18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN...

30
Edited by OLIVIER MARTIN 18

Transcript of 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN...

Page 1: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Edited byOLIVIER MARTIN

18

Page 2: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

The Minerals, Metals & Materials Series

Page 3: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Olivier MartinEditor

Light Metals 2018

123

Page 4: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

EditorOlivier MartinRio Tinto AlcanSaint JeanFrance

ISSN 2367-1181 ISSN 2367-1696 (electronic)The Minerals, Metals & Materials SeriesISBN 978-3-319-72283-2 ISBN 978-3-319-72284-9 (eBook)https://doi.org/10.1007/978-3-319-72284-9

Library of Congress Control Number: 2017960905

© The Minerals, Metals & Materials Society 2018This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproductionon microfilms or in any other physical way, and transmission or information storage and retrieval, electronicadaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws andregulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in this book are believedto be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,express or implied, with respect to the material contained herein or for any errors or omissions that may have beenmade. The publisher remains neutral with regard to jurisdictional claims in published maps and institutionalaffiliations.

Printed on acid-free paper

This Springer imprint is published by Springer NatureThe registered company is Springer International Publishing AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 5: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Preface

Ladies and gentlemen, it is a pleasure to welcome you to the TMS 2018 Annual Meeting andExhibition in Phoenix and to present to you the proceedings of Light Metals 2018. The LightMetals proceedings represent a considerable effort on the part of the authors and theircoworkers who together carried out the research and development work. They deserve ourgratitude for making Light Metals the pre-eminent repository for technical information aboutaluminum processes.

I wish to thank the subject chairs in each area who performed the bulk of the work insoliciting and reviewing papers and organizing sessions. I should also like to acknowledge thework of the session chairs in reviewing the papers. Last but not least, I thank the TMS staff fortheir outstanding professional support in the preparation of this volume.

From the beginning of the industry at the end of the nineteenth century through 2005, theworld production of primary aluminum rose from zero to 30 million tons a year. But over just11 years, from 2006 through 2016, that figure doubled to an astonishing 60 million tons a year.The market price of the metal has however by no means followed the same trend, with theresult that a large proportion of producers—with the notable exception of China—have cutback investment in new smelting capacity as well as in the development of new technology.

Over the next few decades, the aluminum industry faces two enormous challenges: themove to new energy sources (at present, 60% of the electrical energy used in primary alu-minum production comes from coal) and the need to reduce greenhouse gas emissions. Theunprecedented decision of COP 21 in Paris to reduce global carbon consumption certainlypresents a great challenge to the aluminum industry as it seeks a greener path to productionwhile remaining globally competitive. On the other hand, it also presents an enormousopportunity because of light metals’ advantages in reducing weight in transport applicationsand in efficient recycling.

What better time could there be for our industry, and what better opportunity for itstechnologists to work together to deliver innovations that lower energy consumption andlessen the environmental impact?

Olivier Martin

v

Page 6: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Contents

Part I Alumina and Bauxite

Roasting Pretreatment-Low Temperature Digestion Method for ComprehensiveUtilization of High-Sulfur Bauxite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Dong Lu, Guozhi Lyu, Ting-an Zhang, Weiguang Zhang, Dong Xie, Yanxiu Wang,and Long Wang

Industrial Experience of New Sinter Hydro-chemical Processing Process atBAZ-SUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Maxim Pechenkin, Andrey Panov, Sergey Ordon, Oleg Milshin,and Aleksandr Fedyaev

Effect of Sintering Conditions on the Stability of b-2CaO�SiO2 in High SodiumCarbonate Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Dongdong Ma, Huilan Sun, Tian Jia, and Bo Wang

Research on Impurity Removal of Low Grade Bauxite . . . . . . . . . . . . . . . . . . . . . 23Zhuang Li, Yijun Cao, Guihong Han, Guixia Fan, and Yanfang Huang

Study on the Structure and Generation Mechanism of Intermediate (6AlO–OH)in Decomposition Process of Sodium Aluminate Solutions . . . . . . . . . . . . . . . . . . . 29Wei Liu, Zhoulan Yin, Yaling Huang, and Zhiying Ding

The Properties of Superfine ATH Precipitated by Carbonation Method . . . . . . . 35Andrey Panov and Alexander Senyuta

Effect of Organic Impurity on Seed Precipitation in SodiumAluminate Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Baiyong Zhang, Xiaolin Pan, Haiyan Yu, Ganfeng Tu, and Shiwen Bi

Fitness-for-Service Assessment and Re-rating of Flawed AluminaFeeding Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Maher Al-Dojayli, Kyle Chomyn, Hamid Ghorbani, and Patrice Barriault

Miniplant Tests of HCl Technology of Alumina Production . . . . . . . . . . . . . . . . . 57Andrey Smirnov, Dmitriy Kibartas, Alexander Senyuta, and Andrey Panov

Development and Utilization of Detailed Process and Technology Models atRUSAL Alumina Refineries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63M.-B. Balde, V. O. Golubev, and D. G. Chistyakov

Features of Pseudoboehmite from Alumina Production . . . . . . . . . . . . . . . . . . . . . 71Evgeny A. Vlasov, Vadim A. Lipin, Rustam A. Seytenov, Natalia V. Maltseva,and Natalia A. Odincova

Digital Transformation in Alumina Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Robert K. Jonas

vii

Page 7: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Thermodynamics Analysis on Process of Pelletizing Chlorination of Fly Ash . . . 89Long Wang, Ting’an Zhang, Guozhi Lv, Jingzhong Zhang, Zhihe Dou,Weiguang Zhang, Xijuan Pan, and Yanxiu Wang

Research on Alumina Preparation from Aluminium Chloride Solution byElectrolysis Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Ting-an Zhang, Xiuxiu Han, Guozhi Lv, Xijuan Pan, Shagulyyev Agajan, Daxue Fu,Jiang Liu, and Junjie Zhang

How Digitalization Can Further Improve Plant Performance and ProductQuality—Outotec Pretium Advisory Tool for Alumina Calcination . . . . . . . . . . . 105Michael Missalla, Linus Perander, Steffen Haus, Nikola Anastasijevic,and Susanna Horn

Experimental Investigation on Reduction of Cast Iron from Bayer Red Mud andLaterite Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Jianmin Zeng, Jiacheng Wang, and Aoping He

Analyzing the Bauxite Residue Amendment Through the Addition of Ca and MgHydroxides Followed by Carbonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Luis C. A. Venancio, José Antonio Silva Souza, Emanuel Negrão Macedo,Fernando Aracati Botelho, Raissa Silva Fonseca, Lucas Camelo Martins,Mateus Costa Tavares, and Lucas Emanuel Soares

Comprehensive Utilization of Red Mud: Current Research Status and a PossibleWay Forward for Non-hazardous Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Ting-an Zhang, Yanxiu Wang, Guozhi Lu, Yan Liu, Weiguang Zhang,and Qiuyue Zhao

Alumina, Iron and Titanium Extracting from Bauxite Residue with Low LimeSinter Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Di Zhang, Wei Zhang, Xin Hou, Daming Liu, Guanyi Liu, and Bo Wang

Developing New Process for Selective Extraction of Rare Earth Elements fromBauxite Residue Based on Functionalized Ionic Liquids . . . . . . . . . . . . . . . . . . . . 149Panagiotis Davris, Efthymios Balomenos, Dimitrios Panias, and Ioannis Paspaliaris

Effects of Reductive Roasting with Sodium Salts on Leaching Behaviorof Non-ferrous Elements in Bauxite Ore Residue . . . . . . . . . . . . . . . . . . . . . . . . . . 157Bona Deng, Tao Jiang, Guanghui Li, Qing Ye, Foquan Gu, Mingjun Rao,and Zhiwei Peng

Specific Features of Scandium Behavior During Sodium Bicarbonate Digestionof Red Mud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Alexander Suss, Andrey Panov, Alexander Kozyrev, Natalya Kuznetsova,and Sergey Gorbachev

Flotation Separation of Pyrite from Refractory High-Sulfur Bauxite . . . . . . . . . . 175Wencui Chai, Guihong Han, Yanfang Huang, Jiongtian Liu, Huilan Chen,and Zhen Yan

