17_defl_print.pdf

download 17_defl_print.pdf

of 61

Transcript of 17_defl_print.pdf

  • 7/30/2019 17_defl_print.pdf

    1/61

    . . . . . .

    Lecture : Bending (V) Deflection of Beams

    Yubao Zhen

    Nov ,

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    2/61

    . . . . . .

    Review: The Shear Formula

    . fully stressed beams

    . Transverse shear stress: =

    VQ

    Ib obtained via longitudinal shear stress location of neutral axis Calculation ofQ (using the outer part aboutNA) direction: in accord with V

    . transverse shear stress varies along the height

    . limitations on the application of shear formula

    two assumptions: . V; . uniform over width

    .

    results on typical cross-sectionsrectangular: (max.

    avg)

    circular (solid): (max.

    avg)

    wide-flange: Q calculation

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    3/61

    . . . . . .

    Outline

    . elastic/deflection curve (/)

    characteristics, notations and conventions

    . differential equations for elastic curve

    bending-moment eqn., shear-force eqn. and load eqn.

    . integration method for elastic curve ()

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    4/61

    . Elastic/deflection curve

    (/)

    . . . . . .

  • 7/30/2019 17_defl_print.pdf

    5/61

    . . . . . .

    Shape of bent beams

    Observations:

    deformation of beams subjected to lateral loads

    longitudinal axis becomes curved after deformation

    continuous and differentiable (at least to the first order)

    small slope assumption (angles between xand tangents to curve )

    deflection (): vertical displacement of any point on the axis

    static: structure design (deformation/stiffness control)

    dynamic: response of dynamic loadings (vibrations, etc.)

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    6/61

    . . . . . .

    The elastic/deflection curve

    On the deflected shape of the beamelastic curve ()

    The deflection diagram of the longitudinal axis that passes through the centroid of each

    cross-sectional area of the beam

    deflection curve ()

    the deformed shape of the originally straight longitudinal axis of a beamwhen it is

    subjected to lateral forces

    strategy for determination:

    curve () curvature () bending moment ()

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    7/61

    . . . . . .

    Notation and sign convention for deflection

    x

    v

    v(x)

    (x)

    v

    v

    (x

    )

    positive sensenegative sense

    (x)

    F

    F

    longitudinal axis: x, positive: to the right

    deflection: v, positive: upward

    deflection angle ()/angle of rotation: , positive: counter-clockwise

    curvature and radius of curvature :

    follow that of bending momentM

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    8/61

    . . . . . .

    Curvature and deflection angle

    y

    xA B

    v dv

    du

    O

    x dx

    dsv

    m1

    m2

    r

    du

    m1

    m2

    ds

    u

    u du

    dxxx

    v

    v dv

    d= ds, =

    =

    d

    ds

    d

    dx(see below)

    cos =dx

    ds, dx= ds cos ds(

    +

    )

    deflection angle: tan =dv

    dx( ); curvature:

    dv

    dx

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    9/61

    . . . . . .

    Sign convention with xreversed

    d

    xx

    ds

    A

    B

    O

    v v

    v

    v + dv

    dx

    dx

    = dx d

    ifxpoints to left, for a physical segment,

    algebraically:

    =

    dv

    dx=

    dv

    dx=

    dv

    dx=

    =

    d

    dx

    =

    d

    (

    )dx=

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    10/61

    . Differential equations for

    deflection curve

    . . . . . .

  • 7/30/2019 17_defl_print.pdf

    11/61

    . . . . . .

    Deflection angle and deflection

    x dx

    v

    v + dv

    A

    B

    ds

    + d

    d

    Relations between , deflection v, and

    curvature

    tan =dv

    dx, = arctan

    dv

    dx, =

    =

    d

    ds

    ds =

    + dv

    dxdx

    For small deflection angles, ,

    ds

    dx =

    =

    d

    ds=

    d

    dx

    tan =dv

    dx

    d

    dx=

    dv

    dx

    =

    =

    dv

    dx

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    12/61

    . . . . . .

