190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29...

30
Supporting Information Inclusion Crystals as Vapochromic Chemosensors: Fabrication of a Mini-sensor Array for Discrimination of Small Aromatic Molecules based on Side-Chain Engineering of Naphthalenediimide Derivatives Toshikazu Ono,* Yoshifumi Tsukiyama, Sou Hatanaka, Yuma Sakatsume, Tomoki Ogoshi, and Yoshio Hisaeda* Fig. S1 1 H-NMR spectra of 2 in DMSO-d6. Fig. S2 13 C-NMR spectra of 2 in CDCl3. Fig. S3 1 H-NMR spectra of 3 in Acetone-d6. Fig. S4 13 C-NMR spectra of 3 in CDCl3. Fig. S5 Photographs of 2 and 2•guest in day light (upper row) and UV-light irradiation (bottom row). Fig. S6 Photographs of 3 and 3•guest in day light (upper row) and UV-light irradiation (bottom row). Fig. S7 Diffuse reflectance spectra of 1 and 1•guest. Fig. S8 Diffuse reflectance spectra of 2 and 2•guest. Fig. S9 Diffuse reflectance spectra of 3 and 3•guest. Fig. S10 Summary of diffuse reflectance spectra of 1–3 with vapors. Fig. S11 Photoluminescence quantum yields of 1–3 (guest free), 1•guest, 2•guest, and 3•guest. Excitation at 370 nm. Table S1 Calculated concentrations of vapor analytes in the chamber. Table S2 Preparation of toluene vapor Table S3 Preparation of p-Xylene vapor Fig. S12 Schematic illustration of experimental setup. Fig. S13 Crystal structure of 1. Fig. S14 Crystal structure of 1toluene. Fig. S15 Crystal structure of 1p-xylene. Fig. S16 Crystal structure of 14-fluoroyoluene. Fig. S17 Crystal structure of 1anisole. Fig. S18 Crystal structure of 2toluene. Fig. S19 Crystal structure of 22,5-dimethylfuran. Fig. S20 PXRD 1 and 1•guest. Fig. S21 PXRD 2 and 2•guest. Fig. S22 PXRD 3 and 3•guest. Fig. S23 TG of 1toluene. Fig. S24 TG of 1p-xylene. Fig. S25 TG of 14-fluorotoluene. Fig. S26 TG of 1anisole. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Transcript of 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29...

Page 1: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Supporting Information

Inclusion Crystals as Vapochromic Chemosensors: Fabrication of a

Mini-sensor Array for Discrimination of Small Aromatic Molecules

based on Side-Chain Engineering of Naphthalenediimide Derivatives

Toshikazu Ono,* Yoshifumi Tsukiyama, Sou Hatanaka, Yuma Sakatsume, Tomoki Ogoshi, and Yoshio Hisaeda* Fig. S1 1H-NMR spectra of 2 in DMSO-d6. Fig. S2 13C-NMR spectra of 2 in CDCl3. Fig. S3 1H-NMR spectra of 3 in Acetone-d6. Fig. S4 13C-NMR spectra of 3 in CDCl3. Fig. S5 Photographs of 2 and 2•guest in day light (upper row) and UV-light irradiation (bottom row). Fig. S6 Photographs of 3 and 3•guest in day light (upper row) and UV-light irradiation (bottom row). Fig. S7 Diffuse reflectance spectra of 1 and 1•guest. Fig. S8 Diffuse reflectance spectra of 2 and 2•guest. Fig. S9 Diffuse reflectance spectra of 3 and 3•guest. Fig. S10 Summary of diffuse reflectance spectra of 1–3 with vapors. Fig. S11 Photoluminescence quantum yields of 1–3 (guest free), 1•guest, 2•guest, and 3•guest. Excitation at 370 nm. Table S1 Calculated concentrations of vapor analytes in the chamber. Table S2 Preparation of toluene vapor Table S3 Preparation of p-Xylene vapor Fig. S12 Schematic illustration of experimental setup. Fig. S13 Crystal structure of 1. Fig. S14 Crystal structure of 1⊃toluene. Fig. S15 Crystal structure of 1⊃p-xylene. Fig. S16 Crystal structure of 1⊃4-fluoroyoluene. Fig. S17 Crystal structure of 1⊃anisole. Fig. S18 Crystal structure of 2⊃toluene. Fig. S19 Crystal structure of 2⊃2,5-dimethylfuran. Fig. S20 PXRD 1 and 1•guest. Fig. S21 PXRD 2 and 2•guest. Fig. S22 PXRD 3 and 3•guest. Fig. S23 TG of 1⊃toluene. Fig. S24 TG of 1⊃p-xylene. Fig. S25 TG of 1⊃4-fluorotoluene. Fig. S26 TG of 1⊃anisole.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.This journal is © The Royal Society of Chemistry 2019