Research on the Desulfurization of High Sulfur Bauxite . . . . . . . . . . . . . . . . . . . . 181Yanfang Huang, Dianyuan Dang, Guihong Han, and Shuzhen Yang

Research on the Interaction Between 1-Butyl-2-Mercaptobenzimidazoleand Pyrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Tongtong Yang, Guihong Han, Jiongtian Liu, Yanfang Huang, Wencui Chai,and Weijun Peng

viii Contents

Page 8: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Flotation of Low-Grade Bauxite Using Modified Humics as Depressant . . . . . . . . 193Guihong Han, Zhen Yan, Yanfang Huang, and Dianyuan Dang

Research on the Adsorption of Humic Acid on Pyrite Surface . . . . . . . . . . . . . . . 197Yanfang Huang, Huilan Chen, and Guihong Han

Experimental Investigation on Desiliconization of Low-Grade Bauxite byFlotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Guihong Han, Hongyang Wu, Wenjuan Wang, and Yanfang Huang

The Impact of Backwater Iron Ions on Bauxite Flotation . . . . . . . . . . . . . . . . . . . 209Chaojun Fang, Leming Ou, Qiming Feng, Shichao Yu, and Jun Wang

Part II Aluminum Alloys, Processing and Characterization

Grain Boundary Precipitation and Fracture Behavior of Al–Cu–Li Alloys . . . . . 217R. Goswami and N. Bernstein

Comparison of Texture and Surface Finish Evolution During Single PointIncremental Forming and Formability Testing of AA 7075 . . . . . . . . . . . . . . . . . . 225Maya Nath, Jaekwang Shin, Ankush Bansal, Mihaela Banu, and Alan Taub

Understanding the Co-precipitation Mechanisms of Al3(Sc, Zr) withStrengthening Phases in Al–Cu–Li Model Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 233Katrin Mester, Baptiste Rouxel, Timothy Langan, Justin Lamb, Matthew Barnett,and Thomas Dorin

Determining a Retrogression Heat Treatment to Apply During Warm Formingof a High Strength Aluminum AA7075 Sheet Material . . . . . . . . . . . . . . . . . . . . . 241Katherine Rader, Thomas Ivanoff, Hyunwook Shin, Jon Carter, Louis Hector,and Eric Taleff

Development of High-Strength and High-Electrical-Conductivity AluminumAlloys for Power Transmission Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247Francisco U. Flores, David N. Seidman, David C. Dunand, and Nhon Q. Vo

The Combined Effects of Sr Additions and Heat Treatment on theMicrostructure and Mechanical Properties of High Pressure DieCast A383 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253T. Liu, S. Morales, M. Karkkainen, L. N. Brewer, L. Nastac, V. Arvikar, and I. Levin

Influence of Additional Elements (Si, Ti and B) on the Castability, Corrosion andMechanical Properties of A201 Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259S. Abd El Majid, M. Bamberger, and A. Katsman

Effect of Ni Addition on the Solidification Process and Microstructure of Al-12%Si-4%Cu-1.2%Mn-x%Ni Heat-Resistant Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Hengcheng Liao, Qu Liu, Guangjin Li, and Uday S. Dixit

Phase Formation of Monotectic Al–In and Al–Ga–In Alloys and ImplicationsThereof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279Xiaoming Wang and Xingtao Liu

Investigations on Pb-Free 6000 Series Aluminum Alloy forMachining Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285Saikat Adhikari, Anirban Giri, V. Siva Raman, Pramod Koparde, Sachin Gupta,L. Vijayaraghavan, and S. Sankaran

Optimization in Novel Partial-Solid High Pressure Aluminum Die Casting byTaguchi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293Yekta Berk Suslu, Mehmet Sirac Acar, Mithat Senol, Muammer Mutlu,and Ozgul Keles

Contents ix

Page 9: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Application of the Hot Stamping Process to Aluminum Alloy StructuralComponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Ehab Samuel

Failure of 5000 and 6000 Series Aluminum Alloys in Modular WastewaterTreatment Aeration Tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307J. Scott Pavelich and John A. Nychka

Grain Refinement of Al–Si–Mg Cast Alloys by Al3Ti3B Master Alloy . . . . . . . . . 319Xixi Dong and Shouxun Ji

Improving Bendability of Al–Mg–Si Alloy Sheet by Minor Alloying ElementAddition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325Sazol Das, Matthew Heyen, Rajeev Kamat, and Richard Hamerton

Deep Drawing and Anodizing Quality Improvement in AA3003-O Alloy byOptimization of Homogenization, Rolling and Annealing . . . . . . . . . . . . . . . . . . . . 333Anirban Giri, Saikat Adhikari, Manu Saxena, Sachin Gupta, and Sudhir Jain

Understanding Large-Strain Softening of Aluminum in Shear at ElevatedTemperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Michael E. Kassner and Roya Ermagan

Assessments of Sc-Containing Ternary Systems Al–Sc–Ti and Al–Sc–Zr Withinthe Thermodynamic Database for Aluminium Alloys, TCAL5 . . . . . . . . . . . . . . . . 347Hai-Lin Chen, Qing Chen, and Paul Mason

Multiscale Model for Al–Li Material Processing Simulation Under ForgingConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355L. B. Borkowski and A. Staroselsky

Investigation of Effect of Aging Treatment on Deformation Behaviorof Al–Mg–Si Alloy Using Quasi-2D Polycrystalline Sample . . . . . . . . . . . . . . . . . . 365Jiang Zheng, Lin Zhu, Haoge Shou, and Jinsong Rao

Development of Innovative Al–Si–Mn–Mg Alloys withHigh Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Jožef Medved, Stanislav Kores, and Maja Vončina

A General Formulation of Eutectic Silicon Morphology andProcessing History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381J. E. Spinelli, W. Hearn, A.-A. Bogno, and H. Henein

Evaluation of Hot Tearing Susceptibility of 6000 Series Aluminum Alloys UsingConstrained Solidification Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389L. Stermann and M. Iraizoz

In-Situ Fitness-for-Service Assessment of Aluminum Alloys Developed forAutomotive Powertrain Lightweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397E. Aghaie, J. Stroh, D. Sediako, and M. Smith

Research on the Effect of the Processing Parameters on Susceptibility ofLiquation Cracking of Al Alloys During Refilled Friction Stir Spot Welding . . . . 401Tao Yuan, Wentao Gong, Yinuo Li, and Shujun Chen

Factors Influencing the Cast Duration of Horizontal ContinuousIngot Casters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409Benjamin Jaroni, Elmar Schoell, Sascha Werner, and Georg Scheele

On Si Redistribution During Friction Stir Processing of Cast Al-7%Si–0.4%MgAlloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417Nelson Netto, Murat Tiryakioğlu, and Paul D. Eason

x Contents

Page 10: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Equal Channel Angular Pressing of a Newly Developed PrecipitationHardenable Scandium Containing Aluminum Alloy . . . . . . . . . . . . . . . . . . . . . . . . 423Jahanzaib Malik, Wahaz Nasim, Bilal Mansoor, Ibrahim Karaman, Dinc Erdeniz,David C. Dunand, and David N. Seidman

Stiffness Improvement Through Alloying Elements in Al Alloys . . . . . . . . . . . . . . 431Sajjad Amirkhanlou and Shouxun Ji

Formation Mechanism of Surface Segregation in Heated Mold ContinuousCasting Al–Cu Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435Ji Hui Luo

Effects of Rare Earth Er Additions on Microstructure and MechanicalProperties of an Al–Zn–Mg–Cu Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441S. Kord, Mohammad Alipour, M. H. Siadati, Masumeh Kord,and Praveennath G. Koppad

Effects of Extrusion and Heat Treatment Conditions on Microstructure andMechanical Properties of an Al–Zn–Mg–Cu–Er Alloy . . . . . . . . . . . . . . . . . . . . . . 451S. Kord, Mohammad Alipour, M. H. Siadati, Masumeh Kord,and Praveennath G. Koppad

Part III Aluminum Reduction Technology

Maximizing Previous Pot Design to Have Higher Capacity . . . . . . . . . . . . . . . . . . 463Sahala Sijabat, Ivan Ermisyam, Indah Pandia, and Ivan Eko Yudho