    Deflection angle and deflection an alternative way

    from calculus ()

    =

    dv

    dx

    +

    (dv

    dx

    )

    /

    dv

    dx, here

    dv

    dx

    =dvdx

    =

    all the above relations arevalid for any material, provided that

    consistent with the sign conventions

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    13/61

    . . . . . .

    Connecting deflection curve to applied moment

    moment-curvature relation (review)

    =

    ds

    ds

    dsdx= ds = d

    ds

    =

    ( y

    )d

    =( y)ddd =

    y

    = y

    =

    E=

    My

    EI

    =

    =

    M

    EI

    : radius of curvature

    :curvature

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    14/61

    . . . . . .

    Differential equations of the deflection curve

    combining =dv

    dxand =

    M

    EI

    dv

    dx=

    M

    EI

    (M(x): bending moment, EI: flexural rigidity/stiffness ())differential equations of the deflection curve (EI= const.)

    ()

    EIdv

    dx=M(x) bending-moment equation

    dM

    dx= V

    (x

    ) EI

    dv

    dx= V

    (x

    )shear-force equation

    dV

    dx= q(x) EIdv

    dx= q(x) load equation

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    15/61

    . . . . . .

    Generalization of the diff. eqn. of deflection curve

    For non-uniform EI(e.g. non-prismatic bars)

    EI

    (x

    )dv

    dx=M

    (x

    )bending-moment equation

    dMdx

    = V(x) ddxEI(x)dvdx = V(x) shear-force equationdV

    dx= q

    (x

    )

    d

    dx

    EI

    (x

    )dv

    dx

    = q

    (x

    )load equation

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    16/61

    . . . . . .

    Remarks on the diff. eqns.

    EI

    dv

    dx,dv

    dx,dv

    dx=

    (M

    (x

    ),V

    (x

    ), q

    (x

    ))all q(x),V(x),M(x) may containjumps, hence only dv

    dxand vare

    continuous.

    For piece-wise q(x),V(x),M(x), diff. eqn. has a piece-wise () formfor given load, any form of the three is applicableEqn. solving requires integration to get vand

    dv

    dxon the integration constants

    .

    source boundary conditions () and continuity conditions ().

    . number of integration constants () M, ; V, ; q,

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    17/61

    . Sketching deflection curves

    . . . . . .

  • 7/30/2019 17_defl_print.pdf

    18/61

    . . . . . .

    Characteristic values on the deflection curve

    maximum deflection ()

    conditions: inner points: dv/dx= , or at outer boundary pointsinflection point ()

    where curvature changes its sign

    max. deflection angle ()

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    19/61

    . . . . . .

    Sketching () the deflection curve rules

    Sketching the shape before actual solving:

    . local curvature followsM application ofmoment diagram

    sign of internal moment convex/concave shape

    . respect the constraints.

    support that resists a force displacement constraint support that resists a moment rotation constraint combination of the above

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Th l l d fl i

  • 7/30/2019 17_defl_print.pdf

    20/61

    . . . . . .

    The local curvature on a deflection curve

    with =M

    EI

    local curvature follows strictly the sense of localM

    xwhereM(x) = inflection point ( = )

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Sk hi h d fl i ill i

  • 7/30/2019 17_defl_print.pdf

    21/61

    . . . . . .

    Sketching the deflection curve an illustration

    () Lecture : Bending (V) Deflection of Beams Nov , /

    F th ill t ti

  • 7/30/2019 17_defl_print.pdf

    22/61

    . . . . . .

    Further illustration

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    23/61

    . Integration method

    for deflection curve

    ()

    . . . . . .

    Solving the diff eqn of deflection curve

  • 7/30/2019 17_defl_print.pdf

    24/61

    . . . . . .

    Solving the diff. eqn. of deflection curve

    basic idea and procedure

    choose one type of eqn.integrate consecutively () up to v

    apply any of the known conditions on shear, moment, slope or

    displacement to solve integration constants

    substitute back

    conditions for integration constants determination

    . boundary conditions (usually at the supports)

    . continuity conditions (usually at places of jumps)

    matching continuous quantities at connections of ranges (usually vanddv

    dx)

    . symmetry conditions (subset in the above two types)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Typical constraints in terms of v M and V

  • 7/30/2019 17_defl_print.pdf

    25/61

    . . . . . .