Page 2: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene. Fig. S32 TG of 1•anisole. Fig. S33 Sorption isotherms of 1 toward (a) toluene and (b) benzene vapors. Fig. S34 Guest inclusion determined by 1H-NMR. Fig. S35 Comparison of diffuse reflectance spectra of 1 and 4 with vapors. Fig. S36 Comparison of normalized emission spectra of 1 and 4 with vapors. Fig. S37 Photoluminescence quantum yields of 1, 4, 1•guest, and 4•guest. Excitation at 370 nm. Fig. S38 Calculated HOMO-LUMO levels of the guest molecules and 1. Fig. S39 Calculated HOMO-LUMO levels of 1-3 (orbital contour value 0.036).

Page 3: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S1 1H-NMR spectra of 2 in DMSO-d6.

DMSO-d6

water

a

b, h

e

c, g

d, i

b a

c

d

e

f g

h

i

Page 4: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S2 13C-NMR spectra of 2 in CDCl3.

DPM-NDI.009 C-NMR.esp

180 160 140 120 100 80 60 40 20 0Chemical Shift (ppm)

0.05

0.10

0.15

0.20

0.25

0.30N

orm

aliz

ed In

tens

ity

38.4

4

126.

1812

6.84

128.

2912

9.04

131.

1313

1.4413

8.96

162.

45

DPM-NDI.009 C-NMR.esp

142 140 138 136 134 132 130 128 126 124 122Chemical Shift (ppm)

0.05

0.10

0.15

0.20

0.25

0.30

Nor

mal

ized

Inte

nsity

126.

1812

6.84

127.

0712

7.81

128.

2912

9.04

129.

62

131.

1313

1.44

133.

83138.

7213

8.96

Page 5: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S3 1H-NMR spectra of 3 in Acetone-d6.

Fig. S4 13C-NMR spectra of 3 in CDCl3.

151209 AI2.001.esp

9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Nor

mal

ized

Inte

nsity

36.004.392.144.00

a

b

c

d

water

Acetone-d6

TMS

b a

c

d

Page 6: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Sensing ability of 2 and 3 in the solid-states in response vapors.

Fig. S5 Photographs of 2 and 2•guest in day light (upper row) and UV-light irradiation (bottom row).

Fig. S6 Photographs of 3 and 3•guest in day light (upper row) and UV-light irradiation (bottom row).

2FNO2 N

NOO H

N NOH2OOH

Cl Cl

ClCl Cl

O

3FNO2 N

NOO H

N NOH2OOH

Cl Cl

ClCl Cl

O

Page 7: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S7 Diffuse reflectance spectra of 1 and 1•guest.

Fig. S8 Diffuse reflectance spectra of 2 and 2•guest.

Fig. S9 Diffuse reflectance spectra of 3 and 3•guest.

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

1 1•nitrobenzene 1•benzonitrile 1•1-methoxynaphthalene 1•N,N-dimethylaniline 1•2,5-dimethylfuran 1•pyrrole 1•pyridine

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

1 1•benzene 1•toluene 1•o-xylene 1•m-xylene 1•p-xylene 1•ethylbenzene 1•mesitylene 1•styrene 1•4-fluorotoluene 1•anisole

Nor

mal

ized

Inte

nsity

(a.u

.)

Nor

mal

ized

Inte

nsity

(a.u

.)

Wavelength (nm) Wavelength (nm)

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

2 2•benzene 2•toluene 2•o-xylene 2•m-xylene 2•p-xylene 2•ethylbenzene 2•mesitylene 2•stylene 2•4-fluorotoluene 2•anisole

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

2 2•nitrobenzene 2•benzonitrile 2•1-methoxynaphthalene 2•N,N-dimethylaniline 2•2,5-dimethylfuran 2•pyrrole 2•pyridine

Nor

mal

ized

Inte

nsity

(a.u

.)

Nor

mal

ized

Inte

nsity

(a.u

.)