On the Use of Multivariate Statistical Methods to Detect, Diagnose and MitigateAbnormal Events in Aluminium Smelters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475Petre Manolescu, Carl Duchesne, Jayson Tessier, and Gudrun Saevarsdottir

Spike Detection Using Advanced Analytics and Data Analysis . . . . . . . . . . . . . . . 485Arthur Martel

Speed, Agility and Simplicity (SAS) Recovery of Reduction Line-5 in Alba . . . . . 491Abdulla Habib Ahmed Ali, Khalil Ebrahim M. Ebrahim,and Vasantha Kumar Rangasamy

Partial Repair and Restart of a Damaged Aluminium Reduction Cell . . . . . . . . . 501Khalid Youssif and Abd El Zaher Abd El Star

Discussion on Alumina Dissolution and Diffusion in Commercial AluminumReduction Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507Youjian Yang, Bingliang Gao, Xiaozhen Liu, Zhaowen Wang, Zhongning Shi,Xianwei Hu, Wenju Tao, Fengguo Liu, and Jiangyu Yu

Investigation of Alumina Concentration Gradients Within Hall-HéroultElectrolytic Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515Jayson Tessier, Katie Cantin, and David Thor Magnusson

Study of Alumina Dissolution in Cryolitic Bath to the Vertical Soderberg (VSS)Aluminum Production Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523Diego Cota Marinho, and Marcelo Breda Mourão

Impacts of Sodium on Alumina Quality and Consequences forCurrent Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533Grant J. McIntosh, Hasini Wijayaratne, Gordon E. K. Agbenyegah,Margaret M. Hyland, and James B. Metson

Alucell: A Unique Suite of Models to Optimize Pot Design and Performance . . . 541Steeve Renaudier, Steve Langlois, Benoit Bardet, Marco Picasso,and Alexandre Masserey

Contents xi

Page 11: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Anode Bottom Burnout Shape and Velocity Field Investigation in a HighAmperage Electrolysis Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551V. Bojarevics, E. Radionov, and Y. Tretiyakov

CFD Modelling of Alumina Feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557Kristian Etienne Einarsrud, Sindre Engzelius Gylver, and Eirik Manger

Effect of Steel Multi-collector Bars on Current Density andMagnetohydrodynamic Stability in an Aluminum Reduction Cell. . . . . . . . . . . . . 565Meijia Sun, Baokuan Li, Linmin Li, and Jianping Peng

Numerical Simulation Study on Gas Collecting System of 400 kA GradeAluminum Electrolytic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573Hongliang Zhang, Kena Sun, Jie Li, Tianshuang Li, Ling Ran, Fengqi Ding,and Zhong Zou

Study on 3D Full Cell Ledge Shape Calculation and Optimal Design Criteria byCoupled Thermo-Flow Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587Hongliang Zhang, Ling Ran, Jinding Liang, Tianshuang Li, Kena Sun, and Jie Li

The Successful Implementation of Energy Saving Technology Based on SteadyFlow and Heat Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597Dengpeng Chai, Zhirong Shi, Yanan Zhang, Yanfang Zhang, Guanghui Hou,Yanfang Wang, Qingtao Hu, and Bin Fang

Current Efficiency in Hall-Héroult Cells: The Role of Mass Transferat the Cathode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605Asbjørn Solheim, Henrik Gudbrandsen, Karen Sende Osen, Ole Edvard Kongstein,and Egil Skybakmoen

Effects of Current Density on Current Efficiency in Low TemperatureElectrolysis with Vertical Electrode Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611Shengzhong Bao, Dengpeng Chai, Zhirong Shi, Junwei Wang, Guisheng Liang,and Yanan Zhang

Relationship Between Aluminium Electrolysis Current Efficiency and OperatingCondition in Electrolyte Containing High Concentration of Li and K . . . . . . . . . 621Jun-qing Wang, Chang-lin Li, Deng-peng Chai, Yun-feng Zhou, Bin Fang,and Qiang Li

Evaluating Effects of Future Shared Mobility and Electrification Trends on KeyIntermediate Indicator of Aluminum Transportation Demand: US Vehicle FleetSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627Suhrid Deshmukh, Michele Bustamante, and Rich Roth

Improvement in Smelter Process Analysis Through EGA Lab Modernization. . . 637Najeeba Aljabri, Salma Saeed Almehairi, Shamsa Al Falasi, Yazeed Yabroudi,Dr. Frank Feret, Tapan Kumar Sahu, and Almero Austin Eybers

Two-Stage Pot Gas Treatment Technology Allowing the Production of SodiumSulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647Viktor Mann, Vitaly Pingin, Aleksey Zherdev, Sergey Pavlov, and Yuri Bogdanov

Improved Abart Gas Treatment and Alumina Handling at the KarmøyTechnology Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655Anders Sørhuus, Sivert Ose, and Eivind Holmefjord

Alternative Roof-Vent Emission Monitoring Method . . . . . . . . . . . . . . . . . . . . . . . 663Gunn Iren Müller, Are Dyrøy, Rachel Dosnon, Morten Isaksen, Kristin Sundby,Michel Meyer, and Jean-Michel Jolas

xii Contents

Page 12: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

SPL: An Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671Rudolf P. Pawlek

Bubble Dispersion States in the Zinc Oxide Desulfurization InjectionBlow Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675Xuejiao Cao, Ting’an Zhang, Yan Liu, Yuhao Zhang, Weiguang Zhang,Dongxing Wang, and Kun Wang

Decision Criteria for Pneumatic Conveying and Distribution of Material . . . . . . 681Jan Paepcke, Michael Altmann-Rinck, and Arne Hilck

Very Low Energy Consumption Cell Designs: The Cell HeatBalance Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689Marc Dupuis

APXe Cell Technology: 7 Years of Low Energy Operation . . . . . . . . . . . . . . . . . . 699Sébastien Becasse, Olivier Martin, Bertrand Allano, Yves Caratini, and Denis Tinka

Development and Industrial Application of NEUI600 High Efficiency AluminumReduction Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705Yungang Ban, Jihong Mao, Yu Mao, Jing Liu, and Gaoqiang Chen

RA-550 Cell Technology: UC RUSAL’s New Stage of TechnologyDevelopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715Viktor Mann, Andrey Zavadyak, Iliya Puzanov, Vitaly Platonov, and Vitaly Pingin

DX+ Ultra Industrial Version: Preheat Start Up and Early Operation . . . . . . . . 721Abdalla Alzarooni, Nadia Ahli, Alexander Arkhipov, Sajid Hussain, Lalit Mishra,Sergey Akhmetov, and Kamel Alaswad

Selecting Technology for Achieving 300,000 T/Year—Why Do We Need toCompete Pot Technology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731Sahala Sijabat, Rainaldy Harahap, Ari Bowo Soekotjo, and Faisal Hidayat

AP44 Development at Alma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737Pascal Thibeault, Louis Guimond, Véronique Dassylva-Raymond, Joseph Langlais,René Gariépy, and Olivier Martin

EGA New D20+ Technology with Reduced Energy Consumption . . . . . . . . . . . . . 745Ali Alzarouni, Sergey Akhmetov, Ali Jassim, Yousuf Ahli, Alexander Arkhipov,and Abdallah Al Jaziri

Potline Start Up Without Anode Effect Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 753B. Bahman Nezhad, A. Mozafar, B. Baharvand, M. Ameri Siahooei, T. Kamali,and P. Saraf Moghadam

Thermo-electrical Modeling of an Aluminum Reduction Cell . . . . . . . . . . . . . . . . 761B. Baharvand, M. Ameri Siahooei, and S. Khanbabapoor

Restarting Electrochemical Cell with Cold Metal (D18 Cell) . . . . . . . . . . . . . . . . . 769G. H. Khakian, B. Bahrvand, B. Samdani, M. Ameri Siahooei, and M. Soltanieh

Part IV Cast Shop Technology

Root Cause Analysis Findings of a Force 3 Explosion . . . . . . . . . . . . . . . . . . . . . . 777Alex W. Lowery

Condensation Warning System for Dry Material Storage . . . . . . . . . . . . . . . . . . . 781Gregory A. Blackstock and Jake J. Niedling