    Typical constraints in terms ofv, , Mand V

    correspondence:

    v, dv

    dx, M

    dv

    dx, V

    dv

    dx

    () Lecture : Bending (V) Deflection of Beams Nov , /

    The continuity conditions

  • 7/30/2019 17_defl_print.pdf

    26/61

    . . . . . .

    The continuity conditions

    A BC

    C

    A B

    (v)AC=(v)CB

    (v)AC=(v)CB

    At point C:

    FIG. 9-7 Continuity conditions at

    point C

    ensure continuity of

    . deflection v

    . deflection angledv

    dx

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Application of the continuity conditions

  • 7/30/2019 17_defl_print.pdf

    27/61

    . . . . . .

    Application of the continuity conditions

    x1

    x2

    v

    v

    A

    B

    dv

    dx1

    dx2

    opposite xcoordinates

    conditions matching in uniform/opposite xsystems:

    right-going x: v,dv

    dx,dv

    dx ,dv

    dxpiece-wise function in x(common origin, same direction)

    left-going x: v, dv

    dx,dv

    dx,

    dv

    dxpiece-wise function in x(different origins, opposite directions)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example

  • 7/30/2019 17_defl_print.pdf

    28/61

    . . . . . .

    Example

    Determine elastic curve for the cantilever beam (EI= const.)

    P

    A B

    xL

    vA A

    . set up coordinate system

    . FBDmomentM= Px

    . Apply bending-moment equation

    EIdv

    dx= Px

    EIdv

    dx=

    Px

    + C

    EIv= Px

    + Cx+ C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont )

  • 7/30/2019 17_defl_print.pdf

    29/61

    . . . . . .

    Example (cont.)

    P

    A B

    xL

    vA A

    . apply B.C.s at B (x= L)

    v x=L = vx=L = =

    PL

    + C, =

    PL

    + CL + C

    C =PL

    , C =

    PL

    . substituting constants into results

    =P

    EI(L x),

    v=P

    EI(x + Lx L

    ) check the max/min valuesmax = A =

    PL

    EI, vmax = vA =

    PL

    EI

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example - page

  • 7/30/2019 17_defl_print.pdf

    30/61

    . . . . . .

    Example : example , page

    Determine the equation of the deflection curve for a simple beamAB supporting

    a uniform load of intensity q acting throughout the span of the beam. Also,determine the maximum deflection max at the midpoint of the beam and the

    angles of rotation A and B at the supports. (Note: The beam has lengthL and

    constant flexural rigidity EI.)

    B

    q

    L

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example -, page (cont.)

  • 7/30/2019 17_defl_print.pdf

    31/61

    . . . . . .

    Example : example , page (cont.)

    A

    x

    M

    V

    q

    qL2

    (b)

    dmax

    y

    xA B

    uA uB

    L2

    L2

    trick: determine the integration

    constants ASAP

    solution:

    . bending moment through balance eqn.

    M(x) = qLx

    qx

    . bending-moment equation

    EIv

    =

    qLx

    qx

    . integrate once angle of rotation

    EIv

    =

    qLx

    qx

    + C

    symmetry condition: v

    (x=

    L

    )=

    C = qL

    EIv

    =

    qLx

    qx

    qL

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example -, page (cont.)

  • 7/30/2019 17_defl_print.pdf

    32/61

    . . . . . .

    Example : example , page (cont.)

    A B

    q

    L

    (b)

    dmax

    y

    xA B

    uA uB

    L

    2

    L

    2

    . integrate again deflection

    EIv=qLx

    qx

    qL

    x+ C

    B.C.: v(x= ) = C = . Hence

    v= qx

    EI

    (L Lx + x

    ) the maxdue to symmetry: max = v(L

    ) = qL

    EI(downward)

    . angles of rotation at the supports

    A = v() = qLEI (clockwise)

    B = v

    (L

    )=

    qL

    EI(counter-clockwise)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example -, page

  • 7/30/2019 17_defl_print.pdf

    33/61

    . . . . . .

    p p , p g

    Determine the equation of the deflection curve for a cantilever beamAB subjected

    to a uniform load of intensity q. Also, determine the angle of rotation B and thedeflection B at the free end. (Note: The beam has length L and constant flexural

    rigidity EI.)

