18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of...

20
350 18 INTERNET OF THINGS (IOT) AND INTERNET ENABLED PHYSICAL DEVICES FOR CONSTRUCTION 4.0 Yu-Cheng Lin and Weng-Fong Cheung 18.1 Aims To introduce IoT enabled physical technologies and relative applications in Construction 4.0. To provide related literature reviews for RFID, UAV, WSN, and BIM technologies in Construction 4.0. To survey different advanced IoT applications in Construction 4.0. (such as safety man- agement, structural health monitoring, and smart building). To demonstrate a case study regarding the development of a cyber physical system of applying tunnel construction safety management in Construction 4.0. 18.2 Introduction Industry 4.0 (I4.0), also known as the Fourth Industrial Revolution, was proposed by the German Federal Government in 2011 and incorporated into the “High-Tech Strategy 2020” project. I4.0 focuses on enhancing automation, digitalization, and intelligentization. The con- struction industry 4.0 (C4.0) refers to the spirit of I4.0 and integrates existing engineering technologies, processes, and requirements and then builds a more adaptive, resource-efficient, intelligent construction process. The best solutions are also proposed to meet quality, cost, and safety requirements by analyzing big data. Relevant technologies, such as Cyber-Physical Systems (CPS), Internet of Things (IoT), and Cloud Computing (CC) promote “smart manu- facturing” through the real-time integration of virtual and physical states and the analysis of big data, thus enabling the enhancement or innovation of production and services. To enable CPS to have an awareness of the physical industrial status and to facilitate an object’s com- munication ability, environmental perception and networking capabilities are essential. The Wireless Sensor Network (WSN), one of the key technologies used to support IoT and CPS, comprises a large number of sensor nodes; each node is equipped with sensors to detect physi- cal phenomena in the real world such as temperature, light, and pressure. Building Information Taylor & Francis: Not for Distribution

Transcript of 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of...

Page 1: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

350

18INTERNET OF ThINgS (IOT)

ANd INTERNET ENAblEd PhySICAl dEvICES FOR

CONSTRUCTION 4.0Yu-Cheng Lin and Weng-Fong Cheung

18.1 aims

• To introduce IoT enabled physical technologies and relative applications inConstruction4.0.

• Toprovide related literature reviews forRFID,UAV,WSN, andBIM technologies inConstruction4.0.

• TosurveydifferentadvancedIoTapplicationsinConstruction4.0.(suchassafetyman-agement,structuralhealthmonitoring,andsmartbuilding).

• Todemonstrateacasestudyregarding thedevelopmentofacyberphysicalsystemofapplyingtunnelconstructionsafetymanagementinConstruction4.0.

18.2 Introduction

Industry 4.0 (I4.0), also known as the Fourth Industrial Revolution,was proposed by theGermanFederalGovernmentin2011andincorporatedintothe“High-TechStrategy2020”project.I4.0focusesonenhancingautomation,digitalization,andintelligentization.Thecon-struction industry4.0 (C4.0) refers to the spirit of I4.0 and integrates existingengineeringtechnologies,processes,andrequirementsandthenbuildsamoreadaptive,resource-efficient,intelligentconstructionprocess.Thebest solutionsarealsoproposed tomeetquality,cost,andsafetyrequirementsbyanalyzingbigdata.Relevanttechnologies,suchasCyber-PhysicalSystems(CPS),InternetofThings(IoT),andCloudComputing(CC)promote“smartmanu-facturing”throughthereal-timeintegrationofvirtualandphysicalstatesandtheanalysisofbigdata,thusenablingtheenhancementorinnovationofproductionandservices.ToenableCPStohaveanawarenessofthephysicalindustrialstatusandtofacilitateanobject’scom-municationability,environmentalperceptionandnetworkingcapabilitiesareessential.TheWirelessSensorNetwork(WSN),oneofthekeytechnologiesusedtosupportIoTandCPS,comprisesalargenumberofsensornodes;eachnodeisequippedwithsensorstodetectphysi-calphenomenaintherealworldsuchastemperature,light,andpressure.BuildingInformation

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 2: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

351

IoT and enabled devices for C4.0

Modeling(BIM)promptsanevolutionalchangeindigitalizationandinformatizationintheconstruction industry, integratingadifferentkindofbuilding information intoa3Dmodeland enhancing themanagement andproductivity in a constructionproject.The integrationofWSNandBIMcanbeusedtodevelopCPSconformingtoConstruction4.0(C4.0)foraconstructionproject.TheuseofWSNalsosupportsbigdatacollectionforapplicationsinbigdataanalyticsandCC.

ThischapterintroducesIoTenabledphysicaltechnologiesandtheirapplicationsinCon-struction 4.0. Section 18.3 introduces the relevant development and reviews of IoT, I4.0,andC4.0.Section18.4introducestheIoTandrelatedtechnologiesconcerningconstruction,whichincluderadio-frequencyidentification(RFID),WSN,andBIM,anddescribeshowtheyachievethefunctionsofCPS.Section18.5surveysIoTapplicationsinvariousdomainsoftheconstructionindustry.Section18.6providesacasestudyofinfrastructuresafetymanagementanddetailstheprocessfordevelopingtheCPSsystem,andthefinalsectionpresentsthecon-clusionanddiscussion.

18.3 Background

Industrial 4.0 (I4.0) is described as theFourth IndustrialRevolution; the concept of I4.0wasfirstintroducedattheHannoverFairinGermanyin2011.Then,theGermanAcademyofScienceandEngineeringfoundedaworkinggroup to researchrelatedknowledge,andthe relevant resultswere referred to as principles of governance.Other countries formu-latedrelatedconceptpolicies;forexample,theUnitedStates(US)developedthe“AdvancedManufacturingPartnership”(AMP)andChinaimplemented“MadeinChina2025.”Digital-izationandintelligentizationofindustrycanenhancetheproductivityandcompetitivenessofChina.

Many scholars have defined I4.0 fromdifferent research categories.TheConsortium IIFactSheet(ConsortiumII2013)definesI4.0as“theintegrationofcomplexphysicalmachin-eryanddeviceswithnetworkedsensorsandsoftware,usedtopredict,controlandplanforbetterbusinessandsocietaloutcomes.”Henningetal.(2013)expoundedI4.0as“anewlevelofvaluechainorganizationandmanagementacrossthelifecycleofproducts.”Hermannetal. (2015) defined I4.0 as “a collective term for technologies and concepts of value chainorganization.”During themodular structured smart factoriesof I4.0,CPScreatesavirtualcopyofthephysicalproductionsystemandmakesdecentralizeddecisions.Thekeyfunda-mentalprinciplesofI4.0includeserviceorientation,intelligentproduction,interoperability,Cyber-PhysicalProductionSystems(CPPS)providingcloud/bigdataalgorithmsandanalysis,andcommunicationsecurity(Vogel-Heuseretal.2016).I4.0facilitatesinterconnectionandcomputerizationintraditionalindustries,whichmakesanautomaticandflexibleadaptationoftheproductionchainandprovidesnewtypesofservicesandbusinessmodelsofinteractioninthevaluechain(Lu2017).

TheintegralresultindicatesthattheI4.0canbesummarizedasadigitalized,smart,opti-mized,service-oriented,andinteroperableproduction,whichcorrelateswithcomputerization,CPS,IoT,bigdata,andhightechnologies.

