1953-32 International Workshop on the Frontiers of Modern...

51
1953-32 International Workshop on the Frontiers of Modern Plasma Physics R. Hatakeyama 14 - 25 July 2008 Tohoku University,Dept. of Electronic Engineering Sendai Japan Q-Machine Plasmas Yielding New Experimental Methodologies of Sheared-Flow and Nano-Quantum Physics.

Transcript of 1953-32 International Workshop on the Frontiers of Modern...

  • 1953-32

    International Workshop on the Frontiers of Modern Plasma Physics

    R. Hatakeyama

    14 - 25 July 2008

    Tohoku University,Dept. of Electronic EngineeringSendaiJapan

    Q-Machine Plasmas Yielding New Experimental Methodologies of Sheared-Flowand Nano-Quantum Physics.

  • 1

    Q-Machine Plasmas Yielding New Experimental Methodologies of Sheared-Flow and Nano-Quantum

    Physics

    R. Hatakeyama and T. Kaneko

    Department of Electronic Engineering, Tohoku University, Sendai / Japan

    International Workshop on The Frontiers of Modern Plasma PhysicsAbdus Salam ICTP, Trieste/Italy, 21-25 July 2008

  • 2

    The Q machine has been used since the 1960s (~1958) : Ion acoustic, electron plasma, ion cyclotron, drift, … waves and instabilities, nonlinear phenomena such as double layers, …. in magnetized plasmas⇒ Modification to sheared-flow physics study

    Innovative transformation of Q machines into the contribution to nano physics & chemistry fields since 1995.

    ALKALI METALBEAM OVEN

    Work function of solid and ionization potential of atom.

    Contact Ionization

  • 3

    1. Q-Machine Modification Corresponding to Sheared-Flow

    Plasma Physics Study

    1. Q1. Q--Machine Modification Machine Modification Corresponding to ShearedCorresponding to Sheared--Flow Flow

    Plasma Physics Study Plasma Physics Study

  • 4

    Both the ion and electron emitters are concentrically segmented.

    Experimental Setup

    Rev. Sci. Instrum. 73 (2002) 4218

    (0 V) (0 V)(-60 V)

  • 5

    Phys. Scripta T107 (2004) 200 Trans. Fusion Sci. Technol. 47 (2005) 128Trans. Fusion Sci. Technol. 51 (2007) 103Plasma Fusion Res. 3 (2008) S1011

    Potassium ionflow shear

    Cesium ionflow shear

    super-position

    Effect of hybrid ions

    Electron EmitterDetermine space potential

    ⇒ E×B flow velocityControl of perpendicular

    flow velocity shear

    Ion EmitterDetermine ion flow energy parallel to BControl of parallel flow velocity shear

    super-position

    Superposition of K and Cs Ion Flow Velocity ShearsSuperposition of B|| and B⊥ Flow Velocity Shears

    -5 0 5r (cm)

    φ (V

    )

    Vee2 = 0 V Vee1(V)

    1 V

    -2.0-1.0-0.70.01.0

    0 20 40VC (V)

    No.2

    No.1

    No.2

    r (cm)0

    2.5

    -2.5

    φ Fi||

    B|| ShearsB⊥ Shears

    Phys. Rev. Lett. 90 (2003) 125001 Phys. Rev. Lett. 92 (2004) 069502Phys. Plasmas 12 (2005) 072103 Phys. Plasmas 12 (2005) 102106

  • -1.92 -1.84 -1.76 -1.68

    -1.6

    -0.8

    0.0

    0.8

    1.6

    2.4(%)

    Vee1 (V)V

    ie1 (

    V)

    0

    5.0

    10.0

    15.0

    20.0

    Vie2= 1.0 V,Vee2= -2.00 VNormalized fluctuation amplitude at r = -1.0 cm (shear region).