Contents xiii

Page 13: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

ACS/Aluminium Crucible Skimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787Bruno Maltais, Florent Gougerot, and Robert Dumont

Drive-In Feeding of Crucibles for Casting Machine . . . . . . . . . . . . . . . . . . . . . . . . 795Jean-Francois Desmeules and Jean-Benoît Neron

In-line Salt Fluxing Process With an FFD™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801Bruno Maltais and Étienne Tremblay

The “Alcoa Filter System AFS”: A Cost Effective Solution for Enhanced CFFPerformance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807Robert Dumont and Jean-Francois Desmeules

Continuous Centrifugal Casting: A Revolutionary Process for CastingAluminium Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815Luc Montgrain, Olivier Dion-Martin, and Jean-Francois Desmeules

Development of a Prototype Unit for Continuous Centrifugal Casting ofAluminum Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823Olivier Dion-Martin, Jean-Francois Desmeules, and Luc Montgrain

Constellium’s R&D on the Use of Power Ultrasound in Liquid Aluminium:An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831Philippe Jarry and Jean-Louis Achard

Molten Metal Cleanliness: Recent Developments to Improve MeasurementReliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839P. V. Evans, P. G. Enright, and R. A. Ricks

On-site Benchmarking of LiMCA III Versus LiMCA II for Monitoringof Non-metallic Inclusions in Liquid Aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . 847M. Badowski, T. Dang, N. Towsey, D. Krings, and K. Hoffmann

Discussion of Bi-Film Index and LiMCA Data in Industrial AluminumRemelting Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855Anne Kvithyld, Jan Anders Sæter, Martin Syvertsen, Harry Fossheim,Arne Nordmark, Ronny Sottar, and Thorvald Abel Engh

Inclusion Composition Determination by in-Line LIBS Measurement—PlantAssessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863P. Le Brun, R. De Saro, J. Craparo, J. Landham, and G. Parker

An Innovative Ultrasonic Technology for the Continuous Quality Monitoring ofLiquid Aluminum on Casting Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871Jean-Louis Achard, Fabio Taina, Pierre Le Brun, and Pierre-Yves Menet

Ultrasonic Doppler Velocimetry in Liquid Aluminum . . . . . . . . . . . . . . . . . . . . . . 879Jean-Louis Achard, Philippe Jarry, and Fabio Taina

Nitridation Reaction of Aluminum and Magnesium in 5XXX Series AluminumAlloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885Yu Matsui, Masaru Morobayashi, Hirohisa Shiomi, and Koichi Takahashi

Experimental Study and Numerical Analysis of Cracking During DC Casting ofLarge Dimension 7075 Aluminium Billets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895K. Ellingsen, Q. Du, M. M’Hamdi, B. E. Gihleengen, R. Ledal, K. O. Tveito,and A. Håkonsen

xiv Contents

Page 14: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

The Benefits of Ultrasonic Treatment of Molten Metal for Slabs Casting at UCRUSAL Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901I. V. Kostin, V. Ch. Mann, A. Yu. Krokhin, A. Yu. Sidorov, V. F. Frolov,S. G. Bochvar, A. V. Danilov, M. M. Motkov, and I. V. Bobkov

Effect of Ultrasonic Melt-Treatment and Cooling Rate on Microstructure ofMulti-phase Reinforced Al Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907Kwangjun Euh, Jae-Gil Jung, Ju-Hye Kim, Eun-Ji Baek, and Jung-Moo Lee

XPS Examination of the Oxide-Metal Interface of an Aluminum–MagnesiumAlloy Containing Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913Nicholas Smith, Anne Kvithyld, and Gabriella Tranell

Innovative Technology for a Flawless Rolling Slab Casting Process . . . . . . . . . . . 921Evgeny A. Pavlov, Dmitry N. Ivanov, and Pavel O. Gasanov

Robustness of Forged Part Mechanical Properties to Casting, Forging and HeatTreating Process Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929Lutz Müller and Bill Betts

Analysis of Laser Marking Performance on Various Non-ferrous Metals . . . . . . 937Alex Fraser, Julie Maltais, and Xavier P. Godmaire

Continuous Casted Aluminum Flat Products Corrosion CharacteristicAccording to Downstream Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943S. Kaan İpek, Ali Ulus, Hamdi Ekici, Gökçe Hapçı Ağaoğlu, and Gökhan Orhan

Controlling the Microstructural Evolution During Soft Annealing of Cold RolledTwin-Roll Cast AlMnMg Alloys by Homogenization Heat Treatment . . . . . . . . . 953Onur Meydanoglu, Cemil Işıksaçan, Mert Günyüz, and Hatice Mollaoğlu Altuner

Investigation of Elemental Distribution in the Sheet Sections After AluminumContinuous Sheet Casting, Cold Rolling and Heat Treatment Processes . . . . . . . 959Ali Ulus, Sadık Kaan İpek, Hamdi Ekici, Zafer Çağatay Öter, and Ebubekir Koç

Tailoring the Materials Properties with a Holistic Approach from Casting toBack Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971Cemil Işıksaçan, Onur Meydanoglu, Onur Birbaşar, and Mert Gülver

Study of the Effect of Surface—Roughness of Dies and Tooling for HPDC onSoldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977F. Gobber, A. Pisa, D. Ugues, S. Lombardo, E. Fracchia, and M. Rosso

Electrochemical Characterization of Al–Li–Cu–Mg Alloys . . . . . . . . . . . . . . . . . . 983Alicia Esther Ares, Silvina Gabriela Ramos, and Claudia Marcela Méndez

Shaping the Mechanical Properties of AlSi30 Alloy Cast byRapid Solidification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991Bogusław Augustyn, Marcin Szymanek, Dawid Kapinos, and Sonia Boczkal

Part V Cast Shop Technology: Energy Joint Session

Productivity and Energy Efficiency Improvements at Two ReverberatoryFurnaces at Alcoa, Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001Henrik Gripenberg, Delwyn Forrest, Per-Bjornar Bekkevold, Egil Solberg,Johannes Lodin, Fredrik Stark, and Fredrik Nyman

The Application of ALTEK Stirring Technology to a 90MT Melting Furnace atALCOA Moesjen, Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007Alan Peel, Delwyn Forrest, Per-Bjørnar Bekkevold, and Egil Solberg

Contents xv

Page 15: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Case Study of Air Cooled Electromagnetic Stirred Melting Furnace at HydroHenderson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015James Herbert and Bill Painter

Efficiency of the Casting Process Starts in the Melt Shop . . . . . . . . . . . . . . . . . . . 1025Ryan Brown

Praxair’s OPTIVIEWTM Image Analysis System for Enhanced CombustionControl on Aluminum Tilting Rotary Furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031Valmiro Sa Neto, Joseph Maiolo, Kevin Albrecht, Bryan Bielec, Jorge Visús Pool,Joaquín de Diego Rincón, Daniel Bujeda Celma, Ignacio Parrilla Muñoz,and Juan Luis Suazo Tejeda

Aluminum Melting Furnace Pressure Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037Edward M. Williams and Don Whipple

Resource Efficiency Analysis of High Pressure Die Casting Process . . . . . . . . . . . 1041Micael Gonçalves, Mark R. Jolly, Konstantinos Salonitis, and Emanuele Pagone

Gas Fired Holding Furnace Modeling for Efficient Operation . . . . . . . . . . . . . . . . 1049Mohamed I. Hassan, Saeed Alshehhi, and Cynthia Belt

Part VI Cast Shop Technology: Fundamentals of Aluminum AlloySolidification Joint Session

In Situ Study of Solidification Kinetics of Al–Cu and Al–Ce–Mg Alloys withApplication of Neutron Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059Joshua Stroh, Tyler Davis, Alexandra McDougal, and Dimitry Sediako

Quantifying the Effects of Grain Refiner Addition on the Solidification ofFe-Rich Intermetallics in Al–Si–Cu Alloys Using In Situ Synchrotron X-RayTomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067Surada Chuaypradit, Chedtha Puncreobutr, André B. Phillion, Julie L. Fife,and Peter D. Lee

An Investigation on Si Refinement Mechanism of Hypereutectic Al-Si viaApplying Ultrasonic Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075R. Haghayeghi, L. C. De Paula, and E. J. Zoqui