I4.0promotesimplementingtheemergingconceptsofCPSandIoTintothemanufacturingsystem,whichenablesthedesignandcreationofsmartfactoriesandproductionprocesses.ACPSisdefinedas“amechanismthatiscontrolledormonitoredbycomputer-basedalgorithms,tightlyintegratedwiththeInternetanditsusers”(Monostorietal.2016).Therefore,aCPSisasystemforcollaborationbetweencomputationalentitiesthatareinintensiveconnectionwith

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 3: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

352

thesurroundingphysicalworldanditsongoingprocesses,providingandusing,atthesametime,data-accessinganddataprocessingservicesavailableontheinternet(Monostorietal.2016).InCPS,physicalandsoftwarecomponentsaredeeplyintertwined,eachoperatingondifferentspatialandtemporalscales,exhibitingmultipleanddistinctbehavioralmodalities,andinteractingwitheachotherinmanywaysthatchangewithcontext(NSF2010).Addition-ally,thetechnicaldesignandimplementationofCPScanrefertothe“5C”architecture,whichincludes thefollowingfive levelsofcontentandconstructionmodes: thesmartconnectionlevel, thedata-to-informationconversionlevel, thecyberlevel, thecognitionlevel,andtheconfigurationlevel(Leeetal.2015).

Integration and interoperability are two key factors in I4.0 (Chen et al. 2008; RomeroandVernadat2016).Interoperabilityis“theabilityoftwosystemstounderstandeachotherandtousefunctionalityofoneanother,”whichrepresents thecapabilityof twosystemstoexchangedataandshareinformationandknowledge(IDABC2005).ThefourlevelsofthearchitectureofI4.0interoperabilityincludeoperational(organizational),systematical(appli-cable), technical, and semantic interoperability. Interoperabilitymakes I4.0 andCPSmoreproductiveandprovidescostsavings.Specifically,theoperationalinteroperabilityillustratesthegeneral structures of concepts, standards, languages, and relationshipswithinCPSandI4.0.Withtheintegrationofcomputerandnetworksystems,I4.0achievesseamlesscoopera-tionacrossorganizationsandindustries.

18.4 The Iot technologies

18.4.1 IoT introduction

KevinAshton devised the term “IoT” in 1999,with IoT adopting theRFID on supplychainmonitoringunder theElectronicProductCode (EPC)globalarchitecture (Ashton2009). In 2005, the International Telecommunication Union (ITU) published a reportnamed “ITU InternetReports 2005:The Internet ofThings” (ITU2005).According tothe latest definitionprovidedby the ITU (2012), “IoT is aglobal infrastructure for theinformationsocietyenablingadvancedservicesbyinterconnecting(physicalandvirtual)things based on, existing and evolving, interoperable information and communicationtechnologies.”The InternationalOrganization forStandardization (ISO2018) providedthefollowing,similar,definition:“aninfrastructureofinterconnectedobjects,people,sys-temsandinformationresourcestogetherwithintelligentservicestoallowthemtohandleinformationofthephysicalandthevirtualworldandreact.”AccordingtoIERC(2012),IoTis“adynamicglobalnetworkinfrastructurewithself-configuringcapabilitiesbasedonstandardandinteroperablecommunicationprotocolswherephysicalandvirtualthingshaveidentities,physicalattributes,andvirtualpersonalityanduseintelligentinterfaces,andareseamlesslyintegratedintotheinformation.”

Therefore,IoTcanbeacombinationofphysicalandvirtualstates,whichcomprisemanyactivephysicalthingssuchassensors,actuators,cloudservices,communicationandproto-cols,andtheenterpriseanduserwithmanyspecificarchitectures,thusprovidingaframeworkand relatedsolutions for IoTsystems. In recentyears,a rapid increase insensorandcom-municationtechnologieshaspromotedthegrowthofIoT,withmoreandmoredevicesandsensors beingdeployed in the construction and industrial sectors, including transportation,safety,health,smartbuilding,andautomotivesectors.Thenumberofsensorapplicationsisincreasingatanexponentialrate,anditisestimatedthattherewillbeover50billionconnecteddevicesby2020(Gubbietal.2013).

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 4: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

353

IoT and enabled devices for C4.0

18.4.2 Enabling technologies for IoT

TheessenceoftheIoTistofacilitatethesmartnessandtheconnectionofthings;therefore,variouskindsoftechnologiesareusedtohelptoimprovethemanagementperformanceinthevirtualandphysicalworld.FortheuseofbionicsintheIoT,themaintechnologiescontainperceptionandcommunication.Inrecentyears,manyadvancedsensorapplicationshavebeendevelopedtogiveobjectsacapabilitytoperceivelight,temperature,andmovementsensorsandRFID.Thesesensorsgivetheobjectasensingabilitysothatitcanunderstanditsphysicalcondition,or itcan recognizeorbe recognized, just like thevisionandhearingperceptionof a human.Moreover, as network and communication technologies achieve a connectionbetweenthings,bigdatacanbecollectedautomaticallyandanalyzed,thusenablingthethingstoexchange informationwitheachother,evenmaking judgementsand reacting.Themainrepresentativetechnologiesareintroducedinthefollowingsection.

18.4.2.1 RFID

RFIDistheearliesttechnologyoftheIoT,whichisusedtoprovideuniqueidentificationofobjects (Ashton2009). In1999, theMITAuto IDcenterdefined theoriginal shapeof the“InternetofThings”asbeingbasedonthecomputerinternet,usingRFIDandwirelessdatatechnologiesforcommunication,andconstructinganIoTthatcoverseverythingintheworldtoenableautomaticidentificationofitemsandsharingofinformation(Sarmaetal.2000).

RFID uses electromagnetic fields to automatically identify and track tags attached toobjects.The tagscontainelectronicallystored information (Roberts2006).A typicalRFIDsystemcomprisesthreecomponents:anantennaorcoil,atransceiver(withadecoder),andatransponder(RFtag)electronicallyprogrammedwithuniqueinformation(Domdouzisetal.2007).Duringoperation,theradiosignalsareemittedtothetagbythetransceiverthroughtheantenna;thetagisthenactivatedandthedataoninternalchipcanberead(orwritten)sothattheobjectcanberecognized.

Ingeneral,thereadingdistanceofRFIDreachesabout100feetdependingonthepoweroutputandtheradiofrequency.Manytagscanbereadsimultaneouslyamongtheradiocov-erageandprocessedbythecomputersystem.RFIDtagscanbeclassifiedintotwocategoriesdependingonthedatastoragecapability:Read-OnlyandRead/WriteTags.MostRead-Onlytagsdonothaveadatastoragefunctionandonlyhaveauniquepre-writtenIDforidentifyingtheattachedobject.

Basedonthefrequencyband,RFIDsystemsincludeLowFrequency(LF)systems,HighFrequency(HF)systems,andUltraHighFrequency(UHF)systems(Fernández-Caramésetal.2017),LFRFIDoperatesat125kHzandreadingrangeisabout10cm,whichisappliedinindustrialidentificationandautomation;HFRFIDoperatesat13.56kHzandisabout1mreadingrange,andisusedintickingandpayment;UHFoperatesat860–960MHzand2.45GHz,andisabout10mreadingrange,mostlyappliedonlogisticsandinventorymanagement(Fernández-Caramésetal.2017).RFIDtagscanalsobeclassifiedas“Active”and“Passive.”PassivetagsrelyontheelectromagneticfieldgeneratedbytheRFIDreaderforelectricalpowerandtobeactivated.Activetagsareequippedwithbuilt-inbatteries,whichincreasetheread-ingrange(Domdouzisetal.2007).TheEPCofRFIDprovidesauniqueidentificationoftheobject,whichalsosatisfiestherecognizingrequirementofbigdataintheIoTworld.RFIDhasbeensuccessfullyappliedinmanyIoTapplications,suchassmartfactoriesandmanufacturing,supplychainsandlogistics,vehicleandtrafficmetrosystems,aviationandtransportation,andpaymenttransactions,andtheapplicationsareconstantlybeingextendedanddeveloped.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 5: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

354

18.4.2.2 WSN

TheWSNisoneofthekeyIoTapplicationtechnologies,whichenablesthethingstohavecapabilitiesinperceptionandinteraction.AWSNsystemtypicallycompriseswirelessfunc-tionalsensordevicesthatcansmartlycollectandcommunicateenvironmentalinformationandevenjudgeandtakeaction.