    A B

    B⊥ shear

    B//

    shea

    r No B// shear

    No

    B⊥

    shea

    r

    turbulent

    Superposition of K and Cs Ion Flow Velocity Shears (Drift Wave)

    Superposition of B|| and B⊥ Flow Velocity Shears (Drift Wave)

    0 4 8

    –1.6

    –0.8

    0.0

    0.8

    1.6

    2.4

    Vie1 (V)

    ω/2π (kHz)

    0 1 2 3 40

    1

    2

    3

    Δ Vie (V)

    I es/I e

    s (%

    )0 1 2 3 4

    0

    1

    2

    3

    I es/I e

    s (%

    )

    Δ Vie (V)

    Cs K

    Cs+K 0 1 2 3 402

    4

    6

    8

    I es/I e

    s (%

    )

    Δ Vie (V)0 1 2 3 4

    0

    1

    2

    3

    Δ Vie (V)

    I es/I e

    s (%

    )

    1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    0

    0.2

    0.4

    0.6

    Time (a.u.)

    n e (×

    109

    cm

    3 )

    neTe

    T e (e

    V)

  • 7

    Electron Temperature Gradient Instabilitiesin Magnetized Plasmas

  • 8

    Temperature Gradient Driven Modes in Magnetically Confined Plasmas

    • ITG modes are the most plausible candidate for the anomaly of ion channel thermal transport.

    • EXB sheared flow suppression effects on ITG modes are identified[1,2].

    Ion Temperature Gradient (ITG) Modes Electron Temperature Gradient (ETG) Modes

    • ETG modes are also the plausible candidate for the electron transport properties of tokamak devices [3].

    • ETG modes are difficult to be stabilized by EXB shear.

    INTRODUCTION

    [1] Z. Gao, H. Sanuki , K. Itoh, and J.Q. Dong, Phys. Plasmas 10 (2003) 2831.[2] Z. Gao, J. Q. Dong, and H.Sanuki, Phys. Plasmas 11 (2004) 3053. [3] Y.C. Lee, J. Q. Dong, P.N. Guzdar, and C.S. Liu, Phys. Fluids 30 (1987) 1331.

  • 9

    Why ETG Mode is Important?

    • Experimental observation expresses that the low frequency instability is driven by ETG and nonlinear effects of ETG modes generate significant electron transport.

    • The growth rate of ETG mode is about 20 times larger than that of short wave length ITG mode.

    • It is an important issue to reduce the electron thermal transport observed in magnetically confined fusion devices.

    • Therefore it is necessary to examine the role of ETG driven mode in a linear machine so that the result would be applicable in tokamak plasmas.

  • 10

    ITG mode

    ETG mode

    Theoretically investigated by Z. Gao, et al., Phys. Plasmas 10 (2003) 2831, 11 (2004) 3053.

    Stabilization by ExB shear

    ie

    ieie nd

    Td

    ,

    ,, ln

    ln=η = electron, ion temperature gradient, and VE‘ is the EXB shear velocity.Where,

  • 11

    To produce and control electron temperature gradient (ETG) using a thermionic electron superimposed electron cyclotron resonance (ECR) plasma and applying voltages to two different sized mesh grids and finally to examine the stabilization of ETG mode by E X B sheared suppression in a linear machine..

    • In laboratory experiments, several techniques have been applied to the control of the electron temperature[4-6], but it is difficult to realize spatially different electron temperatures at a localized area.

    [4] G. T. Hoang, et al. Phys. Rev. Lett. 87 (2001) 125001.[5] F. Porcelli, E. Rossi, G. Cima, and A Wootton , Phys. Rev. Lett. 82 (1999) 1458.[6] K. Kato, S. Iizuka, and N. Sato, Appl. Phys. Lett. 65 (1994) 816.

    Objective

  • 12

    EXPERIMENTAL APPARATUS

  • 13

    Electron emitter (W hot plate)

    Grid bias: additional discharge generates low Te electron

    Deformation of density and temperature profiles from source to experimental region due to mesh grids

    Electron emitter (W hot plate)

    Construction of mesh grids

    Supply of thermionic low Te electrons from electron emitter (EE)

    Thermionic electrons superimposed (SI) ECR plasma50 mm

    Grid 2

    Grid 1

    High Te electrons in ECR plasma

  • 14

    –5 0 5r (cm)

    φ (V

    )

    VH2 = 0.0 V

    VH1 = 1.0 V1 V

    0.0 V

    –0.65 V

    –1.0 V

    –2.0 V

    By applying different voltages to the electrodes 1, 2, and 3, radial profiles of plasma potentials can be changed and as a resultE X B shear is generated in t h e c e n t r a l r e g i o n

    EXB sheared suppression

    E X B shear is generated

  • 15

    Formation and Control of ETG in thermionic electron superimposed ECR plasmas by changing vg2

    vg2=-5V vg2= -10V vg2=-50V

    vg1= floating potential

    No ETG is formed Small ETG is formed ETG becomes large

    -5 0 50

    2

    4

    r (cm)

    T e (e

    V)