    AB

    q

    L

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example -, page (cont.)

  • 7/30/2019 17_defl_print.pdf

    34/61

    . . . . . .

    p p , p g ( )

    A

    x

    M

    V

    q

    qL

    qL2

    2

    y

    x

    (b)

    A B

    dB

    uB

    trick: determine the integration

    constants ASAP

    solution:

    . bending moment through balance eqn.

    M(x) = qL

    + qLxqx

    . bending-moment equation

    EIv

    =

    qL

    +

    qLx

    qx

    . integrate once angle of rotation

    EIv

    =

    qLx

    +

    qLx

    qx

    + C

    Boundary condition: v

    (x=

    )=

    C =

    EIv

    =

    qLx

    +

    qLx

    qx

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : example -, page (cont.)

  • 7/30/2019 17_defl_print.pdf

    35/61

    . . . . . .

    p p p g

    AB

    q

    L

    y

    x

    (b)

    A B

    dB

    uB

    . integrate twice deflection

    EIv= qLx

    +

    qLx

    qx

    + C

    Boundary condition: v

    (x=

    )=

    C =

    Hence: v= qx

    EI(L Lx+ x) at the free end (x= L)

    B = v

    (x= L

    )=

    qL

    EI(clockwise)

    B = v(x= L) = qLEI (downward)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : Hibbelers book, example -, p.

  • 7/30/2019 17_defl_print.pdf

    36/61

    . . . . . .

    p p pProblem: For the given load, determine the vmax, EI=const.

    . set up coordinate system

    . symmetric, work with half. w = wL

    x.

    M= M+wx

    Lx wL

    x=

    internal moment: M= wx

    L

    +

    wL

    x

    . apply bending-moment equation

    EIdv

    dx=

    wx

    L+

    wL

    x

    integrate once:

    EIdvdx

    = wx

    L+ wL

    x + C

    apply the symmetry condition:dv

    dxx=L/

    =

    C = wL

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

  • 7/30/2019 17_defl_print.pdf

    37/61

    . . . . . .

    .

    integrate again:

    EIv= wx

    L+

    wL

    x

    wL

    x+ C apply

    B.C. v

    x= = C =

    . substituting constants into results (x [,L

    ])EIv = wL

    x +wL

    x

    wL

    EIv= w

    Lx +

    wL

    x

    wL

    x

    . vmax = vx=L/ = wLEI() Lecture : Bending (V) Deflection of Beams Nov , /

    Example : simple beam with a concentrated load

  • 7/30/2019 17_defl_print.pdf

    38/61

    . . . . . .

    A concentrated loadPis applied on a simply supported beam.

    Solve:

    . elastic curve. A, B. vmax. vC (midpoint)

    a b

    L

    P

    A BC

    RB =Pa

    LRA =

    Pb

    L

    x . set up coordinate system

    . bending-moment in segments

    M=

    PbLx, x [, a]

    Pa(L x)L

    , x [a, L]() Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

  • 7/30/2019 17_defl_print.pdf

    39/61

    . . . . . .

    a b

    L

    P

    A BC

    RB =Pa

    LRA =

    Pb

    L

    x

    . apply the bending-moment equation to segments

    the left part: x [, a]EI

    dv

    dx =Pb

    L x

    EIdv

    dx=

    Pb

    Lx + C

    EIv=Pb

    L

    x + Cx+ C

    the right part: x [a, L]EI

    dv

    dx =Pa

    (L x

    )LEIdv

    dx=

    Pa

    L(Lx x

    ) + C

    EIv=Pa

    L (Lx

    x

    )+ Cx+ C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

  • 7/30/2019 17_defl_print.pdf

    40/61

    . . . . . .