Observations of Microhardness and Evolution of Constituents in Al–Zn andZn–Al Specimens with Columnar-to-Equiaxed Grain Transition . . . . . . . . . . . . . 1081Roberto Samuel Rozicki, Alex Iván Kociubczyk, Gustavo Raúl Kramer,and Alicia Esther Ares

Impact of Inlet Flow on Macrosegregation Formation Accounting for GrainMotion and Morphology Evolution in DC Casting of Aluminium . . . . . . . . . . . . . 1089Akash Pakanati, Knut Omdal Tveito, Mohammed M’Hamdi, Hervé Combeau,and Miha Založnik

Effects of Microstructure on Hot Cracking Behavior inAl–Zn–Mg–Cu Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097David Gildemeister

Effective Nanoparticles Feeding Treatment in Casting of A356/ZrO2

Nano-reinforced Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105H. Tiwery, W. Hoziefa, Adel B. El-Shabasy, and I. El-Mahallawi

xvi Contents

Page 16: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Part VII Cast Shop Technology: Recycling and Sustainability Joint Session

Recycling of Oxide from Dross into Aluminum Electrolysis Cells . . . . . . . . . . . . . 1115Martin Syvertsen and Bjarte Øye

Behavior of Mg–Si-Rich Phases in Aluminum Can Sheets and Their Impact onMetal Oxidation During Industrial Thermal Pre-treatment . . . . . . . . . . . . . . . . . . 1123J. Steglich, C. Matthies, M. Rosefort, and B. Friedrich

Potential for Handheld Analyzers to Address Emerging Positive MaterialIdentification (PMI) Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131Leslie Brooks, Teija Mortvedt, Gabrielle Gaustad, and Adam J. Gesing

Dissipative Use of Critical Metals in the Aluminum Industry . . . . . . . . . . . . . . . . 1137Gabrielle Gaustad, Ayomipo Arowosola, Alexandra Leader, and Leslie Brooks

In Situ Observation of Dross Formation During Melting of Al–Mg Alloy . . . . . . 1141Takehito Hiraki, Hitomi Noguchi, Nobuhiro Maruoka, and Tetsuya Nagasaka

The Implementation of a Comprehensive Dross Management Program atConstellium Ravenswood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147James Herbert, Steve Tua, and Erik Grimm

Environmental Impacts of Aluminum Dross After Metal Extraction . . . . . . . . . . 1155Nour Attia, Kareem M. Hassan, and Mohamed I. Hassan

Promotion of Separation of Two-Phase Liquid Metals by Applying MechanicalVibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163Yuichiro Murakami, Shuji Tada, Mingjun Li, Isao Matsui, and Naoki Omura

Part VIII Electrode Technology Symposium for Aluminum Production

Influence of Crushing Technology and Particle Shape on the Bulk Density ofAnode Grade Petroleum Coke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169Frank Cannova, Mike Davidson, Laura Forte, and Barry Sadler

Study on the Calcination Performance and Desulfurization Mechanism ofPetroleum Cokes with Different Sulfur Contents Between 700 and 1100 °C. . . . . 1179Shoulei Gao, Jilai Xue, Guanghui Lang, Rui Liu, Chongai Bao, Zhiguo Wang,and Fali Zhang

Rotary Hearth Calcining of Petroleum Cokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189William F. Barraclough

Effects of High-Sulfur Cokes on Physicochemical Properties of Prebaked Anodesin Aluminium Electrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197Hai-Tao Jiang, Chang-Ting Tang, Zheng-Qing Ma, Ping Zhou, Yuan Li,and Pan-Pan Gao

The Research and Industrial Application of an Improved Impact CleaningTechnology of the Double Anode Butts in Aluminium Electrolysis . . . . . . . . . . . . 1203Youlai Wang, Qiusi Yang, Yong Li, Xiancong Xiao, Lei He, and Hengjun Zhao

Analysis of Material Balance Based on the Calcination Performance of aChamber Calciner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209Sun Jiyun and Wei Dong

Formation of Aluminium Carbide in Hall-Héroult ElectrolysisCell Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215Bronislav Novak, Arne P. Ratvik, Zhaohui Wang, and Tor Grande

Contents xvii

Page 17: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

The Research and Trial of the Aluminum Electrolysis Cells with Current Outfrom the Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223Dongfang Zhou, Yafeng Liu, and Shaohu Tao

Laboratory Study of the Impact of the Cathode Grade on the Formationof Deposits on the Cathode Surface in Hall-Héroult Cells . . . . . . . . . . . . . . . . . . . 1229Jean-René Landry, Mojtaba Fallah Fini, Gervais Soucy, Martin Désilets,Patrick Pelletier, Loig Rivoaland, and Didier Lombard

Understanding the Anode Porosity as a Means for ImprovedAluminium Smelting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235Epma Putri, Geoffrey Brooks, Graeme A. Snook, Stein Rørvik,Lorentz Petter Lossius, and Ingo Eick

Effect of Changes in Anode Top Cover Composition on Anode Butt Quality. . . . 1243Ali Jassim, Edouard Mofor, Jamil Wazir Eddin, Shane Polle, and Daniel Whitfield

Inert Anodes—the Blind Alley to Environmental Friendliness?. . . . . . . . . . . . . . . 1253Asbjørn Solheim

Role of the Porosity of Carbon Anodes in the Nucleation and Growth of GasBubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261Sándor Poncsák and László I. Kiss

Challenges and Successes of Conducting Trials for Anode DesignModification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267D. Molenaar, B. Pillay, Y. Tsuji, and Y. Zhu

Study on Optimization of Anode Structure for Aluminum Reduction Cell . . . . . . 1275Jing Liu, Hui Dong, Yu Mao, Jihong Mao, and Yungang Ban

Effect of Cover Material on the Oxidation Speed of Prebaked Anodes . . . . . . . . . 1285Changlin Li, Yunfeng Zhou, Yanfang Wang, and Dengpeng Chai

Interaction Between Anode Aggregate and Binder in the Sessile DropWetting Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289Bruno Rausch, Juraj Chmelar, Hogne Linga, Lorentz Petter Lossius,Rebecca J. Thorne, and Viktorija Tomkute

Development and Application of Large-Scale Shaft Kilns . . . . . . . . . . . . . . . . . . . 1297Guanghui Lang, Rui Liu, Yujing Jiang, Yan Li, and Ronald Lee Logan

Study on the Property and Desulfurization Mechanisms of Petroleum Cokeswith Different Sulfur Contents from 1200 to 2800 °C . . . . . . . . . . . . . . . . . . . . . . 1303Shoulei Gao, Jilai Xue, Guanghui Lang, Rui Liu, Chongai Bao, Zhiguo Wang,and Fali Zhang

The Current Status and Development Trend of the Prebaked Anode Market inChina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315Shuchao Zhang and Wei Dong

Transport of Sodium in TiB2 Materials Investigated by a Laboratory Test andDFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321Zhaohui Wang, Jesper Friis, and Arne Petter Ratvik

Multi-scale Modelling of Titanium Diboride Degradation Using CrystalElasticity Model and Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1329Afaf Saai, Zhaohui Wang, Micol Pezzotta, Jesper Friis, Arne Petter Ratvik,and Per Erik Vullum

xviii Contents

Page 18: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Simulation on the Initial Stage of Sodium–Graphite Intercalation UsingFirst-Principles Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337Jing Sun, Jilai Xue, Xuan Liu, Zengjie Wang, and Lu Li

Cathode Structure Optimization Research for Aluminum Reduction Cell . . . . . . 1345Yungang Ban, Jing Liu, Yu Mao, and Jihong Mao

Research on the Penetration of a Potassium-Based Electrolyte into Dry BarrierMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353Shengzhong Bao, Dengpeng Chai, Xiaoxing Li, and Zhirong Shi

Development and Application of Electrocalciners with Increased CalcinationTemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363Yi Yang, Shikai Gong, Qianjin Ning, Xiaosong Zhou, and Hengjun Zhao

3D Transient Modelling of a Complete Fire Line for Anode Baking FurnaceDesign and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1373Arnaud Bourgier, Sandra Besson, and Jean-Philippe Schneider