    -5 0 50

    2

    4

    r (cm)

    T e (e

    V)

    -5 0 50

    2

    4

    r (cm)

    T e (e

    V)

    -5 0 50

    4

    8

    r (cm)

    n e (

    10

    8 cm

    -3)

    -5 0 50

    4

    8

    r (cm)

    n e (

    10

    8 cm

    -3)

    -5 0 50

    4

    8

    r (cm)

    n e (

    10

    8 cm

    -3)

  • 16

    2. Innovative Transformation of Q Machine Corresponding to

    Nano Physics & Chemistry Study

    2. Innovative Transformation 2. Innovative Transformation of Q Machine Corresponding to of Q Machine Corresponding to

    NanoNano Physics & Chemistry Study Physics & Chemistry Study

  • 17

    Electron-based electronics & Information technology

    Atom

    +-

    Exploiting both the two

    Semiconductor spintronics

    Charge(Semiconductor)

    Spin(Magnetic materials)

    Electron

    ● Gaseous atom encapsulated fullerene(H, He, F, N, ・・・)

    NLong spin lifetimeSharp resonance

    Quantum computer(Atomic nitrogen encapsulated fullerene)

    ●Endohedral metallofullerene

    M+-

    Fe

    ferromagnetic

    Magnetic semiconductor

    Endofullerene-based nanoelectronics

    Pseudo atom

    Charge transfer

    Single molecular orientation switchingHigh efficiency solar cellHigh-temperature superconductivity

    (Atom encapsulated fullerene)

  • 18

    Phys. Plasmas 1 (1994) 3480

    J. Vac. Sci. Technol. A 14(1996) 615

    Generation of Alkali-Fullerene Plasma

    Slightly Positive Bias

    Positive-Negative Ions Interaction

  • 19

    Pair C60-Ion and H-ion Plasmas

    Phys. Rev. Lett. 91 (2003) 205005 Phys. Rev. Lett., 95 (2005) 175003 Phys. Rev. E, 75 (2007) 056403 Phys. Plasmas, 14 (2007) 055704

  • 20

    Periodic Table

    Alkali-Metals

    Halogens

  • 21

    Alkali-Halogen ( Cs+− I- ) Plasma Generation

    Salt: KCl, CsCl, CsI, ….Appl. Phys. Lett. 8888 (2006) 191501

  • 22

    (10,10)

    http://www.photon.t.u-tokyo.ac.jp/index-j.htmlFrom the home page of Maruyama Lab, Univ. Tokyo

  • 23by slight differences of their structure (without any impurity doping)by slight differences of their structure (without any impurity dby slight differences of their structure (without any impurity doping)oping)

    Translation vector Chiral vector

    Arm chair tubeArm chair tube

    ZigZig--ZagZag tubetube(Narrow gap)

    ChiralChiral tubetube(Wide gap)

    Metal

    Semiconductor

    Tube electric properties drastically change from metal to semicoTube electric properties drastically change from metal to semiconductornductor

  • 24

    SWNT: single-walled nanotube MWNT: multi-walled nanotube

    There are 3 basic types of nanotubes

    DWNT: double-walled nanotube

    Appl. Phys. Lett. 83 (2003) 119 J. Appl. Phys. 96 (2004) 6053

    Creation of Evolved Carbon NanotubesCreation of Evolved Carbon NanotubesCreation of Evolved Carbon Nanotubes

    Diameter: ~ nmLength: < nm ~ μm ~ mm

  • 25

    Electron Temperature

  • 26

    Freestanding growth of individual SWNTs on a flat substrate

    From these results(SEM, TEM, Raman)

    Freestanding-individual SWNTs have been successfully produced on a silicon-based flat substrate due to plasma-sheath effect !!Chem. Phys. Lett. 381381 (2003) 422; Jap. J. Appl. Phys. (Exp. Lett.) 4343 (2004)

    L1278; Nanotechnol. 1717 (2006) 2223 ; Appl. Phys. Lett. 9292 (2008) 031502

    On

    SiO

    2/Si

    On

    Cu

    wire

    (e) A

    s gr

    own

    stat

    e w

    asdi

    rect

    ly o

    bser

    ved

    by T

    EM

    Cu wire

    Cu wire

    ・Dgs : 20, 70 mm,・PRF : 40 W,・Tpro : 60, 180 sec,・Tsub: 700, 750℃

  • 27

    Isolated Bundled

    Emission energy [eV]Ex

    cita

    tion

    ener

    gy [e

    V]