    . Continuity and Boundary conditions

    continuity ofdv

    dxx=a

    Pba

    L

    + C =Pba

    (L a

    )L+ C

    continuity of vx=a

    Pba

    L+ Ca + C =

    Pa(L a)L

    + Ca + C

    vx= = C =

    v

    x=L

    = PaL

    + CL + C =

    C =Pab(a L)

    L, C = ,

    C = Pa(L + a)

    L, C =

    Pa

    . substituting into the results

    v=

    Pbx

    LEI(L b x), x [, a]

    Pa

    LEI

    (L x

    )[(x a

    )

    bx

    ], x

    [a, L

    ]() Lecture : Bending (V) Deflection of Beams Nov , / Example an alternative way

    P (L )

  • 7/30/2019 17_defl_print.pdf

    41/61

    . . . . . .

    In step : bending moment for the right part,Pa(L x)

    L, x [a, L]

    M=Pb

    L

    x, x

    [, a

    ]For left part: x [, a]EIdv

    dx=

    Pb

    Lx

    EIdv

    dx=

    Pb

    Lx + C

    EIv=Pb

    Lx + Cx+ C

    M=Pbx

    L

    P

    (x a

    ), x

    [a, L

    ]For

    right part: x [a, L]EIdv

    dx=

    Pbx

    L P

    (x a

    )EIdvdx=Pbx

    L P(x a)

    + C

    EIv=Pbx

    L P

    (x a)

    + Cx+ C

    continuity ofdv

    dxx=a Pba

    L+ C

    =

    Pba

    L+ C

    continuity of vx=a

    Pba

    L+ Ca + C =

    Pba

    L+ Ca + C

    C = C and C = C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example an alternative way (cont.)

  • 7/30/2019 17_defl_print.pdf

    42/61

    . . . . . .

    vx=

    = C = C =

    v

    x=L

    = PbL

    Pb

    + CL =

    C = C = Pb(L b)

    L. const. solving done, substituting back

    v=

    Pbx

    LEI(L b x), x [, a]

    Pa

    LEI(L x

    )[(x a

    ) bx

    ], x

    [a, L

    ]dvdx

    =

    Pb

    LEI(L b x), x [, a]

    Pa

    LEI((x a)(a + L x) + b(x L)), x [a, L]

    A =dv

    dxx==

    Pab

    (L + b

    )LEI, B =

    dv

    dxx=L=Pab

    (L + a

    )LEIAt vmax, dv/dx= x =L b

    , (a b)vmax =

    Pb(L b)/LEI

    , vC = Pb(L b)

    EI, (a b)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : Special case

  • 7/30/2019 17_defl_print.pdf

    43/61

    . . . . . .

    load at the midpoint: a = b = L

    /

    symmetry only consider x [, L/]dv

    dx=

    P

    EI(L x)

    v= Px

    EI(L x

    )A =B =

    PL

    EI

    vmax =vC =PL

    EI

    check with Appendix G, page

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example : Hibbelers book, example -, p.

  • 7/30/2019 17_defl_print.pdf

    44/61

    . . . . . .

    Problem: a overhanging beam subjected toP.Determine vC.

    a2a

    P

    A B C

    x vc

    RA =P

    2

    RB =3

    2P

    . setting up the coordinate system

    . bending moment in segments:

    M=

    P

    x, x [, a]

    P

    (x a

    )x

    [a, a

    ]

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

  • 7/30/2019 17_defl_print.pdf

    45/61

    . . . . . .

    a2a

    P

    A B C

    x vc

    RA =P

    2

    RB =3

    2P

    . the bending-moment equation

    the left part: x [, a]EI

    dv

    dx=

    P

    x

    EIdv

    dx=

    P

    x + C

    EIv= P

    x + Cx+ C

    the right part: x [a, a]EI

    dv

    dx=

    P(x a)EIdv

    dx=P(x

    ax) + C

    EIv=P

    (x

    a

    x

    )+ Cx+ C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Examples : (cont.)

  • 7/30/2019 17_defl_print.pdf

    46/61

    . . . . . .