A Study of Anode Baking Gas Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379Thor A. Aarhaug, Trond Brandvik, Ole S. Kjos, Heiko Gaertner, and Arne P. Ratvik

Improved Compaction Method for the Production of Large Scale Anode PasteSamples for Thermomechanical Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . 1387Bowen Chen, Donald Picard, Soufiane Zaglafi, Houshang Alamdari, Donald Ziegler,and Mario Fafard

Systemic Analysis for the Selection of Anode Baking Furnace Refractories . . . . . 1397Mariana A. L. Braulio, Valerie MacNair, and Victor C. Pandolfelli

Numerical Investigation of the Thermomechanical Behaviour of Anode Butt . . . 1403Simon-Olivier Tremblay, Daniel Marceau, Patrick Coulombe, Jules Côté,and Duygu Kocaefe

Method of Defining the Degree of Impregnation of the Dry Aggregate with Pitchin the Process of Anode Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1413Victor Buzunov, Sergey Khramenko, Semen Zykov, and John A. Johnson

Research and Application for Large Scale, High Efficiency and Energy SavingBaking Furnace Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419Liu Chaodong, Cui Yinhe, Zhou Shanhong, Xu Haifei, and Sun Yi

Opportunities and Challenges Associated to Green Anode Plant Upgrade ForSmelter Amperage Creeping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425Christophe Bouché, Bertrand Somnard, and Pasquale Calo

Part IX Perfluorocarbon Generation and Emissions from Industrial Processes

Conditions and Mechanisms of Gas Emissions from Didymium Electrolysisand Its Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435Ksenija Milicevic, Dominic Feldhaus, and Bernd Friedrich

Perfluorocarbon Formation During Rare Earth Electrolysis . . . . . . . . . . . . . . . . . 1443Karen Sende Osen, Ana Maria Martinez, Henrik Gudbrandsen, Anne Støre,Camilla Sommerseth, Ole Kjos, Thor Anders Aarhaug, Heiko Gaertner,Pierre Chamelot, Mathieu Gibilaro, and Laurent Massot

PFC Evolution Characteristics During Aluminium and RareEarth Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449Ole S. Kjos, Asbjørn Solheim, Thor Aarhaug, Karen Sende Osen,Ana Maria Martinez, Camilla Sommerseth, Henrik Gudbrandsen, Anne Støre,and Heiko Gaertner

Contents xix

Page 19: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Evaluation of Time Consistency When Quantifying Emissions ofPerfluorocarbons Resulting from Low Voltage Anode Effects . . . . . . . . . . . . . . . . 1457Lukas Dion, Pernelle Nunez, David Wong, Simon Gaboury, and Alexey Spirin

Low Voltage PFC Measurements and Potential Alternative to Reduce Them atAlcoa Smelters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463Eliezer Batista, Luis Espinoza-Nava, Christopher Tulga, Richard Marcotte,Yan Duchemin, and Petre Manolescu

New Approach for Quantification of Perfluorocarbons Resulting from HighVoltage Anode Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469Lukas Dion, Simon Gaboury, László I. Kiss, Sándor Poncsák,and Charles-Luc Lagacé

New Algorithm for Calculating CF4 Emissions from High VoltageAnode Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479Jerry Marks and Pernelle Nunez

Validation of Online Monitoring of PFC by QCL with FTIR Spectroscopy . . . . . 1487Thor A. Aarhaug, Alain Ferber, Heiko Gaertner, Steinar Kolås, Sven Olof Ryman,and Peter Geiser

PFC Emission Reduction in the Semiconductor Industry. . . . . . . . . . . . . . . . . . . . 1495Michael Czerniak

Challenges in Estimating Global CF4 and C2F6 Emissions. . . . . . . . . . . . . . . . . . . 1499Eleni Michalopoulou

An Estimation of PFC Emission by Rare Earth Electrolysis . . . . . . . . . . . . . . . . . 1507Hanno Vogel and Bernd Friedrich

Updated Factors for Calculating PFC Emissions from Primary AluminumProduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519Jerry Marks and Pernelle Nunez

PFCs from the Chinese Aluminium Sector—Challenges in Emissions Accountingand Further Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527David S. Wong, Xiping Chen, Bofeng Cai, Xin Bo, and Pernelle Nunez

Part X Scandium Extraction and Use in Aluminum Alloys

Scandium Recovery from the Nyngan Laterite Project in NSW . . . . . . . . . . . . . . 1539Nigel J. Ricketts and Willem P. C. Duyvesteyn

Extraction of Scandium from Lateritic Nickel-Cobalt Ore Leach Solution by IonExchange: A Special Study and Literature Review on Previous Works . . . . . . . . 1545Yiğit Altinsel, Yavuz Topkaya, Şerif Kaya, and Bülent Şentürk

Electrochemical Formation of Alloys of Scandium in Molten Salts . . . . . . . . . . . . 1555Çağlar Polat, Metehan Erdoğan, Ali Safder İplikçioğlu, and İshak Karakaya

Direct Method for Producing Scandium Metal and Scandium-AluminiumIntermetallic Compounds from the Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559Ana Maria Martinez, Karen Sende Osen, Henrik Gudbrandsen, Camilla Sommerseth,Zhaohui Wang, and Ove Darell

Sc Applications in Aluminum Alloys: Overview of Russian Researchin the 20th Century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565Dmitry G. Eskin

xx Contents

Page 20: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Effect of Treatment Parameters on Structure, Mechanical and CorrosionProperties of Al-Mg-Sc Alloy Forgings with Reduced Concentrationof Scandium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573A. Yu. Krokhin, V. Kh. Mann, D. K. Ryabov, and N. A. Babitskiy

Mechanical Properties and Applications of Aluminum Scandium Alloys atElevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1581Gregory Hildeman and Ken Koldenhoven

Scandium-Enriched Nanoprecipitates in Aluminum Providing EnhancedCoarsening and Creep Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1589Anthony De Luca, David C. Dunand, and David N. Seidman

The Effect of Scandium and Zirconium on the Microstructure, MechanicalProperties and Formability of a Model Al–Cu Alloy . . . . . . . . . . . . . . . . . . . . . . . 1595Thomas Dorin, Mahendra Ramajayam, Katrin Mester, Baptiste Rouxel, Justin Lamb,and Timothy J. Langan

Influence of the Al3(Sc,Zr) Dispersoids and the Stretching on the Natural AgeingBehavior of a Binary Al-4 wt%Cu Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1601Baptiste Rouxel, Katrin Mester, Alizera Vahid, Justin Lamb, Timothy Langan,and Thomas Dorin

Design and Processing Conditions of Hypoeutectic Al–Cu–Sc Alloys forMaximum Benefit of Scandium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1609A.-A. Bogno, H. Henein, and M. Gallerneault

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1617

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1625

Contents xxi

Page 21: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

About the Editor

Olivier Martin is Senior Technologist—Reduction for RioTinto. He holds a master’s degree from the National School ofChemistry of Paris.

In the course of an international career spanning 30 years, hehas contributed to the development of the primary smeltingprocess as well as to improve its operation, with long-termassignments in France, Greece, and Mozambique and countlessshort-term assignments all over the globe.

During his time in smelter operations, he mainly contributed tothe development and implementation of operational best practicesthrough his role in Continuous Improvement. He was alsoengaged in smelter commissioning and start-up, thereby helpingto put into operation smelting technologies in whose design hehimself had played an important part.

However, it is in the R&D field that he spent most of his careerand made his most significant contribution. His initial field ofexpertise was the numerical simulation of magnetohydrodynamicphenomena, through which he developed numerous innovativebusbar systems and played a major part in the design of RioTinto’s latest cell technology, the AP60. Over time, he hasbroadened the scope of his activity to cover overall cell designand process control up to the point of coordinating the workof the various specialists today engaged in the design of the latestreduction cell.

Highlights among his main innovations include innovativecathode systems and key algorithms of the Alpsys pot controlsystem, which is today controlling thousands of pots in more than20 potlines around the world.

He has worked relentlessly to ensure the effective cooperationof a team of experts around the world in the continuousdevelopment of powerful, versatile, and fast numerical simulationmodels which are today used in cell design as well as in thetechnical diagnosis of problems in operating pots.

