1974 ‐1994 Operational Feedback

24
PFR 1974 ‐ 1994 Operational Feedback A M Judd March 2021

Transcript of 1974 ‐1994 Operational Feedback

Page 1: 1974 ‐1994 Operational Feedback

PFR1974 ‐ 1994

Operational FeedbackA M Judd

March 2021

Page 2: 1974 ‐1994 Operational Feedback

PFR1974 ‐ 1994

Operational Feedback

Why bother?

Page 3: 1974 ‐1994 Operational Feedback

PFR Operational Feedback

Operational data from past reactors are necessary to validate

the safety of future reactors.

Examples –Power coefficient of reactivityNatural convection cooling 

Page 4: 1974 ‐1994 Operational Feedback

The Prototype Fast Reactor1961‐1966 Design

Preliminary Specification 1964Sanction to construct 1966Identification of NIV swelling 1966

1967‐1974 ConstructionReactor roof weld cracks 1969‐1971

1974‐1994 OperationCritical 1974Full Power 1977 Evaporator leaks 1974‐1981Primary oil leak 1992Closure 1994

Page 5: 1974 ‐1994 Operational Feedback

PFR

Page 6: 1974 ‐1994 Operational Feedback

PFR

250 MW(e)600MW(th)

MOx fuel

Page 7: 1974 ‐1994 Operational Feedback

PFR Operational Experiments

Coolant Inlet temperature coefficient of reactivityCoolant Flow coefficient of reactivityPower coefficient of reactivity

Natural convection cooling at low power(Primary coolant pumps stopped)

Page 8: 1974 ‐1994 Operational Feedback

Power Coefficient of Reactivity

Dependence of reactivity on power and coolant flow

∂ρ/∂P = a(P) + bP/F

a depends on temperature of fuel(Doppler and axial expansion)

b depends on expansion of core structure

Page 9: 1974 ‐1994 Operational Feedback

PFRPower Coefficient

of Reactivity

Measurementsof the

flow‐dependentterm bP/F

Page 10: 1974 ‐1994 Operational Feedback

Power Coefficient of Reactivity

ρDoppler ≈ ‐ ln(Tabs)

The Doppler reactivity change varies roughly as1/(absolute temperature)

Page 11: 1974 ‐1994 Operational Feedback

Power Coefficient of Reactivity

Fuel axial expansion decreases with age

Page 12: 1974 ‐1994 Operational Feedback

PFR Power Coefficient of ReactivitySelected measurements of theflow‐independent term a(P)

Page 13: 1974 ‐1994 Operational Feedback

PFR Power Coefficient of Reactivity

∂ρ/∂P = a(P) + b/F

Experimental data

a decreases with increasing power(due to Doppler)

a decreases with burnup of fuel(due to adhesion of fuel to clad)

Page 14: 1974 ‐1994 Operational Feedback

PFRVessel

Page 15: 1974 ‐1994 Operational Feedback

PFRVessel

Page 16: 1974 ‐1994 Operational Feedback

PFRVessel

Page 17: 1974 ‐1994 Operational Feedback

PFRVessel

Page 18: 1974 ‐1994 Operational Feedback

PFR Reactor Jacket during construction

Page 19: 1974 ‐1994 Operational Feedback

PFR Natural Convection Tests

Coolant pumps de‐energised (free to rotate)Reactor critical at low power (~ 10 MW)Decay Heat Rejection loops inactive, then active

Page 20: 1974 ‐1994 Operational Feedback

PFR Natural Convection TestsExpected Flow Pattern

Page 21: 1974 ‐1994 Operational Feedback

PFR Natural Convection Tests

Observed Temperatures

Page 22: 1974 ‐1994 Operational Feedback

PFR Natural Convection Tests

Deduced Main Flow Pattern

Page 23: 1974 ‐1994 Operational Feedback

PFR Natural Convection Tests

Subassembly OutletConjectured Flow Pattern

Page 24: 1974 ‐1994 Operational Feedback

Conclusion

Operational Feedback is valuable.

Safety parameters such as reactivity coefficients and natural convection flow patterns are affected by complex conditions in an operating reactor.

Therefore design predictions need validation by data from plant operation.