    . boundary and continuity conditions:

    B.C. vx= = C = B.C. v

    x=a =

    Pa + aC =

    aP+ Ca + C =

    continuity ofdv

    dxx=a Pa + C = Pa

    + C

    C =

    Pa, C = , C =

    Pa, C = Pa

    . substituting into results for the right part

    v=P

    EI(x

    a

    x

    +

    a

    x a), x [a, a]

    at C, x= a vC = Pa

    EI

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.) using multiple xcoordinates

  • 7/30/2019 17_defl_print.pdf

    47/61

    . . . . . .

    a2a

    P

    A B C

    x1vc

    x2

    RA =P

    2

    RB =3

    2

    P

    the left part: x [, a]EIdv

    dx=

    P

    x

    EIdv

    dx=

    Px + C

    EIv = P

    x + Cx + C

    . set up coordinate system

    .

    bending moment:

    M=

    P

    x, x

    [, a

    ]Px x [

    , a

    ]the right part: x [, a]EIdv

    dx= Px

    EIdv

    dx=

    P

    x + C

    EIv = P

    x + Cx + C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Examples (cont.) using multiple xcoordinates (cont.)

  • 7/30/2019 17_defl_print.pdf

    48/61

    . . . . . .

    . boundary and continuity conditions:

    B.C. v

    x== C =

    B.C. vx=a = vx=a Pa + aC = Pa + Ca + C = continuity of

    dv

    dx

    x=a

    =

    dv

    dx

    x=a

    Pa + C =

    (

    P

    a + C

    ) C =

    Pa, C

    = , C

    =

    Pa , C

    = Pa

    . substituting into results for the right part

    v = P

    EI

    (x

    a

    x + a

    ), x

    [, a

    ](compare with the result using a single xcoordinate:

    v= PEI(x a x + ax a), x [a, a])

    . at C, x = vC = Pa

    EI

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Examples (cont.) double check

  • 7/30/2019 17_defl_print.pdf

    49/61

    . . . . . .

    with Matlab, note x = a x

    >> syms x x2 a P %()

    >> v2=-(x2^3/6-7*x2*a^2/6+a^3);

    >> v=x^3/6-3*a/2*x^2+10/3*a^2*x-2*a^3;

    >> v2new=subs(v2,x2, 3*a-x)

    >> simple(v2new-v)

    0

    () Lecture : Bending (V) Deflection of Beams Nov , /

  • 7/30/2019 17_defl_print.pdf

    50/61

    . Integration of the

    shear-force and load equations

    . . . . . .

    Integrating the shear-force and load equations

  • 7/30/2019 17_defl_print.pdf

    51/61

    . . . . . .

    different forms of differential equation: order of derivative ofv

    deflection (), slope (), moment (), shear force (), load q ()less effort for the R.H.S. lower order derivative

    same procedure, but with more integration constants

    conditions available:. load-equation th order eqn.

    . shear-force, . moment, . slope and . deflection. shear-force equation rd order eqn.

    . moment, . slope and . deflection.

    bending moment equation nd order eqn.. slope and . deflection

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example application of load equation

  • 7/30/2019 17_defl_print.pdf

    52/61

    . . . . . .

    Problem: cantilevered beam, distributed load

    Solve: () equation for deflection curve; () vB; () B

    A B

    q0

    x

    (a)

    y

    L

    y

    xA B

    uB

    dB

    . set up coordinate system

    . loading intensityw =q

    (L x

    )L

    . apply the load equation

    EIdv

    dx= w =

    q(L x)L

    EI

    dv

    dx =qL(L x) + C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example , load equation (cont.)

    ( d) EIdv q (L ) C

  • 7/30/2019 17_defl_print.pdf

    53/61

    . . . . . .

    (repeated) EIdx

    =

    qL

    (L x) + C. shear force B.C.: V

    (x= L

    )=

    so EId

    vdx (x= L) = C =

    the shear force V= EIdv

    dx=

    qL

    (L x). integrate again

    EId

    vdx

    = qL(L x) + C

    now, the bending moment B.C.: M(x= L) = so EI

    dv

    dx

    (x= L

    )= C =

    the bending moment: M= EId

    vdx

    = qL(L x)

    . integrate again twice

    EIdv

    dx=

    qL

    (L x

    )

    + C, EIv= q

    L

    (L x

    )

    + Cx+ C

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example application of load equation (cont.)

    q L q L

  • 7/30/2019 17_defl_print.pdf

    54/61

    . . . . . .