TheapplicationofWSNcontainssensorandnetworktechnologies.ThegeneralapplicationwirelessnetworkspecificationincludesWi-Fi,Bluetooth,andZigBee,whicheachhavetheirfeaturesandapplications, suchasWi-Fibasedon the2.4GHzfrequencybandandspeedsreaching11Mbps.Bluetoothisanother2.4GHzwirelessapplicationforpersonalelectronicdeviceservice,whileZigBeefeatureslowspeed,cost,andlowpowerconsumption.Table18.1comparesthewirelessstandardsforWSNs.

AtypicalWSNnodeismainlycomposedoffourcomponents:asensingunit,aprocess-ingunit, a transceiver unit, and a power unit. (1)The sensingunit includes twoparts: asensorandAnalog-to-DigitalConverters(ADC).Theformercollectssensedenvironmentalinformationandconvertsthisinformationintoananalogsignal,andthelatterconvertsthesignalintoadigitalsignalforprocessing.(2)Theprocessingunitincludesthestorageandprocessorcomponents.Theprocessorwithdrawsdatafromstorage,interpretsthepacketofwirelesssignal,coordinateswiththeneighborhoodnodes,andthenhandlesthedatatrans-ferringtask.(3)Thetransceiverunittransmitsdatathrougharadiosignalandsendsittothehost.(4)Thepowersupplyunitprovidesregularpowerfortheoperationofthesensornode(Akyildizetal.2002).

AsmanyIOTdevicesareusuallysetonapersonormovingobjectandtheyoperateindi-vidually,itisimportanttoknowhowtosavepowerandmaintainsustainableoperationintheWSNsystemdesign.Another important issue in the IoTsystemdesign is the transmissionabilitybecausethedistancebetweenthenodesandtheconfigurationofnetworkinfluencesthedatacommunicationefficiencyandtherequiredoperatingpower.Concerningthetransmissiondistanceandenergysavings,whenthesensornodeistoofarawayfromthehost,theWSNneedstoestablishanetworkroutingprotocolbyamultiple-hoprelayofnodes.Thetransmis-siondistancecanbeextendedbyusingrelaysofthenodes.

In termsofnetworkarchitecture, theWSNnetwork typicallycomprises three roles: thecoordinator, router,andenddevice.Thecoordinatoractsas thehostand is responsible for

Table 18.1 ComparisonbetweenWi-Fi,Bluetooth,andZigBee

Wi-Fi Bluetooth ZigBee

Standard IEEE802.11b IEEE802.15.1 IEEE802.15.4Frequency 2.4G 2.4G 2.4G/868/915MHzRange(m) 100 10 50Datarate 11–54Mbps 3–10Mbps 250kbpsNodespermaster 32 7 65,535Topologies Star Star Star,Mesh,TreeBatterylife Hours 1week >1yearFeatures Speed Convenience Reliability,Lowcost&

LowpowerApplication Video,audio,pictures,

filesAudio,graphics,pictures,files

Lowdatacommunication

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 6: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

355

IoT and enabled devices for C4.0

networklaunching,coordinating,anddatacollection.Therouterrelaystheradiosignalandtransfersit tothenextnode,whichextendstheWSNcoverageanddetectiondistance.Theenddeviceisequippedwithvariousfunctionalsensorsandisresponsibleformeasuringthesurroundingconditionsandreturningthesensedinformation(Farahani2011).

AstheWSNisaffectedbyfactorsofcircumstances,designfunction,andhardware,thefol-lowingitemsshouldbeconsideredinproposedWSNsystems(Akyildizetal.2002):(1)faulttoleranceofthenetwork,(2)networkscalability,(3)hardwareprice,(4)hardwareconstraintsofthesensor,(5)networktopology,(6)operatingenvironment,(7)transmissionmedia,and(8)powerconsumption.

Withinthedevelopingtechnologiesofsensors,networks,andsemiconductors,theappli-cationofWSNwillbecomedeeperandmorediversified,thusfacilitatingmorecompleteIoTsystems.Additionally,whenWSNcombinesbigdataandcloudcomputing,theapplications,andtheinfluencesofIoTarealmostinfinite.

18.4.2.3 BIM

BIM brings the revolution of digitalization and informatization to the entire constructionindustry,digitalizingandparameterizingdifferentbuildinginformationandvisuallyintegrat-ingthisinformationintoa3Dmodel.BIMintegratesmodels,databases,assets,andmaterialandspatial relation information,providingcapabilities inconstructionsimulation,progressmanagement,costestimation,andenergyanalysis.BIMiswidelyutilizedintheArchitecture,Engineering&Construction(AEC)domain(Cerovsek2011),anditenhancesnotonlyplan-ning,design,construction,operation,andmaintenance(O&M)processes,butalsotheentirebuildingprojectlifecycle(Eastmanetal.2011).BIMisdefinedbytheUSNationalInstituteofBuildingSciences(NIBS)as“adigitalrepresentationofphysicalandfunctionalcharacter-isticsofafacility”(NIBS,2019).TheISO(2016)definesBIMasa“shareddigitalrepresenta-tionofphysicalandfunctionalcharacteristicsofanybuiltobject(includingbuildings,bridges,roads,etc.),whichformsareliablebasisfordecisions.”

Duringtheoperationphase,manyoperatingfacilities,laboractivities,andconditionsneedtobecontrolledandmanaged.Thetraditionalmonitoringmethodofusingahumanishighlylaborious,anditishardtomeetthereal-timemonitoringrequirement.Inrecentyears,asIoTtechnologieshavematured,manyofthesensorapplicationsenabletheinfrastructuretohaveabilitiesinperceptionandcommunication(Haines2016),whichpromotesBIMasapotentialdevelopmentinO&M.Inpractice,IoTdevicesprovidethestatusinformationofthings,andtheirpositional informationcanbe linkedwith theBIMmodelso that thespatial relationsandreal-timestatusescanbedisplayedsimultaneously.BIMprovidesa frameworkfor theIoT information tobe integratedandanalyzed inaway that ismeaningful to theO&Mofbuildingmanagement.Moreover, the integration of IoT information andBIMmodels canfacilitatetheCPSforthemanagementoftheconstructionproject.Thecollectedhugeamountofdataalsoformsabigdataenvironmentthatprovidessufficientinformationforanalyticsandimprovement.

TheintegrationofBIMandtheIoTestablishesavirtualreproductionofbuildingprojectsinwhichIoTprovidesthedynamicinformationofpeople,facilities,assets,andstatusofthebuilding, andBIMprovides the framework for IoT information that canbe systematicallyintegratedandspatiallydemonstrated.ThecombinationofIoTandBIMprovidesanactivebuildingmodelandcreatesaCPSapplicationof thebuildingproject; thiscombinationnotonly achieves theoptimal operation andmanagementbut also enhances the applicationofsmartbuildings.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 7: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

356

18.5 applications of Iot in construction

Inconstruction,asmanyof theworkers,equipment,andmaterialsarefrequentlymovedinandoutofthesite,varioussituations,suchasconditionsofthemachines,thenumberofworkers,andtheriskyenvironmentalhazards,needtobemasteredandcontrolled.Thedifferentmonitoringtaskswillincuraheavylabordutyifexecutedbyahuman.However,if theIoTapplicationscanbeintroduced, theycanbeadvantageouslyusedforobtainingvarioussiteinformation,tomonitorthestatusesoftheworkers,andtojudgeandexecuteemergency actions automatically in the event of an emergency. These applications willgreatlyincreasemanagementefficiencyandeffectiveness,whileimprovingthesiteenvi-ronmentandhumansafety.ManyoftheIoTapplicationsinconstructionareintroducedinthefollowingsection.

