfordescribingbroilergrowthcurves.Growth1987;51:229-239.

    SarmentoJLR,RegazziAJ,SouzaWH,TorresRA,BredaFC,MenezesGRO.StudyofgrowthcurveofSantaInêssheep.RBrasZootec2006;35(2):435-442.

    SAS.SASUser’sguidev.9.0:Statistics.SASInstitute,Inc,Cary,NC,USA;2002.

    SouzaLA,CarneiroPLS,MalhadoCHM,SilvaFF,SilveiraFG.Traditional andalternativenonlinearmodels for estimating thegrowthofMoradaNovasheep.RBrasZootec2013;42(9):651-655.

    TariqM,IqbalF,EyduranE,BajwaMA,HumaZE,WaheedA.Comparisonofnon-linearfunctionstodescribethegrowthinMengalisheepbreedofBalochistan.PakJZool2013;45(3):661-665.

    TopalM,OzdemirM,AksakalV,YildizN,DogruU.Determinationof the best nonlinear function in order to estimate growth inMorkaramanandAwassilambs.SmallRuminRes2004;55:229-232.

    Toral FLB.Number and range ofweighing for estimatingparameters of growth curves in cattle.RBrasZootec 2008;37:2120-2128.