Wavelength (nm)Wavelength (nm)

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

3 3•benzene 3•toluene 3•o-xylene 3•m-xylene 3•p-xylene 3•ethylbenzene 3•mesitylene 3•styrene 3•4-fluorotoluene 3•anisole

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

3 3•nitrobenzene 3•benzonitrile 3•1_methoxynaohthalene 3•N,N-dimethylaniline 3•2,5-dimethylfuran 3•pyrrole 3•pyridine

Nor

mal

ized

Inte

nsity

(a.u

.)

Nor

mal

ized

Inte

nsity

(a.u

.)

Wavelength (nm) Wavelength (nm)

Page 8: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S10 Summary of diffuse reflectance spectra of 1–3 with vapors.

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

1•N,N-dimethylaniline 1•pyrrole 1•2,5-dimethylfuran

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

2•N,N-dimethylaniline 2•pyrrole 2•2,5-dimethylfuran

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

3•N,N-dimethylaniline 3•pyrrole 3•2,5-dimethylfuran

Wavelength (nm) Wavelength (nm) Wavelength (nm)

Nor

mal

ized

Inte

nsity

(a.u

.)

Nor

mal

ized

Inte

nsity

(a.u

.)

Nor

mal

ized

Inte

nsity

(a.u

.)

Page 9: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S11 Photoluminescence quantum yields of 1–3 (guest free), 1•guest, 2•guest, and 3•guest. Excitation at

370 nm.

15

10

5

123

benz

ene

tolue

ne

o-xyle

ne

m-xylen

e

p-xyle

ne

ethylb

enze

ne

styren

e

mesity

lene

4-fluo

rotolu

ene

nitrob

enze

ne

benz

eonit

rile

aniso

le

1-meth

oxyn

aphth

alene

N,N-di

methyla

niline

pyrro

le

pyrid

ine

2,5-di

methylf

uran

gues

t free

PLQY(%)

Page 10: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Table S1 Calculated concentrations of vapor analytes in the chamber.

Guest Saturated vapor

pressure at 25ºC (Pa)*

ppm in the sample tube

benzene

toluene

ethylbenzene

o-xylene

m-xylene

p-xylene

1,3,5-trimethylbenzene

styrene

nitrobenzene

p-fluorotoluene

benzonitrile

anisole

1-methoxynaphthalene

N,N’-dimethylaniline

2,5-dimethylfuran

pyrrole

pyridine

chloroform

dichloromethane

methanol

hexane

tetrahydrofuran

water

12700

3790

1270

880

1130

1190

330

810

30

3000

110

472

3.999**

46***

30010****

1100

2760

26200

58200

16900

20200

21600

3170

50859

15177

5126

3524

4525

4765

1321

3243

120

12014

441

1890

16

184

120180

4405

11052

104923

233073

67679

80894

86501

12694

* CRC Handbook of Chemistry and Physics, 76th Edition.

** 30ºC : A. Das, K. K. Mahato, T. Chakraborty, J. Chem. Phys., 2001, 114, 8310-8315.

***20ºC : E. P. Fleming, T. C. Fitt, Industrial and Engineering Chemistry, 1950, 42, 2253-2258.

****58ºC : A. Mejía, H. Segura, M. Cartes, J. A. P. Coutinho ̃, J. Chem. Eng. Data, 2012, 57, 2681–2688.

Page 11: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Preparation of toluene and p-xylene vapor phase.

Toluene or p-xylene vapor was prepared by heating the pure solvents in a sealed vial (100 mL). The

vapor concentrations were obtained according to the following equation:

𝐶 =𝜌𝑉𝑉&

C: Vapor concentration (ppm), ρ: density of pure reagents (g/cm3), V: volume of pure reagents

solution (µL), V0: system volume (L).

Table S2 Preparation of toluene vapor

Reagents ρ (g/cm3) C (ppm) V (µL)

toluene

0.8669

0.8669

0.8669

50

20

10

5.8

2.3

1.1

Table S3 Preparation of p-Xylene vapor

Reagents ρ (g/cm3) C (ppm) V (µL)

p-xylene

0.86

0.86

0.86

100

50

20

11.6

5.8

2.3

Page 12: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Time course of sensor (1) response in solid matrices.

The closed atmosphere was designed by using a quartz fluorescence cell in which 1 powder (c.a. 500

µg) paste onto a filter paper (1 cm ×1.5 cm) were placed. The 1 was exposed to one drop (50 µL) of

guest at the bottom of the cell, which was then capped. Soon after the fluorescence was monitored.

Fig. S12 Schematic illustration of experimental setup.