18.5.1 Surveying, mapping, and security

In recent years, the unmanned aerial vehicles (UAVs) have been used and appliedwidelyduetopricedeclinesandadvancesinflightcontrolsoftware.Photoandreal-timedatacap-turetechnologyfromtheskycanbeappliedtomanyconstructiondomainsformanagementimprovement.CommonUAVorUAVS(UAVsystems)designscanbeclassifiedbytheirflightmechanismaseitherfixed-wing(aircraft),rotor(helicopter),ormulti-rotoraircraft,andtheyareusuallyequippedwithahigh-resolutioncameraandGlobalPositioningSystem(GPS).Themeasuringprecisioncanreachafewcentimetersandbecontrolledbycellphone.Atpresent,manyUAVapplicationsarequitematureandhavebeenappliedinagricultural,mining,con-struction,ecological,andenvironmentaldomains.Severalrelevantapplicationsaredescribedasfollows:(1)Progresscontrolofconstructionprojects:inspectionandmonitoringofcon-structionisessentialforassessingsiteconditions.Thelargeareaandprecisionimagesenabletheadministratortounderstandtheprogressoftheprojectandidentifydisparitiesbetweentheas-builtandas-plannedprogresses.(2)Investigationandrescues:therapidscanningcapabil-ityofUAVscanquicklyperforminvestigationtasksafternaturaldisasters,suchastyphoonsandearthquakes,insteadofhavinghumansenterthedangerousareas,andtheycanquicklycollectdisasterinformationandprovidereferenceinformation,thussignificantlyimprovingtheefficiencyandsafetyofrescuetasks.(3)Surveyingandmeasuring:UAVequippedwithhigh-resolutionlensescancapturehighlydetailedimagesandperformaccuratedistancemeas-urementsoflargeareasinashortamountoftime.Additionally,theinformationcanbecon-vertedintospatialsurfacemodelsfortopographicmapping,volumecalculations,andevenasa3DdigitalBIMmodel.(4)Safetymanagement:UAVisadvantageousinmonitoringthefieldandpersonnelactivitiesinconstructionareas,controllingthevariousunsafeconditionsandprovidingearlywarnings.Inemergencyaccidents,UAVscanquicklydeterminetheaccidentlocationandtheinjuredperson,thusenablinganimmediaterescueactionandimprovingthesafetymanagementoftheconstructionsite.

In recent years, many scholars have researched the innovative applications of UAV.Moonetal.(2019)proposedamethodforgeneratingandmerginghybridpointclouddataacquired from laser scanning andUAV based imaging. Inzerillo et al. (2018) proposedaUAVbasedStructure fromMotion (SfM) technique,which theyapplied to roadpave-mentdetection,assessingthepotentialforimprovingtheautomationandreliabilityofdis-tress detection.Morgenthal et al. (2019) presented a coherent framework for automatedunmanned aircraft system-based inspections of large bridges to facilitate an automatedconditionassessment.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 8: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

357

IoT and enabled devices for C4.0

18.5.2 Safety management

Owingtothereducedsizeandlong-termoperationabilities,IoTdevicesareincreasinglybeing devoted to safetymanagement.Many of theWSN devices can be set at differentconstruction site locations, where they can be used tomonitor risk factors such as fire,smog,vibration,andhighnoise.Inanemergencyevent,thesafetydevicecanbeactivatedimmediately,alertingthesiteworkerstoevacuate,andcaneliminateanyhazardsautomat-ically,thuspreventingaseriousdisaster.Moreover,thesensororRFIDcanbeembeddedintopersonalwearingdevicessuchashelmets,vests,orotheritems,toidentifyandlocatetheworkerandtodeterminetheiractionandvitalstatus.Whendetectinganabnormalcon-dition,theIoTdeviceswillalert,providefeedback,andrequesthelpimmediately.TheIoTenablesthesafetyadministrationtoestablishthestatusofthewholesiteandreacttorisksinrealtime.

As applications of the IoT in safetymanagement are becoming increasingly extensive,manyscholarshavealreadyconductedspecificresearchstudies.Dingetal.(2013)presentedareal-timesafetyearlywarningsystemtopreventaccidentsandimprovesafetymanagementin underground construction based on IoT technology.The systemhas been validated andverifiedthroughareal-worldapplicationatthecrosspassageconstructionsiteintheYangtzeRiverbedMetroTunnelproject inChina.Valeroetal.(2017)proposedanovelsystemanddataprocessingframeworktodeliverintuitiveandunderstandablemotion-relatedinformationaboutworkersusingWSN.

18.5.3 Supply chain and facilities management

The practice of C4.0 delivers construction projects faster andmore flexibly and provideshigherqualityandreducedcosts,inaccordancewiththeleanconstructionapproach,whichattemptstoimproveconstructionprocessesataminimumcostandmaximumvalue.Inaddi-tion,supplychainmanagement(SCM)isanimportant issuefor leanconstructionmanage-ment.The traditionalSCMandlogisticsrelymainlyonmanualmanagement, inwhich theefficiencyislowanditishardtotrackandmanageassetsinreal-time,andthuscannotmeettherequirementforSCM.

Inthemanagementofthematerialsandequipmentinconstruction,thesensorsandRFIDtagscanhelptoidentifyitemstatusandstockquantity.Furthermore,employeescanquicklycollect information about thewarehousing and consummation status or check the deliveryscheduleofthematerialbyscanningtheRFIDtags.Thesystemcanalsoautomaticallycal-culate the stockand issuenotifications forpurchasingwhen inventory is low,whichmuchimprovestheefficiencyofSCM.Additionally,thesensorscanmonitortheoperatingcondi-tionsofequipment,controlabnormalsituations,andissuealertsfortimelyrepairormainte-nance inadvance.The relevant IoTapplication reducesworkflowdelaysandenhances theefficiencyof siteoperations.Many researchershaveproven the effectivenessofusing IoTapplications in lean construction and SCM.Hinkka andTätilä (2013) presented an RFIDtrackingimplementationmodelfortechnicaltradeandconstructionindustries.Theirapproachforbuildingafeasiblemodelwasbuiltbasedonasurveyof16manufacturingandwholesalercompany interviews.Xuet al. (2018)proposedan integratedcloud-based IoTplatformbyexploiting theconceptofcloudasset,whichenabledenterprises toadopt IoT technologieseconomicallyandflexibly.Koetal.(2016)proposedacost-effectivematerialsmanagementandtrackingsystembasedonacloud-computingserviceintegratedwithRFIDforautomatedtrackingwithubiquitousaccess.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 9: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

358

18.5.4 Structural health monitoring (SHM)

Thehealthofbuildingsandinfrastructureisrelevanttothesafetyoftheoccupantsandthepopulation;theagingofmaterialsandstructuresmayleadtocrasheventsanddisasters.SHMhasbecomean important issue inbuildingoperationandmaintenance.Manyphysicalandenvironmentalconditionsofstructures,suchasvibrationanddeformation,tensileandcom-pressivestresses,andtemperatureandwindspeed,canbemonitoredcontinuouslyusingIoTorWSNdevices.Thereal-timeandlong-termobservedconditionscouldbewirelesslytrans-ferredandcollectedforanalysis.Theinformationalsohelpstocheckthedamageofstructuresafterearthquakesor toestimate thestructurehealthand itsservice life, thus increasingthebuilding’ssafetyandreducingmaintenancecosts.