He has also authored numerous papers for TMS andAustralasian conferences and holds more than 10 patents. He hasserved The Minerals, Metals & Materials Society (TMS) asSession Chair five times, as Subject Chair for AluminumReduction Technology in 2012, and as a member of theAluminum Committee.

xxiii

Page 22: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Program Organizers

Alumina and Bauxite

Linus Perander is working as Head of Calcination with Outotec,where he is responsible for the process design, product development,and delivery of CFB calciners used for alumina production as well asthermal processing of a wide range of ores and minerals. Prior to takingup this role, he worked as a Senior Research Engineer, and later as aProject Manager, at the Light Metals Research Centre (The Universityof Auckland, New Zealand) while attaining his doctorate.

Linus holds a decade of industrial experience and more than 8 yearsof academic experience, mainly from the fields of alumina andaluminum production and research. In his professional career, he hasbeen involved in all stages of project delivery, from concept design andstudies, through basic and detailed engineering and into commissioning.In addition, he has a strongR&Dand productmanagement background.

Linus’s academic experience also relates mainly to the alumina andaluminum production processes. Much of his work is focused on howthe calcination process influences the alumina properties and qualityand furthermore what consequences this has when the material is usedas a feedstock and scrubbingmedium in the aluminum smelter. He hasauthored/presented over 30 publications in international peer-reviewedjournals and industry-relevant conference proceedings (including eightTMS contributions) and helped compile the TMS volume EssentialReadings in Light Metals: Alumina and Bauxite (2013).

Aluminum Alloys, Processing and Characterization

XiyuWen is a Senior Research Associate for the Center for AluminumTechnology, Engineering College of University of Kentucky. Hegraduated in 1983 at the Jilin University in P. R. China with a B.S.degree in Physics. Hewas a faculty member for 3 years at the NortheastHeavy Machinery Institute, P. R. China. In 1989, he obtained anM.S. degree in Materials Science from Yanshan University inP. R. China, where he worked again as Associate Professor inTeaching and Research in Materials Science. He received his Ph.D.degree from The Hong Kong Polytechnic University in 2000.

His current research work focuses on the physical andmechanical metallurgy mainly concerned with mechanical proper-ties, textures, and microstructures of metal materials/sheet metalforming. His special research field is about applications, develop-ment, and processing of aluminum and aluminum alloys.

He has served The Minerals, Metals & Materials Society(TMS) as Session Chair for Aluminum Alloys from 2010 to 2016and Co-subject Chair for Aluminum Alloys in 2014.

xxv

Page 23: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Aluminum Reduction Technology

Abdalla Alzarooni holds a master degree in Chemical &Materials Engineering from the University of Auckland, NewZealand, and bachelor degree in Mechanical Engineering fromUnited Arab Emirates University. He began his industrial careerjust after graduation in 2001 with Emirates Global Aluminium. Heinitially worked in the Carbon Plant maintenance department for1½ years. Later, he worked in EGA’s Technology Development &Transfer department on the development of EGA’s high amperagetechnologies: CD26, DX, and DX+ Ultra. He is also responsiblefor the development and/or improvement of existing EGAtechnologies: D18/D18+, CD20/D20/D20+, and CD26. He hasbeen part of the successful technology implementation of EMALphases 1 & 2 with DX and DX+ technologies, as well as the recentDX+ Ultra technology licensing for ALBA Line 6 Expansionproject.

In addition to aluminum smelting technology development, twonew responsibilities were added to his R&D portfolio recently.The first is Bauxite Residue R&D, where the objective is to find along-term solution for the reuse of bauxite residue that will begenerated from EGA’s Al Taweelah Refinery. The second is theEGA Centre of Excellence, where the objective is to oversee andmanage innovations and research activities for all EGA opera-tional departments in collaboration with local and internationaluniversities.

Cast Shop Technology

Mark Badowski is Program Manager at the Hydro Research &Development Center Bonn, Germany. He graduated from theRTWH Aachen University in 1999 with a Dipl.-Ing. degree inMetallurgy. Mark was a research assistant at the Institute of MetalForming for 4 years and in 2005 received his Ph.D. for his workon vertical strip casting of steel.

His current work focuses on liquid metal processing in the casthouse and the strategic alignment of the research activities in thisfield. Mark’s particular interests are in melt quality monitoring,especially the monitoring of nonmetallic inclusions and inclusionremoval technologies.

He has served The Minerals, Metals & Materials Society(TMS) as Session Chair for Cast Shop Technology over severalyears.

xxvi Program Organizers

Page 24: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Cast Shop Technology: Energy Joint Session

Mark Badowski (see previous page)

Cast Shop Technology: Fundamentals of Aluminum Alloy SolidificationJoint Session

André Phillion is an Associate Professor in the Department ofMaterials Science and Engineering at McMaster University, Hamil-ton, Canada. His research interests focus onmathematical modeling ofmaterials and processes and 3D imaging and image analysis. Themainfocus of the research is to experimentally investigate and numericallysimulate solidification acrossmultiple length scales in order to developnew relationships linking heat transfer and fluid flow at themacroscalewith microstructure and defects. He received his Ph.D. from theDepartment of Materials Engineering at The University of BritishColumbia in 2007, where he combined high-temperature experimentalmethods with multi-scale modeling to investigate solidificationprocesses and casting defects. He also worked at Ecole PolytechniqueFederale de Lausanne (2008–2009) and UBC’s Okanagan campus(2010–2015). In 2014, he was awarded the Brimacombe Award bythe Canadian Institute of Mining, Metallurgy and Petroleum.

Cast Shop Technology: Recycling and Sustainability Joint Session

Mark Badowski (see previous page)

Electrode Technology

Xianan Liao is a specialist of Elkem Metal Canada INC. He gotbachelor andmaster degrees in 1982 and 1987, respectively, in thefieldof nonferrousmetallurgy fromCentral SouthUniversity of Technology(CSUT) of China. He worked at Zhengzhou Aluminium Smelter fortwo years (1982–1984). He worked in CSUT for 7 years (1987–1992and 1994–1995) as assistant lecturer, lecturer, and associate professorsuccessively. He worked in Imperial College of Science andTechnology of UK for 1 year (1992–1993). He did his Ph.D. atNorwegian University of Science and Technology (NTNU) in 1995–1998. He has been working for ElkemMetal Canada INC since 1999.

He served The Minerals, Metals & Materials Society (TMS) asSession Chair for Electrode Technology in 2014–2015.

Perfluorocarbon Generation and Emissions from Industrial Processes

Pascal Lavoie obtained his bachelor’s degree in Materials andMetallurgical Engineering fromUniversité Laval, Québec. He joinedNoranda’s Magnola magnesium smelter as process engineer. WhenMagnola was curtailed, hemoved toNorandaNewMadrid smelter asmetallurgical process engineer and obtained a black belt certification.In 2006, he joined the LightMetals Research Centre of the Universityof Auckland as Manager—International projects. He led a teamconducting more than 40 industrially based R&D projects. Since2011, he has been Chief Engineer of the Centre. Now a consultantbased in Canada, he provides technical support to smelting operationsand reduction technologies. In 2006, he received the TMS LightMetals Division Young Leaders award and has been on the LMDCouncil and various committees since and is currently the JOMadvisor for the Aluminum Committee.

Program Organizers xxvii

Page 25: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Scandium Extraction and Use in Aluminum Alloys

John Grandfield is Director of Grandfield Technology Pty Ltd (aconsulting and technology firm) and Adjunct Professor at Swin-burne University of Technology in the High TemperatureProcessing Group.

John has a Bachelor of Applied Science in Metallurgy (RMIT),an M.Sc. in Mathematical Modelling (Monash University), and aPh.D. in Materials Science (University of Queensland).

John has 30 years’ experience in light metals research andtechnology in continuous casting and metal refining (Rio TintoAlcan, CASTcrc, and CSIRO). He has conducted plant bench-marking audits, technology reviews, optimized existing technol-ogy, managed technology transfer, and developed andcommercialized new cast house technologies. He remains activein research with a current focus on trace elements and shrinkagecavity control.

His work on direct chill and ingot casting of aluminum andmagnesium has been awarded both internationally and withinAustralia. John is regularly invited to give training courses,participate in in-house innovation workshops, and conduct R&Dprogram reviews around the world.