    8

    2

    2

    4

    8

    2

    2

    4

    8

    2

    2

    4

    (e)

    1.0 1.2 1.4

    (d)

    1.0 1.2 1.4

    (c)

    1.0 1.2 1.4

    (b)

    1.0 1.2 1.4

    (a)2.4

    1.82.0

    2.2

    1.0 1.2 1.4

    Unique photoluminescence features in freestanding SWNTs

    J. Am. Chem. Soc. 130 (2008) 8101

    Passage time [h]0 5 10

    –1

    0

    1

    I int(6

    ,5)→

    (6,5

    ) t

    I int(6

    ,5)→

    bund

    let

    0)()( )5,6( =

    ∂∂

    +∂

    ttS

    ttS bundle

    The continuous equation for PL intensity is found to hold in the time trance of isolated and bundled tubes.

    Exciton energies transfer from isolated to bundled tubes caused the PL brightening.

    Excitation (S22)

    –2 0 20

    1

    Energy [eV]

    DO

    S (a

    .u.)

    (8, 7)

    (S11)Emission

  • 28

    3. Inner Nano – Space Control of Carbon Nanotubes Based on

    Fundamental Plasma Physics

    3. Inner Nano 3. Inner Nano –– Space Control of Space Control of Carbon Nanotubes Based on Carbon Nanotubes Based on

    Fundamental Plasma PhysicsFundamental Plasma Physics

    “Charge and Spin of Electrons are expected to be effectively exploited”

    ““Charge and Spin of Electrons are Charge and Spin of Electrons are expected to be effectively exploitedexpected to be effectively exploited””

  • 29

    Formation of Atom / Molecule Encapsulated Single- and Double-WalledCarbon Nanotubes Using Different-Polarity Ion Plasmas

    Formation of Atom / Molecule EncapsulatedFormation of Atom / Molecule Encapsulated SingleSingle-- and Doubleand Double--WalledWalledCarbon Nanotubes Using DifferentCarbon Nanotubes Using Different--Polarity Ion PlasmasPolarity Ion Plasmas

    13.6Å 40Å

  • 30

    SWNTs/DWNTsSWNTs/DWNTs

    Plasma Experimental Method

    0 V < φap < 50 V

    -300 V < φap < 0 V

    Junction Formation inside SWNT/DWNT

    Stationary Operation

    Compound Formation inside SWNT/DWNT

    Pulsed Operation

  • 31

    2 nm 2 nm

    SWNTs DWNTs

    2 nm

    C60@DWNTs

    2 nm 2 nm

    Cs@DWNTsDWNTsC60@SWNTs

    5 nm

    I@SWNTs

    Cs@SWNTs

    Fe(C5H5)2@SWNTs

    Fe@SWNTs

    1 nm1 nm

    DNA@SWNTs

    2 nm

    TEM Images of Atoms and Molecules Encapsulated SWNTs / DWNTs

    5 nm

    Ca@SWNTs

    Appl. Phys. Lett. 7979 (2001) 4213 Chem. Commun. 11 (2003) 152

    Phys. Rev. B 6868 (2003) 075410

    Thin Solid Films 464-465 (2004) 299

    Appl. Phys. Lett. 89 (2006) 093110

    Jpn. J. Appl. Phys. 45 ( 2006) L428Chem. Phys. Lett. 417417 (2006) 288; Jpn. J. Appl. Phys. 45 (2006) 8335

  • 32

    TEM Images of Pristine and Various Fullerenes Encapsulated SWNTs

    Scale bar: 2 nm

    C60@SWNT C70@SWNT C84@SWNTPristine SWNT

    ellipse

    C59N@SWNT

    e)

  • 33

    Electronic Structure inside Atom Encapsulated SWNT

    Theoretical calculation!Theoretical calculation!