Page 13: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S13 Crystal structure of 1. The ellipsoids are plotted at the 50% probability level, and the space-filling

models are also included.

Fig. S14 Crystal structure of 1⊃toluene. Blue: 1, Light green; toluene. In this crystal structure, the guest

toluene molecules are disordered. The ellipsoids are plotted at the 50% probability level, and the space-filling

models are also included.

Fig. S15 Crystal structure of 1⊃p-xylene. Blue: 1, Yellow; p-xylene. The ellipsoids are plotted at the 50%

probability level, and the space-filling models are also included.

Page 14: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S16 Crystal structure of 1⊃4-fluoroyoluene. Blue: 1, Light blue; 4-fluorotoluene. In this crystal structure,

the guest 4-fluorotoluene molecules are disordered. The ellipsoids are plotted at the 50% probability level, and

the space-filling models are also included.

Fig. S17 Crystal structure of 1⊃anisole. Blue: 1, Orange; anisole. In this crystal structure, the guest anisole

molecules are disordered. The ellipsoids are plotted at the 50% probability level, and the space-filling models

are also included.

Fig. S18 Crystal structure of 2⊃toluene. Dark Blue: 2, Light green; toluene. The ellipsoids are plotted at the

50% probability level, and the space-filling models are also included.

Page 15: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S19 Crystal structure of 2⊃2,5-dimethylfuran. Dark Blue: 2, Brown; 2,5-dimethylfuran. The ellipsoids

are plotted at the 50% probability level, and the space-filling models are also included.

Page 16: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S20 PXRD 1 and 1•guest.

Page 17: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S21 PXRD 2 and 2•guest.

Page 18: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S22 PXRD 3 and 3•guest.

Page 19: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S23 TG of 1⊃toluene.

Fig. S24 TG of 1⊃p-xylene.

Page 20: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S25 TG of 1⊃4-fluorotoluene.

Fig. S26 TG of 1⊃anisole.

Page 21: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S27 TG of 2⊃toluene.

Fig. S28 TG of 2⊃2,5-dimethylfuran.

Page 22: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Table S2 Determination of guest molecules in various inclusion crystals.

No. Weight loss(%) Included guest

molecules

1⊃toluene 12.5 1

1⊃p-xylene 14.5 1

1⊃4-fluorotoluene 14.5 1

1⊃anisole 15.4 1

2⊃toluene 12.2 1

2⊃2,5-dimethylfuran 23.5 2

Fig. S29 TG of 1•toluene.

Page 23: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S30 TG of 1•p-xylene.

Fig. S31 TG of 1•4-fluorotoluene.

Page 24: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S32 TG of 1•anisole.

Page 25: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

(a)

(b)

Fig. S33 Sorption isotherms of 1 toward (a) toluene and (b) benzene vapors. Solid symbols, adsorption; open

symbols, desorption.

0

1

2

3

4

5

0 0.5 1

V (S

TP) /

cm

3 g-1

P / P0

toluene

0

1

2

3

4

5

0 0.5 1

V (S

TP) /

cm

3 g-1

P / P0

benzene

Page 26: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S34 Guest inclusion determined by 1H-NMR.

GF p-xylene sol.001.esp

9 8 7 6 5 4 3 2 1 0Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

Nor

mal

ized

Inte

nsity

0.704.140.904.00

GF p-xylene sol.001.esp

2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Nor

mal

ized

Inte

nsity

0.704.140.90

m-xylene

p-xylene

o-xylene

o-xylene : m-xylene : p-xylene1 : 1 : 4

Page 27: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S35 Comparison of diffuse reflectance spectra of 1 and 4 with vapors.

Page 28: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S36 Comparison of normalized emission spectra of 1 and 4 with vapors.

Page 29: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S37 Photoluminescence quantum yields of 1, 4, 1•guest, and 4•guest. Excitation at 370 nm.

Page 30: 190611 SI NDI-sensor · Fig. S27 TG of 2⊃toluene. Fig. S28 TG of 2⊃2,5-dimethylfuran. Fig. S29 TG of 1•toluene. Fig. S30 TG of 1•p-xylene. Fig. S31 TG of 1•4-fluorotoluene.

Fig. S38 Calculated HOMO-LUMO levels of the guest molecules and 1. DFT calculations were performed

using B3LYP/6-31G(d) level.

Fig. S39 Calculated HOMO-LUMO levels of 1-3 (orbital contour value 0.036). DFT calculations were

performed using B3LYP/6-31G(d) level.