Many studies have investigated the use of IoT applications for building and structuremonitoring.Baeetal.(2013)reportedtheresultsofanexperimentalevaluationofWSNper-formanceintheobstructedenvironmentofabridgestructure.Parketal.(2018)presentedareal-timeSHM technique for a super tall buildingunder construction (LotteWorldTower,LWT) toproposeavisualmodal identificationmethod to identifymodeshapesanddamp-ingratiosbasedonmodalresponsesfromthemonitoringsystem.Toreducetherandomnessanduncertaintyunderlying the structural safety risk analysis inoperational tunnels,Liu etal. (2018) developed a novel hybrid approach to perform a global sensitivity analysis andanalyze the input-outputcausal relationshipsof thestructuralsafetyrisk, thusreducing theepistemicuncertaintyintunnelstructuralsafetymanagement.Hasnietal.(2018)presentedanovelapproachtodetectdamageinsteelframesusingahybridnetworkofpiezoelectricstrainandaccelerationsensors.

18.5.5 Smart building applications

ManyIoTapplicationshavebeenimplementedinintelligentbuildingsforairconditioning,electromechanicalcontrol, security,burglaryalarmsystems,andfireanddisasterpreven-tionsystems.Thesystemsareallconnectedbyanetwork,and theuserscanmonitor theoperationofdevicesfromanywhereintheworld.Inasmartbuilding,theoperatingstatusofvarioussystemsarecollectedandanalyzed.TheIoTenablesthesystemstonotonlybecontrolled but to also achieve a better balance between the systems,which bringsmorecomfort and safety for occupants and enhances theworking efficiency and productivity.Additionally, considering the impactofglobalwarmingandextremeweather conditions,buildingenergyefficiencyandgreenfunctionsisbecomingincreasinglyimportant.Insmartbuildings,theequipmentlinkedwithsensorsandcommunicationdevicesenablestheoper-ationconditionstobemonitoredinrealtimeandcollectedinthecloud.Thevariousoper-atinginformation,suchastheuseofelevators,conferencerooms,andairconditioners,isthenanalyzed.Throughtheanalysis,thesmartbuildingcandeterminetheoptimaloperationmode,suchascontrollingtheairconditioningtemperaturebasedontheambienttemperatureandthenumberofoccupants,whichreducestheenergyconsumptionoftheequipmentandachievesenergysavings.Inrecentyears,severalresearchershaveinvestigatedtheuseofIoTapplicationsforsmartbuildings.Rashidetal.(2019)presentedanintuitivepoint-and-clickframework to control electricalfixtures in a smart built environmentusing anultra-wideband (UWB)-based indoor positioning system. Jia et al. (2019) investigated the state-of-the-artprojectsandadoptionsofIoTfordevelopingsmartbuildingswithinacademicandindustrialcontexts.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 10: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

359

IoT and enabled devices for C4.0

The applications of IoT are therefore widely applied in construction, architecture, andinfrastructure,andforenergysaving,andtheutilizationisnotonlywidebutalsodeep.Asanyobject,equipment,machine,andevenpersonnelcanbeconnected,IoTapplicationsgreatlyreducethelaborneededformonitoringandthusimprovemanagementandsafety.TheIoTbringsenormouspotentialandgreatencouragementforfutureapplicationsintheconstructionindustry,limitedonlybyourimagination.

18.6 Case study

18.6.1 Introduction

ThefollowingcasestudydemonstrateshowtodevelopaCPSinthesafetymanagementofaninfrastructurethatmonitorshazardousgasandenvironmentalconditionsusingIoTdevices.Asmanyconstructionsitesarelocatedundergroundorinconfinedspaces,theenvironmentusuallyhasahightemperatureandhumidity,andmayalsocontainhazardousgases,suchasflammablegases thatcouldcauseaseriousexplosionorcarbonmonoxide(CO), renderingindividualsunconscious.Long-termmonitoringworkusually requiresheavy labor,and thedifferentlocationsarehardtomonitorsimultaneously,thusresultinginaninabilitytoeffec-tivelymonitorworkersandpreventaccidents.

Inthisstudy,manyfunctionalWSNsensornodes(IoTdevices)wereplacedinanunder-groundtunnelsite,whichcollectedthehazardousgas,temperature,andhumidityinformationoftheworkingenvironment.ThecollecteddataweretransferredbacktothemonitoringcenterusingaWSNself-organizednetwork.Whendetectingtheabnormalgascondition,thenodewithacontrolfunctionwouldautomaticallystartupaventilatortodispersehazardousgases.ThecollectedinformationwasintegratedintoaBIMmodel,withthehazardousgas,temper-ature,andhumidityconditionsdisplayedbyanactivecolorchangingfrombluetoredinrealtimetoindicatetheriskdegreeofthelocationbeingmonitored.Intheeventofanemergency,theadministratorcould remotelyunderstand the riskat themonitoring locationsandmakeoptimaldecisionsfortherescuetask.

18.6.2 System analysis and design

Toestablish theCPSof theprojectand linkwith thephysicalconditions, twosub-systemswereintegratedincludetheWSNandthedigitalinformationmodel.ThemodelandrelatedcomponentswereestablishedusingBIMsoftware,whichvisuallypresentstheCPSandloca-tional conditions. For data collection, aWSN systemcomprisingvarious functional nodeswithsensingandcommunicationcapabilitieswasdevelopedtocollectthesiteenvironmentalinformation.TheCPScanbeestablishedbyintegratingthesub-systems,andtherealriskandenvironmentalconditionswerelinkedanddemonstratedinrealtime.

Experts and users were interviewed to understand the existing safety management ofhazardousgasesonconstructionsitesandthepracticalproblemsencountered.Thefindingsrevealedseveralrequirements,whichincludedenhancingtheworkers’safety;implementinglong-term,multi-pointdetectionand recording;enablingconvenient installationandpowersavings;andusinganexpandableandintelligentfunctiondesign.Sincemostofthecurrentgasdetectiontasksonconstructionsiteswereexecutedbypersonalhand-helddetectors,whichwasinefficientandhighlyriskyforstaff,thisstudyproposedusingtheWSNandaremoteCPStoimprovethecurrentsituation.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 11: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

360

Amulti-tierarchitectureanalysismethodwasadoptedtoanalyzetheproposedsystem,withdifferent entities classifiedby their attributes, thus clarifying the relationshipsbetween thesub-systemsandmodules.Theclassificationincludes(1)thepresentationlayer,(2)theappli-cationlayer,(3)thedatabaselayer,and(4)thesensorandcommunicationlayers.TheoverallCPS system, including the sensors, the digitalmodel, and data processing,was integratedusingMicrosoftC#applications.Figure18.1showsthemulti-tierarchitectureanddataflowofthesystem.Table18.2providesdescriptionsofeachlayer.

18.6.3 System development

18.6.3.1 WSN sub-system development

TheMicrosoftGadgeteerembeddedsystem(.NETMF)wasadoptedasthehardwareframe-workof theWSNnode,whichwasaSystem-on-Chip (SoC)designedsystemproposed tobeequippedwithgas, temperature,humiditysensingcomponents,andtheZigBeewirelessnetworkmodule.EachWSNnodewas designed for a specific role, and the different typeoffunctionalWSNnodescomprised theWSNsystemby interactiveradiocommunication.Thefollowingfourtypesofwirelessnodeswereproposed:sensornode,router,coordinator,andcontrolnode.Inthenetworkconfiguration,themeshtypewasdesignedasthenetwork

Figure 18.1 Multi-tierarchitectureanalysisofthesystem

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 12: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

361

IoT and enabled devices for C4.0

topology,whichenablestheWSNdetectionrangetobeexpandedandre-linksthenetworkautomaticallywhenanynodefails.Table18.3liststhedevelopedWSNnodesandtheirfunc-tions.Figure18.2showsthedevelopedsensornode.