    Bright field STEM imageBright field STEM imageZ-contrast imageZ-contrast image

    Encapsulated

    Empty

    Encapsulated

    Empty

    Phys. Rev. B 6868(2003) 075410

    Cs unfilled Cs filled

    STS / STM ResultSTS / STS / STM ResultSTM Result

    Collaboration with Y. Kuk’ group Phys. Rev. Lett. 99 (2007) 256407

  • 34

    4. Electromagnetic Properties of Atom/Molecule Encapsulated

    Carbon Nanotubes

    4. Electromagnetic Properties of 4. Electromagnetic Properties of Atom/Molecule Encapsulated Atom/Molecule Encapsulated

    Carbon NanotubesCarbon Nanotubes

  • 35

    4.1 Control of Semiconducting Properties of Single-Walled

    Carbon Nanotubes

    4.1 Control of Semiconducting 4.1 Control of Semiconducting Properties of SingleProperties of Single--Walled Walled

    Carbon Carbon NanotubesNanotubes

  • 36

    A schematic of SWNT-FET

    SWNT

    An AFM image of SWNT- FET

    Field-Effect Transistors (FETs) Based on SWNT

    Jpn. J. Appl. Phys. 44 (2005) 1606

    Source Drain

    IDS VD

    VG

    Au Au

    p- and n-type transport properties appear.

    Pristine SWNT

    Cn@SWNT

    (n = 60, 70, 84)

    IDS - VG characteristics(VDS = 1 V, in vacuum, at 297 K)

    IDS - VG characteristics(VDS = 1 V, in vacuum, at 297 K)

    C59N@SWNT

    -40 -20 0 20 400

    50

    100

    150

    200

    250

    VG(V)

    I DS(n

    A)

    Ptistine SWNTC60@SWNTC59N@SWNT

    J. Am. Chem. Soc. 130 (2008) 2714.

    p n

  • 37

    Transport Properties of Cs@SWNT(In Vacuum, Room Temp., VDS = 1 V)

    45 minD = 6.5×104 /nm2

    60 minD = 8.6×104 /nm2

    -22.2 V -29.6 V

    -35.6 V

    15 minD = 2.2×104 /nm2

    30 minD = 4.3×104 /nm2

    Dependence of Ion Dose on Electrical Characteristics of Cs@SWNTs

    p-type

    n-type

    • As the amount of dosed Cs increases, the threshold for p-type shifts left.

    • After 60 min Cs irradiation Cs@SWNT shows completely n-type behavior.

    • As the amount of dosed Cs increases, the threshold for p-type shifts left.

    • After 60 min Cs irradiation Cs@SWNT shows completely n-type behavior.

    Electronic structure of SWNT can be controlled by adjusting an amount of dosed Cs atoms.

    Electronic structure of SWNT can be controlled by adjusting an amount of dosed Cs atoms.

    Appl. Phys. Lett. 89 (2006) 093121

    Cs: Electron donor

  • 38

    Transport Properties of I @SWNT(In Vacuum,Room Temp.)30 min

    Dependence of Ion Dose on Electrical Characteristics of I@SWNT

    –40 –20 0 20 400

    1

    2

    I DS

    (nA

    )

    VG (V)

    VDS=500 mV

    –40 –20 0 20 400

    100

    200

    I DS

    (nA

    )

    VG (V)

    VDS=100 mV

    –40 –20 0 20 400

    20

    40

    I DS (

    nA)

    VG (V)

    VDS=100 mV

    0 500

    1

    2

    3

    I DS (

    nA)

    VG (V)

    VDS=100 mV

    60 min

    120 min 240 min

    −20 V −10 V

    +10 V +60 V

    Enhanced p-type

    • As the amount of dosed I increases, the threshold for p-type shifts right.

    • After 240 min I irradiation I@SWNT shows a clear enhanced p-type behavior with threshold at 60 V.

    • As the amount of dosed I increases, the threshold for p-type shifts right.

    • After 240 min I irradiation I@SWNT shows a clear enhanced p-type behavior with threshold at 60 V.

    Jpn. J. Appl. Phys., 47 (2008) 2044Jpn. J. Appl. Phys., 47 (2008) 2044

    I: Electron acceptor

  • 39

    4.2 Formation of Nano pn Junctionsby Controlling Different-Polarity

    Ion Plasmas

    4.2 Formation of Nano 4.2 Formation of Nano pnpn JunctionsJunctionsby Controlling Differentby Controlling Different--Polarity Polarity

    Ion PlasmasIon Plasmas

  • 40

    Controlled Formation of Nano pn Junctions [(Cs/C60)@SWNT]

    Pulsed Operation

    C60

    Cs

    5 nm

    0 V < φap < 50 V

    -300 V < φap < 0 V

  • 41

    Using Alkali-Halogen ( Cs+- I- ) Plasma

    I− Cs+

    Nano pn Junction

    Halogens

    Alkali-Metals

  • 42

    Nano pn Junction Formed by (Cs/I) @ DWNTICs

    -1.0 -0.5 0.0 0.5 1.00

    10

    20

    30

    I DS (

    nA)