    . B.C.s at x= : v

    = v= C = qL

    , C =

    qL

    . substitute into the results

    dv

    dx=

    qx

    LEI(L Lx+ Lx x)

    v= qx

    LEI

    (L Lx+ Lx x

    ) deflection angle and deflection at the free endB =

    dv

    dxx=L

    =

    qL

    EI, vB = v(L) = qL

    EI

    y

    xA B

    uB

    dB

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (same as example ), with shear-force equation

  • 7/30/2019 17_defl_print.pdf

    55/61

    . . . . . .

    Problem: overhanging beam, concentrated load

    Determine: () equation for deflection curve; () vC

    A C

    P

    3P

    B

    2

    P2

    L L

    2

    A

    y

    B C

    xdC

    . RA = P

    , RB =

    P

    V=

    P

    , x (, L)

    P, x (L, L)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

  • 7/30/2019 17_defl_print.pdf

    56/61

    . . . . . .

    A C

    P

    3P

    B

    2

    P2

    L L

    2

    A

    y

    B C

    xdC

    . apply the shear-force equation

    EIdv

    dx=

    P, x (, L)

    P, x (L, L)

    M= EId

    vdx

    =

    Px

    +

    C,

    x (, L)Px+ C, x (L, L

    )

    BCs: MA =MC = dv

    dx () = ,dv

    dx (L

    ) = C = , C =

    PL

    we may verifyMat this point

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)

    Bending moment (final results)

  • 7/30/2019 17_defl_print.pdf

    57/61

    . . . . . .

    Bending moment (final results)

    M=

    EI

    dv

    dx=

    Px

    , x

    (, L

    )P(L x) , x (L, L )Slopes:

    EIdv

    dx=

    Px

    + C, x

    (, L

    )Px(L x) + C, x (L, L )Continuity of slope at B

    PL

    + C = PL

    + C C = C +

    PL

    Deflections:

    EIv=

    Px

    + Cx+ C, x (, L)

    Px(L x)

    + Cx+ C, x (L, L)

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Example (cont.)BCs: v() = v(L) = applied to AB

  • 7/30/2019 17_defl_print.pdf

    58/61

    . . . . . .

    C = , C =PL

    ; C =

    PL

    v(L) = applied to BC C = PLsubstitute into the results

    v=

    Px

    EI

    (L x

    ), x

    (, L

    ) PEI(L Lx+ Lx x), x (L, L )deflection at the free end vC = v(L

    ) = PL

    EI

    A

    y

    B Cx

    dC

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Remarks

  • 7/30/2019 17_defl_print.pdf

    59/61

    . . . . . .

    . which equation to use:

    a matter of conveniencedepends on the quantities most easily available: V,Mor qand balance of numbers of the integration constants

    personal preference

    the bending-moment equation is a good starting point.

    . when to use the conditions:

    way : separately as early as possible to simplify expressions way : postponed to final stage, solved together in a linear system

    . for the ease of use (to determine constants), form of expression is important

    while integrating. Best practicing resource Appendix G, p.

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Summary

  • 7/30/2019 17_defl_print.pdf

    60/61

    . . . . . .

    deflection/elastic curve, sketching

    sign conventions for v, , , ,Mdifferential equations of the deflection curve (EI=const.)

    bending-moment equation: EIdv

    dx=M

    (x

    )shear-force equation: EIdv

    dx=

    V(x)load equation: EI

    dv

    dx= q(x)

    Integration method for deflection curve

    type of eqn., number of required integration constants application ofboundary/continuity conditions coordinate system selection, form of expression

    () Lecture : Bending (V) Deflection of Beams Nov , /

    Homework

  • 7/30/2019 17_defl_print.pdf

    61/61

    . . . . . .

    Chap. ,,, (all with integration method)

    Due: .. (Fri.)

    () Lecture : Bending (V) Deflection of Beams Nov , /