TheWSNsystemcomprisesmanydesignedsmartfunctions.Inthemonitoringtask,whenthehazardousgasor abnormal conditions aredetected in the site, the sensor node imme-diatelytellsthecontrolnodetoswitchontheflashalarmandventilation,andremovesthehazardousgas automatically.The alarmgives the siteworkers early notice to retreat, andthusavoidsaseriousaccidentcausedbygasaccumulation.Meanwhile,innormalstatus,thesensornoderecordsdataatalowerfrequencyof3seconds/datapoint,whichenablespowersavingandlongeroperation.Oncethehazardousgasisdetected,thefrequencywillincreaseto0.3second/datapoint,whichkeepsdetailedrecordsandprovidesareferenceforfurtherinvestigations.

Table 18.2 Thedescriptionsofeachlayer

Layer Description Operation

PresentationLayer 1. Real-timedatacollectionanddisplay

2. TheActivemodelofCPSforsafetymanagement

3. CPSdevelopmentanduserinterfacedesign

1. Tohandleanddisplaythereal-timedatareturnedbyWSNnode(digitsandcurve).

2. ToestablishtheBIMmodelandthestatusindictingcomponentfordisplay.

3. TodeveloptheCPSandrelevantuserinterfacebyintegratingBIMmodelandWSNinformation.

Sensing&CommunicationLayer

1. AWSNnetworksystemconsistingwirelesssensornodes

2. Collectionoflocationalhazardousgasandenvironmentalconditions

3. TheWSNsmartfunctiondesign

1. TodeveloptheWSNwithvariousfunctionalnodesincluding(a)Sensornode.(b)Router.(c)Controlnode.(d)Coordinator.

2. ToproposeZigBee-basedWSNforgas,temperatureandhumiditydetectionwithin“mesh”typetopology.

3. Todesignthesmartfunctions(powersaving,emergencyjudgeandhazardsremoving).

ApplicationLayer 1. ConstructionWSNnodesandfunctiondesign

2. EstablishmentandcontroloftheBIMmodel

3. Systemintegration

1. TodesigntherelevantWSNfunctiononthesinglechipsystem(.NetMF).

2. Toestablish,modifythemodelanddynamiccolorcontrol(BIMsoftware).

3. Tointegrateoverallsystemandinformationprocessing(MicrosoftC#).

DataLayer 1. Thedatastandardizationandflowcontrol

2. BIMmodelforspatialandconditionalinformationintegration

3. Databaseforsensorandsystemdatastorage

1. Todesignandhandlethedataflowincludingcollection,transferandintegration.

2. Tobuildadigitalmodeltocorrespondwithstructure,assets,andmonitoringlocationofthesite.

3. Toestablishthedatabaseforstorageofmeasuringrecordsanddataprocessing.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 13: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Figure 18.2 Thedevelopedsensornode(expanded)

Table 18.3 DevelopedWSNnodesanditsfunctions

Type of node Function

1 Coordinator (1) Responsibleforlaunchingthenetwork(2) TocoordinatetheaddressassignmentofallWSN

nodes(3) Tobeahostandcollectthedatafromallsensor

nodes2 Sensornode (1) Tomonitorthehazardousgas,temperatureand

humidityinformationineachlocationofconstructionsite

(2) Toaskthecontrolnodetostartsafetydeviceandremovehazardswhendetectstheabnormality

(3) Torecordthedetaildatainemergencysituation3 Router (1) Torelay&transferWSNtransmissionsignal,

extendscommunicationdistanceandnetworkcoveringrange.

4 Controlnode (1) Connectionwithsafetydevices(flash,alarm,andventilator),activatedinemergentsituation

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 14: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

363

IoT and enabled devices for C4.0

18.6.3.2 BIM integration

Thedigitalmodelprovidesthevisualdemonstrationofthephysicalconstructionsite,whichestablishesadimensionalframeworkforCPSsothatthemeasuringinformationcanbevis-uallydisplayed.TheBIMmodelwasbuiltbyAutodeskRevitandconvertedtoaNavisworksfile.Todisplaythestatusofmonitoringlocations,spatialcomponentswerecreatedtoindi-catethedifferentconditions;meanwhile,theoutsideshieldofthemodelshouldbeproperlyremovedtoenabletheinsideconditionalcomponenttobedisplayed.Thecolorofthecompo-nentwascontrolledtobechangeddynamicallybythedatareturnedfromtheWSN,includinggas,temperature,andhumidityconditions.Figure18.3showstheconstructionprogressoftheBIMmodel.

Duringtheoperation,thedatageneratedbytheWSNnodeswascollectedcontinuously.Thedata included thenode’s identificationnumber, signal strength, and thedetectedenvi-ronmental information (suchasgasconcentration, temperature,andhumidity).Thesystemanalyzedwherethedatacamefromandidentifiedthegas,temperature,andhumidityvalues.Thevalueswerethenreferredtodisplaytherelevantcolorfrombluetoredandindicatedtheriskdegreeofthemonitoredlocationusingspecificmodelcomponents.Bythismechanism,thesafetyandenvironmentalconditionsofthewholesitecanbedisplayedinrealtimeviatheinputdataflow.Figure18.4showstheintegratingmechanismoftheBIMcomponentandtheWSNdata.

18.6.4 Test and discussion

Totesttheperformanceoftheproposedsystem,anundergroundconstructiontunnelofMassRapidTransit(MRT)waschosenastheexperimentalsite.ThetestsimulatedthepresenceofahazardousgasandtestedtheperformanceoftheproposedCPS.Foracoverageof300meters,themonitoringpointswereplacedatevery100meters,wherethethreenodeswereset.Thesystemwasinstalledonanotebook,whichincludedtheCPSanddigitalmodelofthetunnel.The coordinator linkedwith thenotebookwas set at the station for receiving thedetecteddatafromthesensornode.Acontrolnodewasconnectedwithaflashalarmandventilator,whichwouldbeactivatedwhen theWSNdetected thehazardousgasamongthecoverage.Figure18.5showstheexperimentallayout.

Duringthetest, thecoordinatorlaunchedthenetwork,andthesensornodesandcontrolnode joinedthenetworksequentiallybypoweringon.Then, thesensornodesweremovedforwardintothetunnelbystaffandsetatpositionslocated100,200,and300metersfrom

Figure 18.3 TheBIMmodelconstructionsforthesystem

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 15: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Figu

re 1

8.4

Integratingmechanism

oftheW

SNdataandBIM

modelcom

ponent

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 16: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

365

IoT and enabled devices for C4.0

the host.During this process, the signal strengthwas also recorded every 20meters, thusobservingtheattenuationofthesignal.Whenallthesensornodeshadbeensetinplace,thestaffsimulatedtheemergencyeventbyemittingcombustiblegasfromafirelighterineachmonitoringposition.Thestaffthenobservedthesystemperformancetodeterminewhetherthesafetydeviceswereactivated(Figure18.6).Figure18.7presentsthescreenshotofthesystemoperation.

Thetestresultsindicatedthateveninthe300meterposition,thesystemreactstothegasoccurrencewithin1–2secondsanddisplaystheabnormallocationontheBIMmodelbyaredcoloredwarning;meanwhile,thecontrolnodeimmediatelyactivatestheflashalarmandtheventilatortowarnnearbypersonneltoretreatandtoeliminatethehazardousgas.Theattenua-tiontestoftheradiosignalindicatesthatthetransmissiondistanceoftwonodesinthetunnelisabout250metersand0.2to0.3dBmattenuatedforeverymeter.Ifarouterissetbetweentwonodes,thedistancecanbeextendedupto450meters.

Thetestresultindicatesthatthesystemcanbeconvenientlysetuponaconstructionsiteanditcanperformwellatadetectingandmonitoringtask.Thedevelopedsystemcontinuouslycollectstheenvironmentalinformationandmonitorsthehazardsoftheconstructionsite.Oncetheemergencyeventoccurs,theworkerscanbewarnedinadvanceandretreatimmediately.Additionally, theadministrationandrescueunitcanremotelydeterminetheriskylocationsand thesituationof thesite throughCPS tomakeanoptimaldecisionand take immediaterescueaction.Thesystemcansmartlyimprovethesafetymanagementofconstructionsitesforhazardousgasprevention,significantlydecreasingthemonitoringlaborandenhancingtheworkers’safety.