    V

    DS(V)

    For ideal diode measured at V

    G= -40 V

    IDS = IS (e qVDS / nKBT -1)

    IS = 10-12 A; n = 1.5; T= 300 K

    A B C D

    -40 -20 0 20 400

    10

    20

    30

    VG (V)

    I DS(

    nA)

    VDS = 1V

    Video link

    I-

    Cs+

  • 43

    Nano pn Junction with stable rectifying behavior of (Cs/I)@DWNT and (Cs/I)@SWNT in air

    Output characteristics keep stable even in air, indicating p-n junction in SWNTs & DWNTswith high-performance can be fabricated by hetero-atoms or -molecules encapsulation.

    -1.0 -0.5 0.0 0.5 1.00

    10

    20

    30

    40

    50

    VG= -40 V

    I D

    S (nA

    )

    VDS(V)

    In vacuum In air For ideal diode

    I Cs

    0

    1

    0 2-2

    0

    10

    VDS [V]

    Vacuum

    Air

    I DS

    [nA

    ]

    CsI

    (Cs/I)@DWNT (Cs/I)@SWNT

    (Baseline upshift for clarity)

  • 44

    4.3 4.3 4.3 Coulomb Oscillation Characteristics

    ― Quantum Dot Formation ―

    of Encapsulated Carbon Nanotube

  • 45

    VG

    I

    The energy level is quantized in a quantum dotThe energy level is quantized in a quantum dot

    Current through only when the quantum energy level matches with the fermi energy of drain electrode

    Current through only when the quantum energy level matches with the fermi energy of drain electrode

    The static energy level in quantum dot can be controlled by externally applied VG

    (VDS : constant)

    The quantum dot size can be estimated with the Coulomb

    oscillation

    Investigate the effect of alkali-atom encapsulation on SWNTs

    The quantum dot size can be estimated with the Coulomb

    oscillation

    Investigate the effect of alkali-atom encapsulation on SWNTs

    ( )dLL

    VC

    G /2lnπε2e 0

    g ≈Δ=

    Fig.:Quantum dot and Coulomb oscillation formed by a single dot

    L: Dot sized: SWNT diameter

    ΔVG

    Coulomb oscillation

    Tunneling barrier Tunneling barrier

    Quantum dot

    CarrierSource electrode potential

    Drain electrode potential

    Potential in a quantum dot

  • 46

    Coulomb Oscillations Observed in Encapsulated Nanotubes

    -15 -10 -5 0 5 10 15

    0.0

    0.3

    0.6

    0.9

    1.2

    I DS (n

    A)

    VG(V) -40 -20 0 20 40 60

    0.0

    0.2

    0.4

    0.6

    0.8

    I DS (n

    A)

    VG(V)

    Cs@SWNT C60@SWNT

    Fe@SWNT Cs@DWNT

    Quantum dots formed in nanotubes due to foreign materials encapsulation.

  • 47

    SummaryHistorical evolutions over 50 years of Q-machine plasma

    researches are reviewed, where a special emphasis is placed on experimental methodologies of sheared-flow and nano-quantum physics.

    Following the drift-wave studies on superposition effects of parallel and perpendicular flow velocity shears and hybrid ions flow velocity shears, an experiment on electron temperature gradient (ETG) instabilities is started, where the large ETG is successfully generated with the radial density profile kept uniform using thermionic electron superimposed ECR plasma.

    The innovative transformation of Q machine plasmas for nano physics and chemistry studies has been performed in order to create novel nano-structures and new functional nano-materials by controlling inner nano-spaces of fullerenes and carbon nanotubes.

  • 48

    Welcome to

    Fukuoka, J

    apan

  • 49

  • 50

    R. Hatakeyama (Chairman)Department of Electronic Engineering, Tohoku University6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, JapanTelephone: +81-22-795-7045Facsimile: +81-22-263-9375E-mail: [email protected]

    International Interdisciplinary-Symposium on Gaseous and Liquid Plasmas

    (ISGLP2008)September 5-6, 2008

    Tohoku University / Sendai, Japan

    http://www.plasma.ecei.tohoku.ac.jp/ISGLP/August 2008Final announcement/program

    August 2008Four-page papers deadline for a proceedings volume

    June 2008Second announcement

    May 2008One-page abstract deadline

    March 2008First announcement and call for papersCalendar of Events

    Satellite Meeting of International Congress on Plasma Physics (ICPP2008)