John also conducts metals industry analysis on the tungsten andmagnesium industries with analysts CM Group.

John has four patents, has published two book chapters, morethan 50 conference and journal papers, and has coauthored a bookon DC casting of light metals. He was Chair of the TMSAluminum Committee and editor of Light Metals 2014.

xxviii Program Organizers

Page 26: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Aluminum Committee 2017–2021

ChairpersonArne P. Ratvik, SINTEF, Trondheim, Norway

Vice ChairpersonOlivier Martin, Rio Tinto Alcan, Saint Jean, France

Past ChairpersonEdward McRae Williams, Arconic, Pennsylvania, USA

Director-at-LargeBarry A. Sadler, Net Carbon Consulting Pty Ltd, Victoria, Australia

SecretaryStephan Broek, Hatch Ltd, Ontario, Canada

JOM AdvisorPascal Lavoie, Quebec, Canada

Light Metals Division ChairAlan A. Luo, Ohio State University, Ohio, USA

Members Through 2018

Member-at-LargeMark M. Dorreen, University of Auckland, Auckland, New Zealand

MemberJohn F. Grandfield, Grandfield Technology Pty Ltd, Victoria, Australia

Members Through 2019

Members-at-LargeMarc Dupuis, GeniSim Inc, Quebec, CanadaBingliang Gao, Northeastern University, Shenyang, China

MembersPete Forakis, STAS Middle East Ltd FZE, Sharjah, UAEJohn V. Griffin, ACT LLC, New Jersey, USAMargaret M. Hyland, University of Auckland, Auckland, New ZealandPascal Lavoie, Quebec, CanadaHans-Werner Schmidt, Outotec GmbH, Oberursel, GermanyAlan David Tomsett, Pacific Aluminium, Queensland, Australia

xxix

Page 27: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Members Through 2020

MembersAngelique N. Adams, Alcoa Inc, Tennessee, USAPhil Black, Regain Materials, Melbourne, AustraliaStephan Broek, Hatch Ltd, Ontario, CanadaMohamed I. Hassan Ali, Masdar Institute of Science and Technology, Abu Dhabi, UAEEdward McRae Williams, Arconic, Pennsylvania, USA

Members Through 2021

MemberArne P. Ratvik, SINTEF, Trondheim, Norway

xxx Aluminum Committee 2017–2021

Page 28: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Part I

Alumina and Bauxite

Page 29: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Roasting Pretreatment-Low TemperatureDigestion Method for ComprehensiveUtilization of High-Sulfur Bauxite

Dong Lu, Guozhi Lyu, Ting-an Zhang, Weiguang Zhang, Dong Xie,Yanxiu Wang, and Long Wang

AbstractThe Roasting Pretreatment-Low temperature DigestionMethod developed by the Northeastern University ispresented in this paper, aiming for the comprehensiveutilization of high-sulfur bauxite. Experimental resultsshow that pre-roasting of the bauxite in a fluidized bedcan effectively remove pyrite sulfur, and that the removalis increased with the increase of roasting temperature androasting time. When the roasting temperature is 850 °C,the roasting time is 10 min the sulfur content in thebauxite can be reduced to below 0.2%. The digestionperformance of the roasted ore was better than for the rawore. This indicates that a low energy consumptionproduction process with high-sulfur bauxite can beachieved by this method.

KeywordsHigh-sulfur bauxite � Roasting � DesulphurizationLow temperature digestion

Introduction

There are about 150 million tons of high sulfur bauxite inChina, however this bauxite can’t be efficiently used inalumina production because the associated problems with

equipment corrosion while using high sulfur bauxite inBayer process are unresolved. In recent years, there has beena lot of research on metal sulfides treatment, roasting andsettling performance of bauxite and desulphurization of highsulfur bauxite [1–9]. In some studies, a flotation process hadbeen used to remove sulfate in Bayer process [8–10], but thismethod can’t solve the harm of sulfur element in digestionprocess such as corrosion of equipment, and the cost of thisprocess is comparatively high. However, only a limitedamount research can be found about roasting pretreatment ofthe bauxite and on the impact on desulphurization and theinfluence of subsequent digestion and digestion conditions.

This paper describes a study on the desulphurization ofbauxite by roasting pretreatment, the impact on digestionconditions, in order to provide theoretical basis for theindustrial application of high sulfur bauxite.

Experiment

Raw Materials

The chemical composition of high-sulfur bauxite fromGuizhou province of China are listed in Table 1, the Al2O3

content is 64.68%, the SiO2 content of 9.47%, A/S is 6.82, Scontent as high as 2.91%.

The results from the mineral phase analysis of the bauxiteore are shown in Fig. 1. As can be seen the main constituentin high sulfur bauxite is diaspore, a certain amount of ana-tase and pyrite can also be seen. It is also seen that the sulfurmainly exists in the form of pyrite (FeS2).

The main reagents for these experiments such as alu-minum hydroxide, sodium hydroxide, calcium oxide are allanalytically pure reagents.

D. Lu � G. Lyu � T. Zhang (&) � W. Zhang � D. Xie � Y. Wang �L. WangKey Laboratory of Ecological Metallurgy of Multi-MetalIntergrown Ores of Ministry of Education, Special Metallurgyand Process Engineering Institute, Northeastern University,Shenyang, 110819, Liaoning, Chinae-mail: [email protected]

D. Lu � G. Lyu � T. Zhang � W. Zhang � D. Xie � Y. Wang �L. WangChinese Aluminum Corporation of Chongqing Branch,Chongqing, 400000, China

© The Minerals, Metals & Materials Society 2018O. Martin (ed.), Light Metals 2018, The Minerals, Metals & Materials Series,https://doi.org/10.1007/978-3-319-72284-9_1

3

Page 30: 18 - download.e-bookshelf.de · Editor Olivier Martin Rio Tinto Alcan Saint Jean France ISSN 2367-1181 ISSN 2367-1696 (electronic) The Minerals, Metals & Materials Series ISBN 978-3-319-72283-2

Experiment Description and AnalyticalProcedures

(1) Roasting desulphurization experiments

A fluidized bed of S-5-12 type (Fig. 2, Shenyang, China)was used in the roasting pretreatment experiments toinvestigate different process conditions such as roastingtemperature, roasting time impact on the state and sulfurcontent in the bauxite.

The fluidized bed was heated for a certain time and therespective target temperature reached, the bauxite (milledinto −200 lm) was added from the top of fluidized bed, andO2 (0.9 m3 h−1) was injected from the bottom of the reactor.When the bauxite and O2 were added into the system, thetemperature was observed to decrease about 15–30 °C.When the temperature increased back to the target temper-ature (about 1–3 min), the reaction time was started. After acertain time roasting, the roasted ore was collected with themore than 5 m3 h−1 gas carrying of O2.

(2) The Bayer process digestion experiments

The digestion experiments were performed in a WHFS-1autoclave (Weihai, China). The original liquid (prepared byNaOH and Al(OH)3), lime and bauxite(or roasted ores) wereplaced in the autoclave together. The temperature of theautoclave was increased to a predetermined value, and thenheld fixed for a certain time for each process. After the

reaction, the temperature of the autoclave was cooled tobelow 100 °C. The digested slurry was separated into solidand liquid parts by filtration.

The following formula was used to determine the diges-tion liquid molar ratio:

Table 1 High sulfur bauxite main chemical composition

Composition Al2O3 SiO2 Fe Ti Ca Mg S

Content (%) 64.68 9.47 2.57 1.902 0.31 0.13 2.91

10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

3 3

22

111

111

1

1

1

intens

ity

2

1 AlO(OH)2 TiO2

3 FeS2

1

2

3

Fig. 1 High sulfur bauxite XRD phase analysis

O2

Preheat area of O2

Reaction area

Fig. 2 Schematic diagram of fluidized bed

0

500

1000

1500

2000

2500

3000

3500

4000

3

3

33

22

2

1 Al2 O3

2 SiO2

3 Fe2 O3

intens

ity

2 3

10 20 30 40 50 60 70 80 90 100

Fig. 3 Phase analysis of high sulfur bauxite after roasting

4 D. Lu et al.