Figure 18.5 Thedesignlayoutofthefieldtest

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 17: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Figure 18.6 Thefieldtestinthetunnel

Figure 18.7 ScreenshotoftheoperationalCPSfortunnelsafetymanagement(Location01detectedhazardousgasanddemonstratesthewarninginred)

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 18: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

367

IoT and enabled devices for C4.0

18.7 Conclusion

Thissectiondescribesthedefinitions,concepts,andframeworkforI4.0andC4.0,anddiscussestheapplicationsofIoTandrelatedtechnologiesintheconstructionindustry.Theconstructionindustryisslowerthanothermanufacturingindustriesatincorporatingdigitalizationbecauseof its complexity and unique characteristics.However, as the future trends of constructionprojectsaremovingtowardincreasedsizeandcomplexity,theconstructionsectorneedstopaymoreattentiontoIoTtechnologiesandtoenhancingitsefficiencyandcompetitivecapabilities.

ThisarticledescribestheuseofIoTapplicationsintheconstructionindustry,includingUAV,RFID,WSN,andBIMtechnologies.UAVtechnologyimprovesthemappingandinvestigationtasksinconstructionprojectsandenablesthequicksurveyoflargeareasafterdisasters,thusenhanc-ingnotonlytheefficiencybutalsotheaccuracyandsafetyofthetask.RFIDprovidestheremoteanduniqueidentificationofthingsforbigdataapplicationsandtheIoT,whichiswidelyappliedinpersonnelandequipmentcontrol,logisticsmanagement,andleanconstructionmanagement.WSNenablesfacilitiesandequipmenttoperceiveandcommunicate,andtoquicklyprovidetherequiredinformationforbigdataandcloudcomputinganalytics.Nowadays,WSNiswidelyappliedinthefieldssuchas trafficandlocalization,environmentandsecuritydetection,smartbuildings,andenergysavingapplications.BIMprovidesadigitalizationandvisualizationsolutionforconstruc-tionprojectsinIoTapplications,providingnotonlystaticinformation,includingassets,structures,andtheirspatialrelations,butalsopowerfulcomputingandsimulationcapabilities.BIMalsopro-videsadigitalframeworkforIoTinformationintegrationandCPSestablishment.TheintroductionofIoTtechnologiesenablesequipmentandfacilitiestohavetheabilitytosense,communicate,andmakedecisions.ByintegratingIoT,bigdata,andCPS,thedigitalvirtualworldislinkedwiththephysicalworld,providingbetterserviceandpredictions.IoTnotonlyenhancesthedigitalization,informationization,andcyberizationintheconstructiondomain,butitalsoprovidestherequiredtechnologyandsolutionsforsmartbuildings,construction,andmanufacturing.

ThischapteralsoprovidedanexampleofCPSdevelopmentasappliedtoon-sitesafetymanagement,includingadescriptionoftheIoTdevicedevelopment,networksystemdesign,digitalmodelestablishment,andhowtointegrateandmakethemwork.Thedevelopedpro-totypesystemwastestedonatunnelsite,anditseffectivenesswasdemonstrated.Theresultsindicatethatthedevelopedsystemcanperformthemonitoringtaskwellandisadvantageoustothesafetymanagementofthesite.Thesystemcanachievethelong-term,multi-locationalmonitoring in real time, andprovides aCPS for remotemanagement, timely rescue, earlywarning,andsmart security, thusnotonly reducing the laborcost formonitoring,butalsosignificantlyenhancingthesafetyofworkersonthesite.

During the IoT introduction process, the following issues still need to be explored andsolved:therequiredhumanresourceandtechnology,thesecurityofnetworksandcommuni-cation,theintegrationandinteroperabilitybetweenthedifferentsystems,andthespeedandthehugedemandsofthenetwork.Inthefuture,theseIoTtechnologieswillcontinuetoimpactandshapetheconstructionindustry,notonlybringingnewchallengesandopportunities,butalsopromotingtheindustrytowardsfacilitatingtheobjectiveofConstruction4.0.

18.8 Summary

• OverviewofIoTenabledphysicaltechnologiesinConstruction4.0.• LiteraturereviewsofRFID,UAV,WSN,andBIMtechnologiesinConstruction4.0.• ApplicationsofadvancedIoTinConstruction4.0.• Casestudyshowcasingdevelopmentofacyberphysicalsystemforapplicationintunnel

constructionsafetymanagementforConstruction4.0.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 19: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

Yu-Cheng Lin and Weng-Fong Cheung

368

referencesAkyildiz,I.F.,Su,W.,Sankarasubramaniam,Y.,andCayirci,E.(2002).“Wirelesssensornetworks:A

survey”,Computer Networks,38(4),393–422.https://doi.org/10.1016/S1389-1286(01)00302-4.Ashton,K. (2009). “That ‘internet of things’ thing”,RFID Journal, 22(7), 97–114.Available from:

www.rfidjournal.com/articles/view?4986(accessed2019/04/06).Bae,S.C.,Jang,W.S.,andWoo,S.(2013).“PredictionofWSNplacementforbridgehealthmonitoring

basedonmaterialcharacteristics”,Automation in Construction,35,18–27.https://doi.org/10.1016/j.autcon.2013.02.002.

Cerovsek, T. (2011). “A review and outlook for a ‘Building Information Model’ (BIM): A multi-standpoint framework for technological development”,Advanced Engineering Informatics, 25(2),224–244.https://doi.org/10.1016/j.aei.2010.06.003.

Chen, D., Doumeingts, G., and Vernadat, F. (2008). “Architectures for enterprise integration andinteroperability: Past, present and future”, Computers in Industry, 59(7), 647–659. https://doi.org/10.1016/j.compind.2007.12.016.

ConsortiumII(2013).“Factsheet”,Availablefrom:www.iiconsortium.org/docs/IIC_FACT_SHEET.pdf(accessed2019/04/06).

Ding,L.Y.,Zhou,C.,Deng,Q.X.,Luo,H.B.,Ye,X.W.,Ni,Y.Q.,andGuo,P.(2013).“Real-timesafety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnelbasedon the internetof things”,Automation in Construction,36,25–37.https://doi.org/10.1016/j.autcon.2013.08.017.

Domdouzis,K.,Kumar,B.,andAnumba,C.(2007).“Radio-FrequencyIdentification(RFID)applications:Abriefintroduction”,Advanced Engineering Informatics,21(4),350–355.https://doi.org/10.1016/j.aei.2006.09.001.

Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors,Hoboken,NJ:JohnWiley&Sons.

Farahani,S.(2011).ZigBee Wireless Networks and Transceivers,Newton,MA:Newnes.Fernández-Caramés, T., Fraga-Lamas, P., Suárez-Albela, M., and Castedo, L. (2017). “Reverse

engineeringandsecurityevaluationofcommercialtagsforRFID-basedIoTapplications”,Sensors,17(1),28.https://doi.org/10.3390/s17010028.

Gubbi, J.,Buyya,R.,Marusic, S., andPalaniswami,M. (2013). “Internet ofThings (IoT):Avision,architecturalelements,andfuturedirections”,Future Generation Computer Systems,29(7),1645–1660.https://doi.org/10.1016/j.future.2013.01.010.

Haines,B.(2016).“DoesBIMhavearoleintheInternetofthings?”,Availablefrom:https://fmsystems.com/blog/does-bim-have-a-role-in-the-internet-of-things/(accessed2019/04/06).

Hasni,H.,Jiao,P.,Alavi,A.H.,Lajnef,N.,andMasri,S.F.(2018).“Structuralhealthmonitoringofsteel framesusinganetworkofself-poweredstrainandaccelerationsensors:Anumericalstudy”,Automation in Construction,85,344–357.https://doi.org/10.1016/j.autcon.2017.10.022.

Henning,K.,Wolfgang,W.,andJohannes,H.(2013).“Recommendationsforimplementingthestrategicinitiative INDUSTRIE 4.0”, Available from: www.acatech.de/wp-content/uploads/2018/03/Final_report__Industrie_4.0_accessible.pdf(accessed2019/04/06).

Hermann,M.,Pentek,T.,andOtto,B.(2015).“DesignprinciplesforIndustrie4.0scenarios:Aliteraturereview 2015 07/ 04/2015”, Available from: www.snom.mb.tu-dortmund.de/cms/de/forschung/Arbeitsberichte/Design-Principles-for-Industrie-4_0-Scenarios.pdf(accessed2019/04/06).

Hinkka,V. and Tätilä, J. (2013). “RFID tracking implementationmodel for the technical trade andconstruction supply chains”, Automation in Construction, 35, 405–414. https://doi.org/10.1016/j.autcon.2013.05.024.

IDABC (Interoperable Delivery of European eGovernment Services to Public Administrations,BusinessesandCitizens).(2005).“Europeaninteroperabilityframeworkv1.0”,http://ec.europa.eu/idabc/en/document/3782/5584.html(accessed2019/04/06).

IERC (EuropeanResearchClusteron the Internet ofThings) (2012). “The Internet of things2012–Newhorizons”,Availablefrom:www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf(accessed2019/04/06).

Inzerillo,L.,DiMino,G.,andRoberts,R.(2018).“Image-based3DreconstructionusingtraditionalandUAVdatasets for analysis of road pavement distress”,Automation in Construction, 96, 457–469.https://doi.org/10.1016/j.autcon.2018.10.010.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n

Page 20: 18 INTERNET OF ThINgS (IOT) ANd INTERNET ENAblEd PhySICAl … · 2020. 7. 2. · “Internet of Things” as being based on the computer internet, using RFID and wireless data technologies

369

IoT and enabled devices for C4.0

ISO (International Organization for Standardization) (2016). “ISO 29481-1:2016(en): BuildingInformationModels–Informationdeliverymanual–Part1:Methodologyandformat”,Availablefrom:www.iso.org/obp/ui/#iso:std:iso:29481:-1:ed-2:v1:en(accessed2019/04/05).

ISO(InternationalOrganizationforStandardization)(2018).“ISO/IEC30141:2018InternetofThings(loT)–Referencearchitecture”,Availablefrom:www.iso.org/standard/65695.html(accessed2019/04/06).

ITU(InternationalTelecommunicationUnion).(2005).“TheInternetofThings”,Availablefrom:http://unpan1.un.org/intradoc/groups/public/documents/APCITY/UNPAN021972.pdf(accessed2019/04/06).

ITU (International Telecommunication Union). (2012). “SeriesY: Global information infrastructure,internetprotocolaspectsandnext-generationnetworks,overviewoftheInternetofThings”.Availablefrom:www.itu.int/rec/T-REC-Y.2060/en(accessed2019/04/06).

Jia, M., Komeily,A.,Wang,Y., and Srinivasan, R. S. (2019). “Adopting Internet of things for thedevelopmentofsmartbuildings:Areviewofenablingtechnologiesandapplications”,Automation in Construction,101,111–126.https://doi.org/10.1016/j.autcon.2019.01.023.

Ko,H. S.,Azambuja,M., and Lee,H. F. (2016). “Cloud-basedmaterials tracking system prototypeintegratedwithradiofrequencyidentificationtaggingtechnology”,Automation in Construction,63,144–154.https://doi.org/10.1016/j.autcon.2015.12.011.

Lee, J., Bagheri, B., and Kao, H. A. (2015). “A cyber-physical systems architecture for industry4.0-based manufacturing systems”, Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

Liu,W.,Wu,X.,Zhang,L.,Wang,Y.,andTeng,J.(2018).“Sensitivityanalysisofstructuralhealthriskinoperationaltunnels”,Automation in Construction,94,135–153.https://doi.org/10.1016/j.autcon.2018.06.008.

Lu,Y.(2017).“Industry4.0:Asurveyontechnologies,applicationsandopenresearchissues”,Journal of Industrial Information Integration,6,1–10.https://doi.org/10.1016/j.jii.2017.04.005.

Monostori,L.,Kádár,B.,Bauernhansl,T.,Kondoh,S.,Kumara,S.,Reinhart,S.G.,Sihn,W.,andUeda,K. (2016). “Cyber-physical systems inmanufacturing”,CIRP Annals, 65(2),621–641.https://doi.org/10.1016/j.cirp.2016.06.005.

Moon,D.,Chung,S.,Kwon,S.,Seo,J.,andShin,J.(2019).“Comparisonandutilizationofpointcloudgenerated fromphotogrammetry and laser scanning: 3Dworldmodel for smart heavy equipmentplanning”,Automation in Construction,98,322–331.https://doi.org/10.1016/j.autcon.2018.07.020.

Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M., and Rodehorst,V. (2019). “Framework for automated UAS-based structural condition assessment of bridges”,Automation in Construction,97,77–95.https://doi.org/10.1016/j.autcon.2018.10.006.

NIBS(NationalInstituteofBuildingScience)(2019).“FrequentlyaskedquestionsaboutthenationalBIMstandard–UnitedStates”,Availablefrom:www.nationalbimstandard.org/faqs(accessed2019/04/06).

NSF(NationalScienceFoundation)(2010).“Cyber-PhysicalSystems(CPS)”,Availablefrom:www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm(accessed2019/04/06).

Park,H.S.andOh,B.K.(2018).“Real-timestructuralhealthmonitoringofasupertallbuildingunderconstructionbasedonvisualmodal identificationstrategy”,Automation in Construction,85,273–289.https://doi.org/10.1016/j.autcon.2017.10.025.

Rashid,K.M.,Louis, J.,andFiawoyife,K.K. (2019).“Wirelesselectricappliancecontrol forsmartbuildings using indoor location tracking and BIM-based virtual environments”, Automation in Construction,101,48–58.https://doi.org/10.1016/j.autcon.2019.01.005.

Roberts,C.M.(2006).“Radiofrequencyidentification(RFID)”,Computers & Security,25(1),18–26.https://doi.org/10.1016/j.cose.2005.12.003.

Romero,D.andVernadat,F.(2016).“Enterpriseinformationsystemsstateoftheart:Past,presentandfuturetrends”,Computers in Industry,79,3–13.https://doi.org/10.1016/j.compind.2016.03.001.

Sarma,S.,Brock,D.L.,andAshton,K.(2000)“Thenetworkedphysicalworld”Auto-IDCenterWhitePaperMIT-AUTOID-WH-001.Availablefrom:http://cocoa.ethz.ch/downloads/2014/06/None_MIT-AUTOID-WH-001.pdf(accessed2019/04/06).

Valero,E.,Sivanathan,A.,Bosché,F., andAbdel-Wahab,M. (2017).“Analysisofconstruction tradeworker body motions using a wearable and wireless motion sensor network”, Automation in Construction,83,48–55.http://dx.doi.org/10.1016/j.autcon.2017.08.001.

Vogel-Heuser,B.andHess,D.(2016).“GuesteditorialIndustry4.0–Prerequisitesandvisions”,IEEE Transactions on Automation Science and Engineering,13(2),411–413.

Xu,G.,Li,M.,Chen,C.H.,andWei,Y.(2018).“Cloudasset-enabledintegratedIoTplatformforleanprefabricated construction”, Automation in Construction, 93, 123–134. https://doi.org/10.1016/j.autcon.2018.05.012.

Tayl

or &

Fra

ncis

: Not

for D

istri

butio

n